Tech

Skin and non-adhesive cells found to play pivotal role in the formation of fin

image: The image shows normally separated digits in WT embryos and fusion of the digits (Syndactyly) in Grhl3-deleted embryos at Embryonic day 15.5.

Image: 
UCI School of Medicine

Irvine, Calif. - February 27, 2020 - Human fingers are sculpted from a primitive pad-like structure during embryonic development. Sometimes, this process goes awry and babies are born with fused fingers or toes. A new study from the University of California, Irvine reveals new factors involved in the congenital malformation called syndactyly.

One of the most common limb malformation in humans, syndactyly was thought to be caused by insufficient removal of the connective tissue between the developing digits. In a study, published today in Developmental Cell, researchers reveal that the overlying skin also plays an active role and is required for sculpting of the digits, and that a layer of non-adhesive cells on the skin's surface is required to prevent the fusion of adjacent digits.

"Our study identifies epidermal developmental processes required for digit separation that expand beyond the insufficient removal of connective tissue. These additional factors play an integral role in syndactyly and may be implicated in other complex syndromes, including Van der Woude syndrome," said Ghaidaa Kashgari, PhD, a post-doctoral researcher in the UCI School of Medicine Department of Biological Chemistry, and first author on the paper titled, "Epithelial migration and non-adhesive periderm are required for digit separation during mammalian development."

Van der Woude syndrome is characterized by cleft lip and/or cleft palate. In addition, seven to eight percent of Van der Woude patients have limb defects, most commonly soft tissue syndactyly which suggests there is a shared developmental mechanism in oral-clefting and digit separation.

"Our research shows that the GRHL3 gene is required for normal digit separation. When this gene is mutated, it can affect the function of the non-adhesive cells on the skin's surface causing conditions such as Van der Woude syndrome associated with syndactyly as well as cleft lip and palate," said Bogi Andersen, MD, a professor of medicine and biological chemistry in the UCI School of Medicine, and director of the UCI Skin Biology Resource-based Center.

Credit: 
University of California - Irvine

Polymers get caught up in love-hate chemistry of oil and water

image: Researchers at Oak Ridge National Laboratory and the University of Tennessee tracked polymer self-assembly at the liquid-liquid interface in real time.

Image: 
Michelle Lehman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory and the University of Tennessee achieved a rare look at the inner workings of polymer self-assembly at an oil-water interface to advance materials for neuromorphic computing and bio-inspired technologies.

Results published in the Journal of the American Chemical Society provide new insights on the way molecules pack and order themselves into "tunable" interfaces, monolayer thick surfaces with structures that can be modified for specific functionalities.

"Understanding the design rules of the chemistry happening at the liquid-liquid interface ultimately informs how we can make new materials with custom properties," said Benjamin Doughty of ORNL's Chemical Sciences Division.

The study expands interest in using soft materials to mimic lipid bilayers -- selective membranes with important biological functions, such as processing signals across the brain's neural network and transporting ions, proteins, and other molecules across cells.

Co-authors previously designed biomimetic membranes using lipid-coated water droplets in oil and demonstrated their potential as sensory components for neuromorphic, or brain-like, computers with natural information processing, learning and memory.

"Because lipids are inherently fragile and decay, we are interested in developing polymer-based counterparts that offer stability and can also give us a range of natural functionalities," said Pat Collier of ORNL's Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

Without the knowledge of interfacial chemistry, however, creating functional bilayers from natural or synthetic molecules involves a certain degree of mystery. Chemical species interacting in a beaker of solution may or may not form analogous membranes with selective properties, such as the capability to store or filter sensory impulses that make up the nondigital language of neuromorphic computing.

"To be able to train molecules for specific purposes and unlock new functionalities, we need to understand what is happening on a molecular level during self-assembly," Collier said.

For the experiment, researchers chose an oligomer, a small polymer variant with a similar structure to natural lipids, and used surface spectroscopy methods to probe the molecular monolayer -- one side of a bilayer -- formed between water and oil.

The ORNL team is one of only a few groups that has probed the liquid-liquid interface, an important area of research, but understudied because of technical challenges.

"Our goal was to investigate how the asymmetry at the oil-water interface causes species to adsorb differently, to pack and order into a functional design," Doughty said.

The studied oligomer is an amphiphilic molecule, meaning parts of its structure are hydrophobic while others are hydrophilic. When samples stabilized in oil are introduced into a water-based solution, the molecules self-assemble in response to their mixed attraction and repulsion to water.

Like goes to like -- the oligomers' slightly charged polar heads want to be in the water phase, which is also polar, and the nonpolar tails want to be in the oil phase, which is not.

"Being able to observe in real time how these molecules arrange at a varied interface is a broadly applicable fundamental scientific accomplishment," Doughty said.

As shown in the animation, the charged oligomer heads home in on the water phase; but the flexible tails coil up in the oil when they have room to spare, or tighten to accommodate neighbors as the interface becomes crowded.

"We discovered that adjusting the ions, or charged particles, in the water phase aided in the formation of well-defined interfaces, with oligomers taking on more tightly coiled structures," Doughty said.

Too few ions and the tails spread out loosely, leaving gaps; too many, and they squeeze in, ballooning from the surface.

"The findings point to approaches for modifying the size and shape of monolayers, and -- at the next stage -- enabling bilayers with asymmetrical designs, just like natural lipids," Collier said. "The work brings us a step closer to unlocking new potentials in biomaterials."

Tailoring surfaces on a molecular level to design new materials opens possibilities not only for biocomputing but also broadly for chemical separations, sensing and detection.

"Observing the liquid-liquid interface helps us understand the chemistry that drives all of these technologies," said Doughty.

Credit: 
DOE/Oak Ridge National Laboratory

Two NE tree species can be used in new sustainable building material

image: Panels of CLT were placed into a strength-testing machine at the UMass Wood Mechanics Lab, where a giant steel arm put thousands of pounds of pressure on the engineered wood until it broke.

Image: 
Peggi Clouston/UMass Amherst

Two tree species native to the Northeast have been found to be structurally sound for use in cross-laminated timber (CLT) - a revolutionary new type of building material with sought-after sustainability characteristics, according to research by a University of Massachusetts Amherst timber engineer.

The findings, published in the Journal of Materials in Civil Engineering, suggest that these trees - the eastern hemlock and eastern white pine - could support local markets for CLT. The manufacturing of CLT, a type of mass timber used for wall, floor and roof construction, could create jobs, improve rural and forestry economies and support better forestry management, which is a strategy to address climate change, the research says.

"This is the future - prefabricated, panelized wood," says lead author Peggi Clouston, professor of wood mechanics and timber engineering in the School of Earth and Sustainability. "It's far more efficient and there's far less waste than site construction. It's less time- and labor-intensive than building with cast-in-place concrete" and has a much lower carbon footprint.

