AUSTIN - (Feb. 16, 2018) - Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Bao, in collaboration with Baylor College of Medicine, Texas Children's Hospital and Stanford University, is working to find a cure for the hereditary disease. A single DNA mutation causes the body to make sticky, crescent-shaped red blood cells that contain abnormal hemoglobin and can block blood flow in limbs and organs.

Multicellular organisms like ourselves depend on a constant flow of information between cells, coordinating their activities in order to proliferate and differentiate. Deciphering the language of intercellular communication has long been a central challenge in biology. Now, Caltech scientists have discovered that cells have evolved a way to transmit more messages through a single pathway, or communication channel, than previously thought, by encoding the messages rhythmically over time.

Stanford, CA--Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients. New work from Carnegie and Stanford University's José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. The findings, published by Current Biology, could help scientists improve agricultural productivity in saline soils, which occur across the globe and reduce crop yields.

After days of lingering off the west Kimberley coast of Western Australia as a slowly organizing low pressure area, Tropical Storm 10S has formed about 50 miles west of Broome, Australia.

Bird-human actions can end in tragedy -- for bird as well as human.

John Swaddle believes technology and a solid understanding of bird behavior can make those tragedies less frequent.

Swaddle is a behavioral biologist at William & Mary. He briefed attendees at the annual meeting of the American Association for the Advancement of Science on developments in a pair of initiatives designed to minimize unpleasant results of bird-human interactions.

Put 50 newborn worms in 50 separate containers, and they'll all start looking for food at roughly the same time. Like members of other species, microscopic C. elegans roundworms tend to act like other individuals their own age.

It turns out that the innate system that controls age-appropriate behavior in a developing worm is not entirely dependable, however. Despite sharing identical genes and growing up in similar environments, some individual worms will inevitably march to the beat of their own drum.

New Rochelle, NY, February 15, 2018--China is helping to advance gene and cell therapy and genome editing research and clinical development by creating novel viral and nonviral vectors for gene delivery and innovative applications of CRISPR technology in a broad range of disease areas.

Boston, MA (February 16, 2018) - Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology to create cerebellar cells known as Purkinje cells from patients with tuberous sclerosis complex (TSC), a genetic syndrome that often includes ASD-like features. In the lab, the cells showed several characteristics that may help explain how ASD develops at the molecular level.

LA JOLLA, CA--Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. In their latest study, researchers at La Jolla Institute for Allergy and Immunology (LJI) identified a subset of T cells, whose frequency serves as early childhood immune signature that predicts the risk of developing asthma later on.

URBANA, Ill. - Gut microbes have been in the news a lot lately. Recent studies show they can influence human health, behavior, and certain neurological disorders, such as autism. But just how do they communicate with the brain? Results from a new University of Illinois study suggest a pathway of communication between certain gut bacteria and brain metabolites, by way of a compound in the blood known as cortisol. And unexpectedly, the finding provides a potential mechanism to explain the characteristics of autism.