Heavens

Microscopic minerals excavated from an ancient outcrop of Jack Hills, in Western Australia, have been the subject of intense geological study, as they seem to bear traces of the Earth's magnetic field reaching as far back as 4.2 billion years ago. That's almost 1 billion years earlier than when the magnetic field was previously thought to originate, and nearly back to the time when the planet itself was formed.

No matter where we look, the same rules apply everywhere in space: countless calculations of astrophysics are based on this basic principle. A recent study by the Universities of Bonn and Harvard, however, has thrown this principle into question. Should the measured values be confirmed, this would toss many assumptions about the properties of the universe overboard. The results are published in the journal Astronomy & Astrophysics, but are already available online.

An international research team led by the Department of Physics and Astronomy at the University of Turku, Finland, mapped the interstellar magnetic field structure and interstellar matter distribution in the solar neighbourhood. The results of the study have been published in the esteemed European journal Astronomy & Astrophysics (A&A) in March.

When a massive star in a distant galaxy collapses, forming a black hole, two giant jets of light-emitting plasma shoot from its core. These extremely bright gamma-ray bursts (GRBs) are the most powerful explosions in the universe, and when a jet points towards Earth, the afterglow can be detected from ground and space-borne telescopes. Material does not simply catapult from an exploding star, it accelerates to ultra-high speeds along the narrow beam of the gamma-ray jet, leaving astrophysics puzzled over the power source driving these extraordinary explosions.

The upper layers in the atmospheres of gas giants -- Saturn, Jupiter, Uranus and Neptune -- are hot, just like Earth's. But unlike Earth, the Sun is too far from these outer planets to account for the high temperatures. Their heat source has been one of the great mysteries of planetary science.

They say variety is the spice of life, and now new discoveries from Johns Hopkins researchers suggest that a certain elemental 'variety'--sulfur--is indeed a 'spice' that can perhaps point to signs of life.

These findings from the researchers' lab simulations reveal that sulfur can significantly impact observations of far-flung planets beyond the solar system; the results have implications for the use of sulfur as a sign for extraterrestrial life, as well as affect how researchers should interpret data about planetary atmospheres.

The ice giant Uranus' unusual attributes have long puzzled scientists. All of the planets in our Solar System revolve around the Sun in the same direction and in the same plane, which astronomers believe is a vestige of how our Solar System formed from a spinning disc of gas and dust. Most of the planets in our Solar System also rotate in the same direction, with their poles orientated perpendicular to the plane the planets revolve in. However, uniquely among all the planets, Uranus' is tilted over about 98 degrees.

Astronomers have found the best evidence for the perpetrator of a cosmic homicide: a black hole of an elusive class known as "intermediate-mass," which betrayed its existence by tearing apart a wayward star that passed too close.

Weighing in at about 50,000 times the mass of our Sun, the black hole is smaller than the supermassive black holes (at millions or billions of solar masses) that lie at the cores of large galaxies, but larger than stellar-mass black holes formed by the collapse of a massive star.

New data from the NASA/ESA Hubble Space Telescope have provided the strongest evidence yet for mid-sized black holes in the Universe. Hubble confirms that this "intermediate-mass" black hole dwells inside a dense star cluster.

In Jessica Barnes' palm is an ancient, coin-sized mosaic of glass, minerals and rocks as thick as a strand of wool fiber. It is a slice of Martian meteorite, known as Northwest Africa 7034 or Black Beauty, that was formed when a huge impact cemented together various pieces of Martian crust.

Nearly a millennium and a half ago, red light streaked the night sky over Japan. Witnesses compared it to the tail of a pheasant -- it appeared as a fan of beautiful red feathers stretched across the sky. Since the event, scientists have studied the witness accounts written in the year 620 A.D. and speculated about what the cosmic phenomenon could have actually been. Now, researchers from The Graduate University for Advanced Studies may have found the answer.

They published their results on March 31, 2020 in the Sokendai Review of Culture and Social Studies.

Astronomers obtained the first resolved image of disturbed gaseous clouds in a galaxy 11 billion light-years away by using the Atacama Large Millimeter/submillimeter Array (ALMA). The team found that the disruption is caused by young powerful jets ejected from a supermassive black hole residing at the center of the host galaxy. This result will cast light on the mystery of the evolutionary process of galaxies in the early Universe.

ANN ARBOR--Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

A new study from the University of Michigan, Lawrence Berkeley National Laboratory (Berkeley Lab) and University of California, Berkeley has ruled out dark matter being responsible for mysterious electromagnetic signals previously observed from nearby galaxies. Prior to this work there were high hopes that these signals would give physicists hard evidence to help identify dark matter.

An unidentified X-ray signature recently observed in nearby galaxies and galaxy clusters is not due to decay of dark matter, researchers report. The findings rule out previously proposed interpretations of dark matter particle physics. Dark matter (DM) constitutes more than 80% of the matter in the Universe and its gravitational pull is responsible for binding galaxies and galaxy clusters together.

ITHACA, N.Y. - Cornell University astronomers have created five models representing key points from our planet's evolution, like chemical snapshots through Earth's own geologic epochs.

The models will be spectral templates for astronomers to use in the approaching new era of powerful telescopes, and in the hunt for Earth-like planets in distant solar systems.