Clouston's leadership in state-of-the-art wood construction technology was instrumental in the creation of UMass Amherst's John W. Olver Design Building, a showcase for best practices in sustainability. When the structure opened in 2017 to house academic departments and offices, it was considered the most technologically advanced CLT building in the country. All the CLT for the Design Building was FSC-certified, ensuring it came from responsibly managed forests that deliver environmental, social and economic benefits.

"We wanted to show the world how to build a contemporary mass timber structure, and we are doing so. Groups have come from as far away as Taiwan to see it," Clouston says.

Clouston and her team of researchers tested the eastern hemlock and eastern white pine in the UMass Wood Mechanics Lab at the Olver Design Building. They made the composite building panels by gluing together wooden boards from hemlock and pine trees that were grown in the region.

"We then broke them in a strength-testing machine to find out if they would be safe to use in a university-size building," Clouston explains.

The researchers analyzed the results, comparing them to engineering requirements, and showed that both tree species met building standards, with eastern hemlock outperforming pine.

Salvaging wood from eastern hemlock is a key forest-management priority, Clouston explains, because the trees are under attack by an insect, the hemlock wooly adelgid. "The insect doesn't harm the wood, but it kills the tree, which in five to 10 years will rot and fall down, becoming hazardous fuel for forest fires," she says.

Eastern hemlock also is considered low-value because it's prone to a wood defect called ring shake and isn't used in structural framing. "Turning this particular species into CLT turns a very low-value material into a very high-value building product," Clouston says.

Identifying low-carbon materials for construction is an emerging buzz among architects, and the timing is right to encourage CLT production in the Northeast, the research concludes.

"The testing we did shows that anyone who would want to invest in a local plant has a reason to do so," says Clouston, whose trailblazing work was recently highlighted in a Washington Post feature story. "The prospect of being able to use local wood in CLT and manufacture it locally makes it all the more sustainable by avoiding the environmental cost of transporting the material long distances."

Credit: 
University of Massachusetts Amherst

Rare diseases - Key insights from small samples

The study of a rare genetic disease has enabled a team led by Ludwig-Maximilians-Universitaet (LMU) in Munich´s Christoph Klein to uncover the role of a membrane-associated protein in the development and function of human T cells.

All biological cells are bounded by a lipid bilayer known as the plasma membrane. In addition, the cells of higher organisms contain specialized intracellular membrane compartments, which interact with each other and with the plasma membrane. The highly dynamic functional interplay between these membrane systems plays a vital role in many biological processes, and is essential for normal cell function and survival. A new report published by group of researchers led by Christoph Klein (Professor of Pediatrics at Dr. von Hauner's Children's Hospital, which is part of the LMU Medical Center) throws new light on the action of a key component of this network, and uncovers its significance for the development and function of human T cells. The new findings appear in the online journal Nature Communications.

Klein's research focuses on rare genetic diseases that become manifest at an early age and whose etiology is unknown. Nowadays, the first step toward an understanding of such a disorder is the identification of the genetic mutations responsible for the condition. "In the case that concerns us here, we were able to identify mutations in one specific gene in a cohort of 10 patients identified by the global Care-for-Rare Alliance, which I initiated some years ago. This gene codes for a key protein called FCHO1, which is found at the plasma membrane," Klein explains. "In all, we discovered six different mutations in this gene, each of which interferes with the protein's normal function." All of the children affected suffer from severe, life-threatening immune deficiencies associated with defective T-cell function. These genetic studies implied that FCHO1 is involved in an essential biological process.

This inference is supported by the earlier finding that FCHO1 acts at an early stage in the process of clathrin-mediated endocytosis (CME). CME is responsible for the uptake of fluids and the retrieval of proteins from the cell membrane, at sites that are marked by binding of the protein clathrin to its inner surface. This interaction triggers the involution of a membrane patch to form a clathrin-coated pit, which then rounds up and pinches off to yield a 'coated vesicle'. The mutations in FCHO1 might therefore be expected to disrupt this process, which could in turn account for the immune deficiency observed in the affected children. To test this hypothesis, Marcin ?yszkiewicz and Natalia Zi?tara - joint first authors of the study - set out to characterize the consequences of the different mutations for the biological role of FCHO1 under defined experimental conditions. Indeed, their results demonstrated that the six mutations resulted in the mislocalization of FCHO1 or otherwise interfered with its ability to interact with its normal binding partners. These findings therefore imply that the immunological defects observed in the patient cohort can be attributed to a failure to initiate endocytosis at the plasma membrane.

To investigate the impact of the loss of FCHO1 at the cellular level, ?yszkiewicz and colleagues deleted the gene in a cultured T-cell line, and discovered that the mutant cells were unable to remove the activated T-cell receptor from the plasma membrane. This receptor protein is expressed on the surface of T cells, and is crucial for the control of their immunological functions. Once activated, it induces various signaling pathways that regulate the cell's immune response, which must subsequently be turned off again at the appropriate time. "Unbalanced signaling can lead either to immune deficiencies like those observed in our patients, or cause autoimmune diseases," says Klein.

Up to now, the significance of the FCHO1 protein for immunological function has not been recognized - perhaps because its association with severe combined immune deficiency in children has been overlooked for so long. "Our study is a very good example of how systematic studies of patients with rare genetic diseases can contribute to the discovery of new genes and signaling pathways that regulate the differentiation and functions of the cells that orchestrate the immune system," says Klein. The outcome of this study not only enables the molecular diagnosis of the condition, it will also enhance the quality of the advice that genetic counselors can offer to affected families. Furthermore, the results provide new insights into fundamental functions of the human immune system at the cellular level. In collaboration with the Care-for-Rare Foundation's international research network, Klein and his associates will continue to explore the intricate web of proteins that governs the behavior of the immune system.

Credit: 
Ludwig-Maximilians-Universität München

Under reporting of data on the outcomes among older adults in cancer clinical trials

image: Karlynn BrintzenhofeSzoc of the College of Allied Health Sciences shows her research paper to a class of graduate students in the School of Social Work.

Image: 
Colleen Kelley/University of Cincinnati Creative Services

While older adults, defined as those 65 and older, make up the largest percentage of cancer patients and survivors, this group is not adequately represented in clinical trials, research at the University of Cincinnati has shown.

This low representation is further complicated by the underreporting of the treatment efficacy and adverse effects specific to older adults, according to research led by Karlynn BrintzenhofeSzoc of the UC College of Allied Health Sciences. The study concludes that conscious efforts are needed to address these deficiencies which could lead to improved treatment decisions and outcomes for older adults with cancer.

"In 2015, an article in the Journal of Clinical Oncology found that evidence-based treatment protocols for treating older adults with cancer is totally lacking," says BrintzenhofeSzoc. "The Food and Drug Administration (FDA), the National Clinical Cancer Institute and other research groups are pushing to get older adults into clinical trials. As a result, they're starting to be seen and treated in clinical trials, but not reported on."

BrintzenhofeSzoc got involved in this research after being asked to join the Cancer and Aging Research Group, an international grassroots organization whose mission is to join geriatric oncology researchers across the nation in a collaborative effort of designing and implementing clinical trials to improve the care of older adults with cancer.

