Heavens

Working with lead isotopes taken from tooth enamel of prehistoric animals, researchers at the University of Arkansas have developed a new method for assessing the geographic origins of ancient humans.

JUPITER, Fla. --Jan. 20, 2020--The move toward targeted anti-cancer treatments has produced better outcomes with fewer side-effects for many breast cancer patients. But so far, advances in precision medicine haven't reached people diagnosed with so-called triple-negative breast cancer.

Ever since it was proposed that atoms are building blocks of the world, scientists have been trying to understand how and why they bond to each other. Be it a molecule (which is a group of atoms joined together in a particular fashion), or a block of material or a whole living organism, ultimately, everything is controlled by the way atoms bond, and the way bonds break.

Astronomers at the National Astronomical Observatory of Japan (NAOJ) have analyzed the paths of two objects heading out of the Solar System forever and determined that they also most likely originated from outside of the Solar System. These results improve our understanding of the outer Solar System and beyond.

Nine sources of extremely high-energy gamma rays comprise a new catalog compiled by researchers with the High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. All produce gamma rays with energies over 56 trillion electron volts (TeV) and three emit gamma rays extending to 100 TeV and beyond, making these the highest-energy sources ever observed in our galaxy. The catalog helps to explain where the particles originate and how they are accelerated to such extremes.

Washington, DC-- A long-sought-after class of "superdiamond" carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie's Li Zhu and Timothy Strobel. Their work is published by Science Advances.

Carbon is the fourth-most-abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.

Astronomers have cataloged signs of 9 heavy metals in the infrared light from supergiant and giant stars. New observations based on this catalog will help researchers to understand how events like binary neutron star mergers have affected the chemical composition and evolution of our own Milky Way Galaxy and other galaxies.

New Orleans, LA - Serena Auñón-Chancellor, M.D., M.P.H., Clinical Associate Professor of Medicine at LSU Health New Orleans School of Medicine's branch campus in Baton Rouge, is the lead author of a paper describing a previously unrecognized risk of spaceflight discovered during a study of astronauts involved in long-duration missions. The paper details a case of stagnant blood flow resulting in a clot in the internal jugular vein of an astronaut stationed on the International Space Station.

They are called low-surface-brightness galaxies and it is thanks to them that important confirmations and new information have been obtained on one of the largest mysteries of the cosmos: dark matter. "We have found that disc galaxies can be represented by a universal relationship.

As the number and technology of humans has grown, their impact on the natural world now equals or exceeds those of natural processes, according to scientists.

Many researchers formally name this period of human-dominance of natural systems as the Anthropocene era, but there is a heated debate over whether this naming should take place and when the period began.

It's been nearly 350 years since Sir Isaac Newton outlined the laws of motion, claiming "For every action, there is an equal and opposite reaction." These laws laid the foundation to understand our solar system and, more broadly, to understand the relationship between a body of mass and the forces that act upon it. However, Newton's groundbreaking work also created a pickle that has baffled scientists for centuries: The Three-Body Problem.

NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has allowed researchers to map the winds that blow high above the red planet's surface, reports a new study, which measures the global circulation of Mars' upper atmosphere for the first time. The results inform our understanding of how Mars lost most of its ancient atmosphere and provide a useful comparison for understanding Earth's upper atmosphere.

Today, a paper published in Science documents for the first time the global wind circulation patterns in the upper atmosphere of a planet, 120 to 300 kilometers above the surface. The findings are based on local observations, rather than indirect measurements, unlike many prior measurements taken on Earth's upper atmosphere. But it didn't happen on Earth: it happened on Mars. On top of that, all the data came from an instrument and a spacecraft that weren't originally designed to collect wind measurements.

A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts. Emily King and colleagues from AbbVie report these findings in a new study published 12th December in PLOS Genetics.

Botanists from Trinity College Dublin have discovered that "penny-pinching" evergreen species such as Christmas favourites, holly and ivy, are more climate-ready in the face of warming temperatures than deciduous "big-spending" water consumers like birch and oak. As such, they are more likely to prosper in the near future - with this pattern set to be felt more strongly in cooler climates, such as Ireland's.