Body

Huge human gene study includes Penn State University research

The first integrated understanding of how the human genome functions will be published this week -- the triumphant result of a collaborative five-year project involving more than 440 researchers working in 32 labs worldwide. The Encyclopedia of DNA Elements project, known as ENCODE, will publish simultaneously on 6 September 2012 a massive number of scientific papers, including 1 main integrative paper and 5 others in Nature; 18 in Genome Research; 6 in Genome Biology; and other affiliated papers in Science, Cell, and other scientific journals.

Yale team finds order amidst the chaos within the human genome

New Haven, Conn. - The massive Encyclopedia of DNA Elements (ENCODE) unveiled Sept. 5 reveals a human genome vastly more rich and complex than envisioned even a decade ago. In a key supporting paper published in the journal Nature, the lab of Yale's Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics, has found order amidst the seeming chaos of trillions of potential molecular interactions.

The scientists show it is not just the gene, but the network that makes the human genome dynamic.

Mapping a genetic world beyond genes

Cambridge, MA. Wed. September 5, 2012 – Most of the DNA alterations that are tied to disease do not alter protein-coding genes, but rather the "switches" that control them. Characterizing these switches is one of many goals of the ENCODE project – a sweeping, international effort to create a compendium of all of the working parts of the human genome that have not been well studied or well understood.

UMASS Medical School faculty annotate human genome for ENCODE project

WORCESTER, MA — The first comprehensive decoding and annotation of the human genome is being published today by the ENCyclopedia Of DNA Elements (ENCODE) project, an international consortium of scientists from 32 institutions, including the University of Massachusetts Medical School. The groundbreaking ENCODE discovery appears in a set of 30 papers in Nature, Genome Research and Genome Biology.

UC Santa Cruz provides access to encyclopedia of the human genome

SANTA CRUZ, CA--A massive international collaboration has enabled scientists to assign specific functions for 80 percent of the human genome, providing new insights into the mechanisms of gene regulation and giving biomedical researchers a solid genetic foundation for understanding how the body works in health and disease.

In massive genome analysis ENCODE data suggests 'gene' redefinition

Cold Spring Harbor, N.Y. – Most people understand genes to be specific segments of DNA that determine traits or diseases that are inherited. Textbooks suggest that genes are copied ("transcribed") into RNA molecules, which are then used as templates for making protein – the highly diverse set of molecules that act as building blocks and engines of our cells. The truth, it now appears, is not so simple.

Millions of DNA switches that power human genome's operating system are discovered

The locations of millions of DNA 'switches' that dictate how, when, and where in the body different genes turn on and off have been identified by a research team led by the University of Washington in Seattle. Genes make up only 2 percent of the human genome and were easy to spot, but the on/off switches controlling those genes were encrypted within the remaining 98 percent of the genome.

Comprehensive transcriptome analysis of human ENCODE cells

ENCODE, an international research project led by the National Human Genome Research Institute (NHGRI), has produced and analyzed 1649 data sets designed to annotate functional elements of the entire human genome. Data on transcription starting sites (TSS) contributed by a research team at the RIKEN Omics Science Center provided key anchor points linking the epigenetic status of genes observed at the 5' end directly to their RNA output.

Quantum physics at a distance

Physicists at the University of Vienna and the Austrian Academy of Sciences have achieved quantum teleportation over a record distance of 143 km. The experiment is a major step towards satellite-based quantum communication. The results have now been published in "Nature" (Advance Online Publication/AOP).

The ENCODE Project publishes new genomic insights in special issue of Genome Research

Genome Research publishes online and in print today a special issue dedicated to The ENCODE (ENCyclopedia Of DNA Elements) Project, whose goal is to characterize all functional elements in the human genome. Since the completion of the pilot phase of the project in 2007, covering 1% of the genome, The ENCODE Consortium has fanned out across the genome to study function and regulation on an unprecedented scale.

New study examines how ocean energy impacts life in the deep sea

Durham, NC — A new study of deep-sea species across the globe aims to understand how natural gradients in food and temperature in the dark, frigid waters of the deep sea affect the snails, clams, and other creatures that live there.

Similar studies have been conducted for animals in the shallow oceans, but our understanding of the impact of food and temperature on life in the deep sea — the Earth's largest and most remote ecosystem — has been more limited.

Study in mice discovers injection of heat-generating cells reduces belly fat

COLUMBUS, Ohio – The injection of a tiny capsule containing heat-generating cells into the abdomens of mice led those animals to burn abdominal fat and initially lose about 20 percent of belly fat after 80 days of treatment.

Researchers conducting the study were surprised to see that the injected cells even acted like "missionaries," converting existing belly fat cells into so-called thermogenic cells, which use fat to generate heat.

Study: How a high-fat diet and estrogen loss leads women to store more abdominal fat than men

COLUMBUS, Ohio – A high-fat diet triggers chemical reactions in female mice that could explain why women are more likely than men to gain fat in the abdomen after eating excess saturated fat, new research suggests. The study also sheds light on why women gain fat following menopause.

Scientists identified events in female mice that start with the activation of an enzyme and end with the formation of visceral fat – fat that accumulates around internal organs and is linked to a higher risk for Type 2 diabetes, heart disease and cancer.

When do we lie? When we're short on time and long on reasons

Almost all of us have been tempted to lie at some point, whether about our GPA, our annual income, or our age. But what makes us actually do it?

In a study forthcoming in Psychological Science, a journal of the Association for Psychological Science, psychological scientists Shaul Shalvi of the University of Amsterdam and Ori Eldar and Yoella Bereby-Meyer of Ben Gurion University investigated what factors influence dishonest behavior.

Study uncovers simple way of predicting severe pain following breast cancer surgery

WOMEN having surgery for breast cancer are up to three times more likely to have severe pain in the first week after surgery if they suffer from other painful conditions, such as arthritis, low back pain and migraine, according to a Cancer Research UK study published today (Wednesday) in the British Journal of Cancer.

Of the women surveyed, 41 per cent reported moderate to severe pain at rest, and 50 per cent on movement, one week after their surgery. Most patients having breast cancer surgery are discharged home by this time.