BrintzenhofeSzoc and the other researchers set out to examine the current state of the art in phase III chemotherapeutic clinical cancer trials in reporting about older adults. They studied one year's worth of literature, from July 1, 2016, to June 30, 2017. The first pass at that resulted in a match of 929 articles; however, more than 600 of those didn't meet the study group's inclusion criteria, while another 116 were duplicates.

At the completion of the elimination process, the group was left with 159 articles to review. BrintzenhofeSzoc says she read every single title and abstract of all 929 articles, making a decision on whether it met the criteria and then shared it with the nine other reviewers in the group, made up of people with a wide range of experience and expertise. It included social workers like BrintzenhofeSzoc as well as oncologists, gerontologists, medical and doctoral students, health scientists and a librarian.

"When we finally finished analyzing all of the articles, we found the evidence on how you treat older adults with cancer is terrible," says BrintzenhofeSzoc. "There's no evidence-based guidelines, which goes against the current focus on precision and evidence-based medicine to help treat older adults with cancer."

BrintzenhofeSzoc says the group aims to get researchers to separate out different aged groups of people in trials and examine how they are different in efficacy and in side effects or adverse events. That would allow the medical community to implement treatment protocols that take into account evidence-based research results in patients with different types of cancer and of younger and older patients.

She says one of the major debates in science currently is defining exactly the age of an older adult.

"The American Cancer Society and the FDA have been using the cutoff of an older adult being equal to or greater than 65 years old," she says. "There's a lot of discussion of moving it to 70 or higher. There needs to be some consistency. It's not about a chronological age, it is about what your body looks like, what you've done, how you've developed. This goes to social determinants of health and behavioral lifestyles."

The paper reporting the research was published in the Journal of Geriatric Oncology in January 2020 and includes two templates designed by the research team. One focuses on demographic data comparing two treatment methods, while the other examines adverse events by grade, with a grade of one being the least severe and four the most severe. The adverse events include anemia, anorexia, diarrhea and fatigue. The templates were developed after examining all 159 papers that met the criteria and finding some disturbing similarities.

"What we found was that it's like someone wrote the first clinical trial article decades ago and everyone has followed that format exactly," she says. "You know exactly where to find what. The tables are almost exactly alike across every article."

BrintzenhofeSzoc hopes the templates are widely put into practice, but she estimates it is going to take three to five years to know how impactful they are.

"I think it's a very important piece, and it's a start," says BrintzenhofeSzoc. "We're not blaming anyone, because they've been following the same template for years, and the journal editors and the publishers haven't asked for anything different. It's everyone's job -- publishers, editors, authors, all of us -- to make sure we're sharing the data that people need to make evidence-based decisions on cancer care for older adults."

Credit: 
University of Cincinnati

New technique could streamline drug design

HANOVER, N.H. - February 27, 2020 - Researchers have developed a process that could sharply reduce the work involved in computational protein design, according to a study in Proceedings of the National Academy of Sciences.

The technique uses 3D structural models to project how novel combinations of molecular blocks might work together to achieve a desired effect.

The advancement, which focuses on a relatively small number of protein substructures rather than the infinite number of atomic-level combinations, could ease the development of new medications and materials.

"When you design a building, you don't necessarily need to understand how grains of sand interact with each other within one brick," said Gevorg Grigoryan, an associate professor of computer science at Dartmouth and senior researcher on the study. "Because you know what a brick is and what its properties are, you can instead focus on how bricks come together to form the desired shape. That's the same approach we are taking. We only focus on protein sub-structures that we know work."

Proteins are the workhorse of the natural world. Proteins help us sense the world around us, digest food and form the body's natural defenses.

For years, researchers have focused on building custom proteins that can be useful in the human body. For example, custom proteins can be used to develop therapeutic drugs to fight disease. However, while many therapeutics like insulin are produced from naturally occurring proteins, the field has not advanced to allow widespread development of synthetic proteins.

Among the barriers to developing synthetic proteins is the overwhelming number of possible amino acid combinations. Sorting through combinations to find one that would be helpful in any given scenario is a time-intensive and resource-heavy process.

Researchers developing new drugs currently focus on how specific atoms interact. This approach requires labs to build large libraries of variants to find one that will complete the specified task. While this can produce useful results, researchers have found it challenging to build atomic models that have high levels of accuracy.

"The number of sequences is virtually infinite. This really complicates the process of finding a correct combination to fill a specific therapeutic need," said Jianfu Zhou, a PhD student at Dartmouth who co-authored the research paper.

To develop an optimized approach to protein design, the research team scanned a database of the 3D models of 150,000 known proteins. The team discovered that a small number of structural patterns frequently recurred in proteins, and that much of the diversity in protein structure comes from how these building blocks are combined.

This basic discovery led the team to hypothesize that rather than modeling proteins as complex networks of interacting atoms, they can instead represent them much more simply as groupings of a limited set of structural building blocks.

With the new method, novel protein structures can be more easily judged against established patterns. The approach allows researchers to easily experiment with more creative designs by affording the chance to check them against a library of known structures.

"This technique takes the challenge away from getting the physics absolutely right at the atomic scale, potentially making computational protein design a much more robust process. Our findings should throw the doors for machine learning in protein design wide open," said Grigoryan.

The new process focuses on the larger blocks of atoms that occur in proteins, known as tertiary motifs, to design functioning proteins. These are recurring structural arrangements--similar to an archway or column in a building--that can be applied to designing novel proteins without regard to their atomic-level composition.

Since the structures only come together in certain ways, researchers would no longer need to do the atomic-level guesswork. Researchers only focus on the blocks that fit together, ignoring those structures that would not form a functioning protein.

According to the research paper, the results "strongly argue that the Protein Data Bank is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins."

By applying the new technique, the research team hopes to cut out the redundancy of rediscovering physical principles in protein structure by simply relying on those principles in the first place.

Credit: 
Dartmouth College

'Surfing attack' hacks Siri, Google with ultrasonic waves

image: Ning Zhang, assistant professor of computer science and engineering at the McKelvey School of Engineering

Image: 
Washington University in St. Louis

Ultrasonic waves don't make a sound, but they can still activate Siri on your cellphone and have it make calls, take images or read the contents of a text to a stranger. All without the phone owner's knowledge.

Attacks on cell phones aren't new, and researchers have previously shown that ultrasonic waves can be used to deliver a single command through the air.

However, new research from Washington University in St. Louis expands the scope of vulnerability that ultrasonic waves pose to cellphone security. These waves, the researchers found, can propagate through many solid surfaces to activate voice recognition systems and -- with the addition of some cheap hardware -- the person initiating the attack can also hear the phone's response.

See press release for video

The results were presented Feb. 24 at the Network and Distributed System Security Symposium in San Diego.

"We want to raise awareness of such a threat," said Ning Zhang, assistant professor of computer science and engineering at the McKelvey School of Engineering. "I want everybody in the public to know this."

