Removing new neurons born after a brain injury reduces seizures in mice, according to new research in JNeurosci. This approach could potentially help prevent post-injury epilepsy.

New neurons generated following a brain injury often do not develop normally. Left untreated, these cells may contribute to the development of epilepsy.

Defective potassium channels involved in pain detection can increase the chance of developing a headache and could be implicated in migraines, according to research in mice published in eNeuro.

A type of potassium channel called TRESK is thought to control the excitability of peripheral sensory neurons that detect pain, heat, cold, and touch. Even though these channels are found throughout the neurons sensing both body and facial pain, channel mutations are linked only with headaches and not body pain.

A five-year collaborative study by Chinese and Canadian scientists has produced a theoretical model via computer simulation to predict properties of hydrogen nanobubbles in metal.

The international team was composed of Chinese scientists from the Institute of Solid State Physics of the Hefei Institute of Physical Science along with their Canadian partners from McGill University. The results will be published in Nature Materials on July 15.

Molecular biologists long thought that domains in the genome's 3D organisation control how genes are expressed. After studying highly rearranged chromosomes in fruit flies, EMBL researchers now reveal that while this is the case for some genes, their results challenge the generality of this for many others. Their results, published in Nature Genetics on 15 July, reveal an uncoupling between the 3D genome organisation - also called chromatin topology - and gene expression.

A new large-scale genome-wide association study published in Nature Genetics, has identified eight genetic variants significantly associated with anorexia nervosa; and the research shows that the origins of this serious disorder appear to be both metabolic and psychiatric.

CRISPR is often thought of as "molecular scissors" used for precision breeding to cut DNA so that a certain trait can be removed, replaced, or edited, but Yiping Qi, assistant professor in Plant Science & Landscape Architecture at the University of Maryland, is looking far beyond these traditional applications in his latest publication in Nature Plants.

People have long dreamed of re-shaping the Martian climate to make it livable for humans. Carl Sagan was the first outside of the realm of science fiction to propose terraforming. In a 1971 paper, Sagan suggested that vaporizing the northern polar ice caps would "yield ~10 s g cm-2 of atmosphere over the planet, higher global temperatures through the greenhouse effect, and a greatly increased likelihood of liquid water."

Algae form the basis of the marine ecosystem, and store more carbon than all land plants put together. The algae's carbohydrates are broken down by bacteria, which thereby turn them into an important energy source for the entire marine food chain. What exactly happens chemically during this degradation of algae biomass was, however, previously unknown.

Numerical models are a key tool for climate scientists in understanding the past, present and future climate change arising from natural, unforced variability or in response to changes, according to Dr Qing Bao, Research Fellow at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), and the corresponding author of a recently published study.

A new study, led by researchers from the University of California, Irvine (UCI), uncovers the long-sought-after, three-dimensional structure of a toxin primarily responsible for devastating Clostridium difficile infection (CDI).

Published today in Nature Structural & Molecular Biology, the study titled, "Structure of the full-length Clostridium difficile toxin B," sheds light on the weaknesses of TcdB, one of the toxins secreted by the Clostridium difficile (C. diff) bacteria and the main cause of CDI.