Zhang and his co-authors were able to send "voice" commands to cellphones as they sat inconspicuously on a table, next to the owner. With the addition of a stealthily placed microphone, the researchers were able to communicate back and forth with the phone, ultimately controlling it from afar.

Ultrasonic waves are sound waves in a frequency that is higher than humans can hear. Cellphone microphones, however, can and do record these higher frequencies. "If you know how to play with the signals, you can get the phone such that when it interprets the incoming sound waves, it will think that you are saying a command," Zhang said.

To test the ability of ultrasonic waves to transmit these "commands" through solid surfaces, the research team set up a host of experiments that included a phone on a table.

Attached to the bottom of the table was a microphone and a piezoelectric transducer (PZT), which is used to convert electricity into ultrasonic waves. On the other side of the table from the phone, ostensibly hidden from the phone's user, is a waveform generator to generate the correct signals.

The team ran two tests, one to retrieve an SMS (text) passcode and another to make a fraudulent call. The first test relied on the common virtual assistant command "read my messages" and on the use of two-factor authentication, in which a passcode is sent to a user's phone -- from a bank, for instance -- to verify the user's identity.

The attacker first told the virtual assistant to turn the volume down to Level 3. At this volume, the victim did not notice their phone's responses in an office setting with a moderate noise level.

Then, when a simulated message from a bank arrived, the attack device sent the "read my messages" command to the phone. The response was audible to the microphone under the table, but not to the victim.

In the second test, the attack device sent the message "call Sam with speakerphone," initiating a call. Using the microphone under the table, the attacker was able to carry on a conversation with "Sam."

The team tested 17 different phone models, including popular iPhones, Galaxy and Moto models. All but two were vulnerable to ultrasonic wave attacks.

Ultrasonic waves made it through metal, glass and wood

They also tested different table surfaces and phone configurations.

"We did it on metal. We did it on glass. We did it on wood," Zhang said. They tried placing the phone in different positions, changing the orientation of the microphone. They placed objects on the table in an attempt to dampen the strength of the waves. "It still worked," he said. Even at distances as far as 30 feet.

Ultrasonic wave attacks also worked on plastic tables, but not as reliably.

Phone cases only slightly affected the attack success rates. Placing water on the table, potentially to absorb the waves, had no effect. Moreover, an attack wave could simultaneously affect more than one phone.

The research team also included researchers from Michigan State University, the University of Nebraska-Lincoln and the Chinese Academy of Sciences.

Zhang said the success of the "surfing attack," as it's called in the paper, highlights the less-often discussed link between the cyber and the physical. Often, media outlets report on ways in which our devices are affecting the world we live in: Are our cellphones ruining our eyesight? Do headphones or earbuds damage our ears? Who is to blame if a self-driving car causes an accident?

"I feel like not enough attention is being given to the physics of our computing systems," he said. "This is going to be one of the keys in understanding attacks that propagate between these two worlds."

The team suggested some defense mechanisms that could protect against such an attack. One idea would be the development of phone software that analyzes the received signal to discriminate between ultrasonic waves and genuine human voices, Zhang said. Changing the layout of mobile phones, such as the placement of the microphone, to dampen or suppress ultrasound waves could also stop a surfing attack.

But Zhang said there's a simple way to keep a phone out of harm's way of ultrasonic waves: the interlayer-based defense, which uses a soft, woven fabric to increase the "impedance mismatch."

In other words, put the phone on a tablecloth.

Credit: 
Washington University in St. Louis

The tentacle 'bot

video: Researchers have developed an octopus-inspired robot can grip, move, and manipulate a wide range of objects

Image: 
Bertoldi Lab/Harvard SEAS

Of all the cool things about octopuses (and there's a lot), their arms may rank among the coolest.

Two-thirds of an octopus's neurons are in its arms, meaning each arm literally has a mind of its own. Octopus arms can untie knots, open childproof bottles, and wrap around prey of any shape or size. The hundreds of suckers that cover their arms can form strong seals even on rough surfaces underwater.

Imagine if a robot could do all that.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Beihang University have developed an octopus-inspired soft robotic arm that can grip, move, and manipulate a wide range of objects. Its flexible, tapered design, complete with suction cups, gives the gripper a firm grasp on objects of all shapes, sizes and textures -- from eggs to iPhones to large exercise balls.

"Most previous research on octopus-inspired robots focused either on mimicking the suction or the movement of the arm, but not both," said August Domel, a recent PhD graduate of Harvard and co-first author of the paper. "Our research is the first to quantify the tapering angles of the arms and the combined functions of bending and suction, which allows for a single small gripper to be used for a wide range of objects that would otherwise require the use of multiple grippers."

The research is published in Soft Robotics.

The researchers began by studying the tapering angle of real octopus arms and quantifying which design for bending and grabbing objects would work best for a soft robot. Next, the team looked at the layout and structure of the suckers (yes, that is the scientific term) and incorporated them into the design.

"We mimicked the general structure and distribution of these suckers for our soft actuators," said co-first author Zhexin Xie, a PhD student at Beihang University. "Although our design is much simpler than its biological counterpart, these vacuum-based biomimetic suckers can attach to almost any object."

Xie is the co-inventor of the Festo Tentacle Gripper, which is the first fully integrated implementation of this technology in a commercial prototype.

Researchers control the arm with two valves, one to apply pressure for bending the arm and one for a vacuum that engages the suckers. By changing the pressure and vacuum, the arm can attach to an object, wrap around it, carry it, and release it.

The researchers successfully tested the device on many different objects, including thin plastic sheets, coffee mugs, test tubes, eggs, and even live crabs. The tapering also allowed the arm to squeeze into confined spaces and retrieve objects.

"The results from our study not only provide new insights into the creation of next-generation soft robotic actuators for gripping a wide range of morphologically diverse objects, but also contribute to our understanding of the functional significance of arm taper angle variability across octopus species," said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS, and co-senior author of the study.

Credit: 
Harvard John A. Paulson School of Engineering and Applied Sciences

Genetic 'fingerprints' implicate gut bacterium in bowel cancer

image: Schematic representation of the injection of bacteria into the lumen of an organoid, and a fluorescent microscopy image of such an organoid. Human intestinal organoid (green) filled with labeled bacteria (blue).

Image: 
Cayetano Pleguezuelos-Manzano, Jens Puschhof, Axel Rosendahl Huber, ©Hubrecht Institute.

A common type of bacteria found in our guts could contribute to bowel cancer, according to research funded by a £20 million Cancer Research UK Grand Challenge award and published in Nature today (Thursday)*.

Scientists in The Netherlands, the UK and USA have shown that a toxin released by a strain of E. coli causes unique patterns, or 'fingerprints', of DNA damage to the cells lining the gut.

The fingerprints were also seen in bowel cancer tumours, showing for the first time a direct link between the bacterial toxin and the genetic changes that drive cancer development.

The team suggests that detecting this specific DNA damage in the cells lining the gut could one day allow doctors to identify people at higher risk of the disease and become used alongside current bowel cancer screening tests.

Other bacterial toxins from gut bacteria might have similar effects and the hunt for them is now on as researchers seek to determine whether this mechanism of DNA damage is widespread.

There are around 42,000 new bowel cancer cases in the UK every year**, where it remains the second most common cause of cancer death***. Understanding the early triggers that could lead to bowel cancer may help doctors prevent its development and detect it at its earliest stage, when treatment is most likely to be successful. This has led scientists to investigate the role that the microbiome - trillions of bacteria, viruses, fungi and other single-celled organisms - plays in the development of bowel cancer.

Professor Hans Clevers and his team at the Hubrecht Institute in The Netherlands focused on one strain of E. coli producing a toxin called colibactin, and which is more often present in the stool samples of people with bowel cancer compared to healthy people. Because colibactin can cause DNA damage in cells grown in the lab, they thought the toxin might be doing the same to cells lining the gut.

The team used human intestinal organoids, miniature replicas of the gut grown in the lab, and exposed them to colibactin-producing E. coli. They analysed the DNA sequence of the gut cells in the organoids after 5 months and found about double the DNA damage in them, compared to organoids exposed to 'regular' E. coli that didn't produce the colibactin.

The researchers also found that the DNA damage caused by colibactin followed two very specific patterns - like fingerprints - which were unique to the toxin.

To determine whether the DNA damage caused by the bacterium played a role in bowel cancer, the researchers then analysed the DNA sequences of more than 5500 tumour samples from the UK and Netherlands, with the help of Dr Henry Wood and Professor Philip Quirke from the University of Leeds.

First, they checked for the two colibactin DNA damage fingerprints in over 3600 Dutch samples of various cancer types. The fingerprints were present in multiple tumours, and much more often in bowel cancers than other cancer types.

The researchers then refined their investigation on bowel cancer tumours specifically, and analysed over 2000 bowel cancer samples from the UK, collected as part of the 100,000 Genomes Project run by Genomics England. Among these samples, the colibactin fingerprints were present in 4-5% of patients. This suggests that colibactin-producing E. coli may contribute to 1 in 20 bowel cancer cases in the UK. It will be up to further studies to shed light on just how much of a role the toxin could play in these cases, and what other components of the microbiome may be involved in the early stages of bowel cancer.

Professor Hans Clevers, Grand Challenge co-investigator at the Hubrecht Institute, said: "Things like tobacco or UV light are known to cause specific patterns of DNA damage, and these fingerprints can tell us a lot about past exposures that may have caused cancer to start. But this is the first time we've seen such a distinctive pattern of DNA damage in bowel cancer, which has been caused by a bacterium that lives in our gut."

Further down the line, the researchers say that looking for DNA damage fingerprints like the ones associated with colibactin in the cells of the gut lining could be used to identify those who are at a greater risk of developing the disease.

Professor Philip Quirke, Grand Challenge co-investigator at the University of Leeds, said: "Our goal is to understand the causes of bowel cancer, so discovering the role of colibactin represents an important step. As a Grand Challenge team, we are now looking at other bacteria and their toxins associated with bowel cancer, and we hope to identify more DNA damage fingerprints to paint a better picture of risk factors.

We will then need to work out how we can reduce the presence of high-risk bacteria in the gut. But this is all in the future, so for now people should continue to eat a healthy diet and participate in bowel cancer screening."

John Barnes, patient advocate for Grand Challenge said: "As a cancer survivor, I don't want others to go through what I've gone through. Catching bowel cancer at an earlier stage while it's still treatable has the potential to save thousands of people's lives. This brilliant research gives me hope that people may not have to suffer from bowel cancer in the future."

Nicola Smith, senior health information manager at Cancer Research UK, said: "The more doctors understand about how bowel cancer develops, the better they will be at detecting it and helping people reduce their risk.

"But there are already things that people can do right now to help reduce their risk of bowel cancer. Not smoking, keeping a healthy weight, eating a diet high in fibre and low in red and processed meat will all help. And for those who are eligible, participating in bowel screening can help to detect the disease at an early stage."

This discovery of a direct link between a bacterium and bowel cancer tumours is the first major outcome of a £20 million Grand Challenge**** project striving to understand how the microbiome impacts on cancer risk, development and treatment*****.

Credit: 
Cancer Research UK

Combined therapy may improve clinical responses for endometrial, colorectal and gastric tumors

image: This is Shiaw-Yih Lin, Ph.D., professor of Systems Biology.

Image: 
MD Anderson Cancer Center

HOUSTON -- A study at The University of Texas MD Anderson Cancer Center discovered a novel therapeutic vulnerability for patients who have tumors caused by a genetic misfire in the DNA mismatch repair (MMR) pathway, a system for repairing genetic aberrations. Study findings were published in the Feb. 27 online issue of Cancer Cell.

When tumors lose MMR function, they acquire numerous mutations throughout their DNA which can promote cancer formation. This deficiency is often found in certain cancers, such as endometrial, colorectal and gastric cancer. It can be diagnosed through the presence of genetic irregularities known as microsatellite instability (MSI).

"MMR deficient and MSI cancers display resistance to chemotherapy and only a subset responds to immunotherapy, leaving a large number of patients with few treatment options," said Shiaw-Yih Lin, Ph.D., professor of Systems Biology. "Our study identified proteome instability as a novel therapeutic vulnerability in MSI tumors."

Using cell lines, patient samples, mouse models and computational techniques, Lin's team showed that the abundant mutant proteins in MSI cancers become misshapen and structurally unstable. As tumor cells shift resources to help correctly shape the mutated proteins, they begin to fail to correctly shape normal proteins, ultimately resulting in all of the proteins within the tumor becoming more unstable. The abundance of misshapen proteins requires tumor cells to use a protein degradation pathway not typically used by normal cells. This pathway can be blocked by MLN4924, resulting in toxicity specifically in MSI cancer cells.

In addition to killing the cells, the authors found that treatment with MLN4924 induced an immunogenic form of cell death.

"As the tumor cells were dying following MLN4924 treatment, we observed them secreting molecules to recruit immune cells and expressing a protein instructing immune cells to kill other cells that look like them," said Daniel McGrail, Ph.D., postdoctoral fellow and the study's first author. "By further activating immune cells through dual treatment with anti-PD1, a treatment modality already approved in MSI tumors, we were able to induce durable, curative responses."

The team saw no toxicities from this therapeutic approach, and are hopeful about the translational prospects as both treatment agents are already in the clinic.

Credit: 
University of Texas M. D. Anderson Cancer Center

SNIPRs take aim at disease-related mutations

image: Alex Green is a researcher in the Biodesign Center for Molecular Design and Biomimetics and ASU's School of Molecular Sciences

Image: 
The Biodesign Institute at Arizona State University

A typo appearing in the draft of a novel is no great calamity. Nature, however, is often less forgiving of errors. A change in just one letter of the genetic code can have catastrophic consequences for human health.

Such genomic gaffes, involving a single base in a length of DNA or RNA, are known as point mutations. They can result in mild abnormalities like color blindness as well as serious diseases, including neurofibromatosis, sickle-cell anemia, certain forms of cancer and Tay-Sachs disease. Mutations can also produce disease variants that are resistant to conventional treatment.

Researchers would like to detect these point mutations to better assess vulnerabilities in human health, provide accurate early diagnosis and guide appropriate therapy. Until now, however, registering subtle alterations like point mutations occurring within living cells has been challenging.

In a new study, lead author Alex Green, a researcher at the Biodesign Center for Molecular Design and Biomimetics and his colleagues describe a new method for detecting point mutations. The technique can be applied in living cells, offering a rapid, highly accurate and inexpensive means of identifying mutations relevant to human health.

The method can be used in conjunction with paper-based diagnostic tests (developed by Green and his colleagues), capable of pinpointing mutations and displaying a color-based readout in reactions powered by human body heat.

"What we've done with our technology is to develop a new, portable way to detect very minute sequence differences between RNAs you're trying to detect," Green says. "With these systems, which we call SNIPRs (for Single-Nucleotide-Specific Programmable Riboregulators), we have the capacity to identify any RNA sequence based on a single nucleotide difference."

The technique is so sensitive, it can even detect epigenetic changes--subtle chemical modifications to genetic sequences that can regulate gene expression without changing the identity of individual bases.

"Advances in the method could one day be used as a low-cost alternative for personal genotyping," according to Hao Yan, a coauthor of the new study and director of the Biodesign Center for Molecular Design and Biomimetics. "The simplicity of the technique may allow at-home screening for disease-linked mutations, providing rapid and accurate testing, while maintaining data privacy for users."

In addition to its convenience as an inexpensive, versatile litmus test for mutation-related illness, the technique promises to shed new light on foundational issues in cell biology, including genetic resistance to antibiotics and mutations leading to the failure of frontline treatments for diseases like malaria and HIV.

The study appears in the current issue of the journal Cell.

Alphabet of life

In humans, the genetic code is composed of some 3 billion pairs of nucleotides, arranged in the iconic DNA double helix. The language of nucleotides, which spell out the complete building plan for any living organism, including humans, is composed of sequences of just four letters, A, T, C and G, signifying the four bases of DNA.

Sequences of these four nucleotides form genes that provide the instructions for making proteins. Proteins provide structure to cells and tissues; including muscle, cartilage, ligaments, hair and skin. Proteins also supply the vital machinery of life, overseeing innumerable cellular processes, including metabolism, signal transmission, immune defense, food digestion and cell division.

Hunting mutations

A point mutation in a DNA gene will be transcribed into RNA, sometimes disabling the resulting protein or altering its function, often with consequences for human health. To identify these mutations, the researchers designed SNIPRs--clever structures containing complementary snippets of RNA able to bind with RNA sequences in cells.

Within a cell, these structures activate when they encounter a mutated RNA sequence, dictated by the cell's modified gene.

If the binding of a cell's mutant RNA with the trigger strand is exact, the SNIPR unfolds, allowing sequence access by the ribosome--the machinery required to translate RNA into protein. If, however, the SNIPR encounters an unmutated sequence, there is a mismatch and translation of protein is blocked.

Proofreading RNA

The resulting 100-fold difference in gene expression between mutated and unmutated RNA sequences was observed in the bacterium E. coli, (as measured in protein production), making detection of point mutations easy.

The technique relies on keen detection of differences in so-called binding or hybridization energy. "Typically, when you're thinking about a DNA or RNA base pairing, it's through hydrogen bonds," Green says. "When G binds to C that's 3 hydrogen bonds and when A binds to U, that's two hydrogen bonds." In addition to point mutations, in vitro analysis can detect minor differences in binding energy when epigenetic changes like methylation occur.

The paper-based test can be used in the field in regions where medical resources are scarce. The technology holds particular promise for the developing world as it does not require elaborate equipment and can operate at human body temperature.

First-author Fan Hong, formerly with the Biodesign Institute and now a postdoctoral fellow at Harvard, designed computer algorithms that allow for the efficient design of SNIPRs based on desired RNA target sequences.

"To make SNIPRs easy to use, we automated the process so that everybody can design them without any knowledge of RNA folding and RNA interactions," Hong says. "They already show lots of practical applications such as human genotyping, Zika virus detection and viral strain identification."

Powerful technique a boon for science

Identifying particular strains is of vital importance epidemiologically. Some genetic variants of Zika for example, appear to pose greater risk of birth abnormalities, while the currently circulating coronavirus is also evolving and has a very similar sequence to the coronavirus that caused the SARS epidemic in 2002-2003. Identifying the effects of these mutated pathogens and their geographic distribution is critically important in addressing these and future disease outbreaks.

The method could also offer new hope in the fight against cancer. For example, granulosa cell tumors, associated with a rare and aggressive form of ovarian cancer, result from just a single incorrect base out of the three billion nucleotide pairs that make up the genetic code, while the point mutations in tumor-suppressing BRCA1 and BRCA2 genes are responsible for a 6-fold increase in the lifetime risk for breast cancer.

The fine-grained sensitivity of SNIPRs can discriminate between patients who are heterozygous or homozygous for given mutations, that is, whether they carry one or two copies of the mutated gene on their chromosomes, a critical factor in determining disease vulnerability.

Certain point mutations in HIV can lead to the failure of common antiretroviral therapies. A SNIPR test for such mutations could rapidly identify these mutations and guide appropriate treatment. Conventional tests for HIV drug resistance are prohibitively expensive for many in need, costing over $200 dollars per sample.

When SNIPR probes are combined with paper-based recognition systems, the potential for rapid, low cost and precise detection of genetic point mutations can be extended globally, wherever such diagnostic tools are most critically needed. Additionally, SNIPRs promise to help researchers understand strain variations and mutation-linked resistance to common therapeutics.

Credit: 
Arizona State University

Eat less, live longer

video: Eat Less, Live Longer.

Image: 
Salk Institute

LA JOLLA--(February 27, 2020) If you want to reduce levels of inflammation throughout your body, delay the onset of age-related diseases, and live longer--eat less food. That's the conclusion of a new study by scientists from the US and China that provides the most detailed report to date of the cellular effects of a calorie-restricted diet in rats. While the benefits of caloric restriction have long been known, the new results show how this restriction can protect against aging in cellular pathways, as detailed in Cell on February 27, 2020.

"We already knew that calorie restriction increases life span, but now we've shown all the changes that occur at a single-cell level to cause that," says Juan Carlos Izpisua Belmonte, a senior author of the new paper, professor in Salk's Gene Expression Laboratory and holder of the Roger Guillemin Chair. "This gives us targets that we may eventually be able to act on with drugs to treat aging in humans."

Aging is the highest risk factor for many human diseases, including cancer, dementia, diabetes and metabolic syndrome. Caloric restriction has been shown in animal models to be one of the most effective interventions against these age-related diseases. And although researchers know that individual cells undergo many changes as an organism ages, they have not known how caloric restriction might influence these changes.

In the new paper, Belmonte and his collaborators--including three alumni of his Salk lab who are now professors running their own research programs in China--compared rats who ate 30 percent fewer calories with rats on normal diets. The animals' diets were controlled from age 18 months through 27 months. (In humans, this would be roughly equivalent to someone following a calorie-restricted diet from age 50 through 70.)

At both the start and the conclusion of the diet, Belmonte's team isolated and analyzed a total of 168,703 cells from 40 cell types in the 56 rats. The cells came from fat tissues, liver, kidney, aorta, skin, bone marrow, brain and muscle. In each isolated cell, the researchers used single-cell genetic-sequencing technology to measure the activity levels of genes. They also looked at the overall composition of cell types within any given tissue. Then, they compared old and young mice on each diet.

Many of the changes that occurred as rats on the normal diet grew older didn't occur in rats on a restricted diet; even in old age, many of the tissues and cells of animals on the diet closely resembled those of young rats. Overall, 57 percent of the age-related changes in cell composition seen in the tissues of rats on a normal diet were not present in the rats on the calorie restricted diet.

"This approach not only told us the effect of calorie restriction on these cell types, but also provided the most complete and detailed study of what happens at a single-cell level during aging," says co-corresponding author Guang-Hui Liu, a professor at the Chinese Academy of Sciences.

Some of the cells and genes most affected by the diet related to immunity, inflammation and lipid metabolism. The number of immune cells in nearly every tissue studied dramatically increased as control rats aged but was not affected by age in rats with restricted calories. In brown adipose tissue--one type of fat tissue--a calorie-restricted diet reverted the expression levels of many anti-inflammatory genes to those seen in young animals.

"The primary discovery in the current study is that the increase in the inflammatory response during aging could be systematically repressed by caloric restriction" says co-corresponding author Jing Qu, also a professor at the Chinese Academy of Sciences.

When the researchers homed in on transcription factors--essentially master switches that can broadly alter the activity of many other genes--that were altered by caloric restriction, one stood out. Levels of the transcription factor Ybx1 were altered by the diet in 23 different cell types. The scientists believe Ybx1 may be an age-related transcription factor and are planning more research into its effects.

"People say that 'you are what you eat,' and we're finding that to be true in lots of ways," says Concepcion Rodriguez Esteban, another of the paper's authors and a staff researcher at Salk. "The state of your cells as you age clearly depends on your interactions with your environment, which includes what and how much you eat."

The team is now trying to utilize this information in an effort to discover aging drug targets and implement strategies towards increasing life and health span.

Credit: 
Salk Institute

Antarctic ice walls protect the climate

image: Inland Antarctic ice contains volumes of water that can raise global sea levels by several metres. A new study published in the journal Nature shows that glacier ice walls are vital for the climate, as they prevent rising ocean temperatures and melting glacier ice.

Image: 
Anna Wåhlin.

Inland Antarctic ice contains volumes of water that can raise global sea levels by several metres. A new study published in the journal Nature shows that glacier ice walls are vital for the climate, as they prevent rising ocean temperatures and melting glacier ice.

The ocean can store much more heat than the atmosphere. The deep sea around Antarctica stores thermal energy that is the equivalent of heating the air above the continent by 400 degrees.

Now, a Swedish-led international research group has explored the physics behind the ocean currents close to the floating glaciers that surround the Antarctic coast.

"Current measurements indicate an increase in melting, particularly near the coast in some parts of Antarctica and Greenland. These increases can likely be linked to the warm, salty ocean currents that circulate on the continental shelf, melting the ice from below," says Anna Wåhlin, lead author of the study and professor of oceanography at the University of Gothenburg.

"What we found here is a crucial feedback process: the ice shelves are their own best protection against warm water intrusions. If the ice thins, more oceanic heat comes in and melts the ice shelf, which becomes even thinner etc. It is worrying, as the ice shelves are already thinning because of global air and ocean warming", says Céline Heuzé, climate researcher at the Department of Earth Sciences of Gothenburg University.

The stability of ice is a mystery

Inland Antarctic ice gradually moves towards the ocean. Despite the ice being so important, its stability remains a mystery - as does the answer to what could make it melt faster.

Since the glaciers are difficult to access, researchers have been unable to find out much information about the active processes.

More knowledge has now been obtained from studying the measurement data collected from instruments that Anna Wåhlin and her researcher colleagues placed in the ocean around the Getz glacier in West Antarctica.

The ice's edge blocks warm seawater

Gertz has a floating section that is approximately 300 to 800 metres thick, beneath which there is seawater that connects to the ocean beyond. The glacier culminates in a vertical edge, a wall of ice that continues 300-400 metres down into the ocean. Warm seawater flows beneath this edge, towards the continent and the deeper ice further south.

"Studying the measurement data from the instruments, we found that the ocean currents are blocked by the ice edge. This limits the extent to which the warm water can reach the continent. We have long been stumped in our attempts to establish a clear link between the transport of warm water up on the continental shelf and melting glaciers.

Now, we understand that only a small amount of the current can make its way beneath the glacier. This means that around two-thirds of the thermal energy that travels up towards the continental shelf from the deep sea never reaches the ice."

Can lead to better prognoses

The results of the studies have provided researchers with a greater understanding of how these glacier areas work.

"From the Getz glacier, we are receiving measurements of heat transport in the ocean that correspond with the melting ice being measured by satellites. This also means that the floating glaciers - the ice fronts in particular - are key areas that should be closely monitored. If the ice walls were to disappear, much greater levels of thermal energy would be released towards the ice on land.

Consequently, we no longer expect to see a direct link between increasing westerly winds and growing levels of melting ice. Instead, the increased water levels can be caused by the processes that pump up warmer, heavier water to the continental shelf, for example as low-pressure systems move closer to the continent."

Researchers believe that the studies have provided them with significantly better tools to be able to predict future water levels and create more accurate climate prognoses.

Facts about the continental shelf

A continental shelf is part of the ocean floor that belongs to the tectonic plates. Generally, the continental shelf is 0-500 metres deep and culminates in a continental slope.

Name of the article: Ice front blocking of ocean heat transport to an Antarctic ice shelf

Credit: 
University of Gothenburg

New immunotherapeutic strategy shows promise in eradicating infectious biofilms

image: The monoclonal antibody treatment detailed in this published research loosens up the compact biofilms allowing for combination treatment. This image shows this phenomena.

Image: 
Lewis Katz School of Medicine at Temple University

(Philadelphia, PA) - The same way baking soda breaks down grease and grime, making surfaces easier to clean, researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) now show that a new therapeutic molecule can break apart communities of harmful bacteria, opening the way for bacteria-killing antibiotics to more effectively clear out infections.

Communities of bacteria known as biofilms are notorious for forming on implanted medical devices, such as catheters and prosthetics, and on tissues in the body, where they give rise to chronic and sometimes life-threatening infections in patients. Biofilms are extremely difficult to eradicate, because, united with an impermeable matrix, the microbes are able to resist antibiotics and other agents that would otherwise eliminate them.

The new molecule, a type of monoclonal antibody, however, is able to open up these biofilms, causing their dissociation. It is the first agent of its kind to show promise as an immunotherapeutic strategy to fight off infectious biofilms.

"With this new antibody, we open the door for better treatment strategies for patients who suffer from chronic infections associated with implanted medical devices or who suffer from recurrent infections, such as repeated infections of the urinary tract," explained Cagla Tukel, PhD, Associate Professor in the Department of Microbiology and Immunology at LKSOM, and senior author on the new study.

The study was published online in the journal Nature Communications.

The new antibody, named 3H3, was isolated from a healthy human subject by Scott K. Dessain, MD, PhD, a professor at the Lankenau Institute for Medical Research and coauthor on the new study. Drs. Dessain and Tukel were intrigued by 3H3's ability to attach to beta-amyloid, a sticky protein that functions abnormally in Alzheimer's disease. A form of amyloid called curli is secreted by bacterial cells and is a major component of biofilms. Bacterial amyloid curli acts like glue, enabling bacterial cells to adhere to one another and form a continuous film over a surface.

In experiments with biofilms of infectious Salmonella enterica serovar Typhimurium, which forms biofilms in the human intestinal tract and on medical devices, Dr. Tukel's team found that amyloid binding by 3H3 disrupted biofilm formation, causing the separation of bacterial cells within the biofilm. The researchers then tested the antibody in mice infected with catheter-associated S. Typhimurium biofilm. In these animals, 3H3 injections also led to biofilm dissociation and, when followed by antibiotic therapy, allowed for the swift eradication of individual bacterial cells from the animals.

There are currently no existing therapies that are used clinically to break up biofilms. Here Dr. Tukel's team showed that while 3H3 breaks the biofilm, it also prevented the dissociating bacteria from entering the circulation, where they could cause sepsis. 3H3 was found to bind to individual bacterial cells facilitating their uptake by immune cells. Therefore, this novel approach has the potential to reduce the risk of sepsis.

"We are very excited about these findings," Dr. Tukel said. "There is great need for an immunotherapy that can be used alongside lower dose antibiotics or other antimicrobials to safely and effectively eradicate biofilms in infectious settings."

Dr. Tukel and colleagues plan next to test 3H3 on a wide variety of biofilms. As many important pathogenic bacteria produce curli or curli-like amyloids in their biofilms, such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, this novel immunotherapy has the potential to be applied to a wide variety of infections.

"We also are developing a clinical approach," Dr. Tukel noted. "Our preclinical findings in animals are promising, and we've identified a clear path to clinical development."

Credit: 
Temple University Health System

Printer toner linked to genetic changes, health risks in new study

image: In a new study, WVU researcher Nancy Lan Guo found that exposure to airborne printer-emitted particles correlated to genetic and metabolic changes in animal models. These changes are linked to cardiovascular, neurological and metabolic dysfunction.

Image: 
Aira Burkhart/West Virginia University

Getting printer toner on your hands is annoying. Getting it in your lungs may be dangerous.

According to a new study by West Virginia University researcher Nancy Lan Guo, the microscopic toner nanoparticles that waft from laser printers may change our genetic and metabolic profiles in ways that make disease more likely. Her findings appear in the International Journal of Molecular Sciences.

“The changes are very significant from day one,” said Guo, a professor in the School of Public Health and member of the Cancer Institute.

Guo and her colleagues placed rat models into the same chamber as a typical laser printer. The models stayed in the chamber for five hours a day, for 21 days, as the printer ran nonstop.

“It’s equivalent to an occupational setting,” Guo said. “A rat’s life expectancy is about one or two years. In our life, that would be more like four or eight years of five-hour-a-day exposure.”

Periodically, the researchers assessed the rats’ lung cells and blood to see if their genetic material had changed. The assessments took place every four days for 21 days. The analysis comprised every gene in the rat genome.

If something alters a rat’s—or a person’s—genetic material, it can disrupt how cells make proteins. And protein production is crucial to life itself. From lugging a load of laundry upstairs, to maintaining a regular heartbeat, “we do everything because certain proteins function in certain ways,” Guo said.

She and her team discovered that a single day of toner-particle exposure was enough to disturb the activity of genes associated with metabolism, immune response and other essential biological processes in the rat models. Overall—taking into account all 21 days of exposure and testing—the researchers observed genomic changes linked to cardiovascular, neurological and metabolic disorders.

“I don’t want to alarm people,” Guo said, “but special ventilation and exposure controls should be installed in rooms where laser printers are in heavy-duty use, because the concentration of nanoparticles released in the air during the printing and copying process is strongly correlated with the printing activities.

“In particular, there is one group I really think should know about this: pregnant women. Because once a lot of these genes are changed, they get passed on through the generations. It’s not just you.”

On the same days that the researchers assessed the rats’ genes, they also measured every metabolite available in their blood.

Metabolites are the molecules that emerge as the body digests food and uses it for fuel.

“Let’s say we eat something,” Guo said. “Where does the food go? It goes to metabolites. It gets absorbed. All these metabolites are involved in our function.”

The human body contains thousands of different metabolites, in fluctuating amounts. Some—like glucose—give us energy. Others—like oleic acid—help us create fatty acids.

The metabolic levels that the researchers detected reinforced their other findings. The same health risks that the genetic profiles pointed to were implicated by the metabolic profiles as well.

Building on these results, Guo and her colleagues have since investigated the genomic changes that Singaporean printing company workers have experienced. In many respects, the workers’ genomes changed the same ways the rats’ genomes did. The results from these workers are included in a manuscript ready for submission to a journal.

“And they’re very young,” Guo said. “A lot of the workers ranged from 20 to their early 30s, and you’re already starting to see all of these changes.

“We have to work, right? Who doesn’t have a printer nowadays, either at home or at the office? But now, if I have a lot to print, I don’t use the printer in my office. I print it in the hallway.”

Citation

Title: Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer‐Emitted Nanoparticle Inhalation Exposure‐Induced Disease Risks

DOI: https://doi.org/10.3390/ijms20246348

Link: https://www.mdpi.com/1422-0067/20/24/6348

Research reported in this publication was supported by the National Institute for Occupational Safety and Health and the Consumer Protection Safety Commission (1007514R) and the NTU‐Harvard School of Public Health Initiative for Sustainable Nanotechnology (NTU‐HSPH 17001). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIOSH or NTU-HSPH.

-WVU-

see/02/27/19

CONTACT: Jessica Wilmoth
WVU School of Public Health
304-293-0404; jessica.wilmoth@hsc.wvu.edu

Call 1-855-WVU-NEWS for the latest West Virginia University news and information from WVUToday.

Follow @WVUToday on Twitter.

Journal

International Journal of Molecular Sciences

Credit: 
West Virginia University