Tech

NASA finds very heavy rainfall in major tropical cyclone Harold

video: This animation shows the heavy precipitation associated with Tropical Cyclone Harold as it progresses from the Solomon Islands (upper left) on April 2, 2020, explosively intensifies on April 3, reaches Vanuatu (center) as a Category 4 storm on April 5 before briefly attaining Category 5 status on April 6 and passing just south of Fiji (center right) on April 7 as a Category 4 storm. Periodically, Harold's core region produced precipitation rates in excess of 30 millimeters per hour, which is equivalent to a 7-inch-deep rain accumulation if the core region were to remain over a given location for 6 hours. The precipitation estimates in this animation come from the IMERG multi-satellite algorithm developed by NASA and run in near real-time.

Image: 
NASA/JAXA, B. Jason West and Owen Kelley

On April 8, Tropical Cyclone Harold is a major hurricane, a Category 4 on the Saffir-Simpson Hurricane Wind Scale, as it exits Fiji and heads toward the island of Tonga. NASA used satellite data to calculate the rainfall generated by this powerful and destructive storm in the Southern Pacific Ocean.

Harold brought flooding rains and strong hurricane-force winds to the South Pacific island nation of Fiji on Wednesday, April 8. The Fiji Meteorological Service noted that Harold's strength ranked in the highest category of five, when passed over Fiji's south at about midday (local time). Earlier in the week, Harold caused damages and communications outages when it passed over Vanuatu on April 7, and killed dozens of people in the Solomon Islands.

Visualizing Harold's Heavy Rainfall

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, the heavy rain generated from Harold from April 2 to 8 was calculated and mapped in an animation.

"This animation shows the heavy precipitation associated with Tropical Cyclone Harold as it progresses from the Solomon Islands on April 2, 2020, explosively intensifies on April 3, reaches Vanuatu as a Category 4 storm on April 5 before briefly attaining Category 5 status on April 6 and passing just south of Fiji on April 7 as a Category 4 storm," said B. Jason West, Science Data Analyst for the Precipitation Processing System (PPS) at NASA Goddard.

The data showed that periodically, Harold's core region produced precipitation rates were in excess of 30 millimeters per hour (mm/h), which is equivalent to a 7-inch-deep rain accumulation if the core region were to remain over a given location for 6 hours. The precipitation estimates in this animation come from the IMERG multi-satellite algorithm developed by NASA and run in near real-time.

What is NASA's IMERG?

NASA's Integrated Multi-satellitE Retrievals for GPM or IMERG, is a NASA satellite rainfall product. The near-real time rain estimates come from the NASA's IMERG, which combines observations from a fleet of satellites, in near-real time, to provide near-global estimates of precipitation every 30 minutes. By combining NASA precipitation estimates with other data sources, we can gain a greater understanding of major storms that affect our planet.

Instead, what the IMERG does is "morph" high-quality satellite observations along the direction of the steering winds to deliver information about rain at times and places where such satellite overflights did not occur. Information morphing is particularly important over the majority of the world's surface that lacks ground-radar coverage. Basically, IMERG fills in the blanks between weather observation stations.

Harold's Status on April 8, 2020

The Joint Typhoon Warning Center or JTWC noted that Harold had maximum sustained winds near 120 knots (138 mph/222 kph) on April 8 at 10 a.m. EDT (1500 UTC). That makes it a Category 4 hurricane and a major storm. Harold was located near latitude 21.2 degrees south and longitude 176.9 degrees west, approximately 248 nautical miles southeast of Suva, Fiji, and has tracked east-southeastward at 23 knots (26 mph/43 kph).

What is Ahead for Harold 

JTWC forecasters said what lies ahead for Harold is a hostile environment as vertical wind shear (winds that blow at different levels of the atmosphere that can tear a storm apart) will increase, and Harold will track through cooler waters (that will not help maintain thunderstorm development which a tropical cyclone needs to maintain structure and strength). On April 9, Harold is expected to begin interacting with the mid-latitude westerlies (winds) and start extratropical transition.

Tropical cyclones/hurricanes are the most powerful weather events on Earth. NASA's expertise in space and scientific exploration using a fleet of satellites contributes to essential services provided to the American people by other federal agencies, such as hurricane weather forecasting.

Credit: 
NASA/Goddard Space Flight Center

Kids or teen smokers are less likely to kick the habit as adults

DALLAS, April 8, 2020 -- The younger you start smoking, the more likely you are to smoke daily as an adult, even into your 40s, and the harder it will be to quit, according to new data from a long-standing, international study published today in the Journal of the American Heart Association, an open access journal of the American Heart Association.

The new research has the longest follow-up of any study focused on smoking at an early age, using information obtained directly from children and adolescents in the 1970s to 1980s and re-contacting many of them as recently as 2018.

"Based on our data coupled with a variety of other evidence, we found childhood smoking leads to adult smoking," said David Jacobs, Jr., Ph.D., lead study author and Mayo Professor of Public Health in the Division of Epidemiology and Community Health at the University of Minnesota in Minneapolis. "Cigarette smoking, even experimentally, among children of any age should be strongly discouraged."

Researchers analyzed smoking information on more than 6,600 people (57% female) between the ages of 6-19 and during their 20s and 40s, from Finland, Australia and the United States. Participants were followed from childhood into middle age as part of the International Childhood Cardiovascular Cohort Consortium.

The study analysis found:

Adolescents who smoked the most and children who started smoking at younger ages were more likely to be daily smokers in their 20s and were less likely to quit smoking by their 40s.

Even children who only tried smoking at a very minimal level - a few cigarettes - were more likely to end up as a daily adult smoker.

The percentage of participants who smoked daily during their 20s was 8% for those who first tried smoking at age 18-19; 33% for those who first tried smoking at age 15-17; 48% for those who first tried smoking at age 13-14; and 50% for those who first tried smoking during ages 6-12.

Only 2.6% of participants who took up smoking for the first time after their 20s smoked in their 40s.

The frequency of smoking in childhood and adolescence was similar in Finland, Australia and the United States.

Although the current study was conducted in three developed nations, the researchers believe that the results likely apply more broadly.

"Even in low income and developing countries, the societal reinforcement of smoking, the basic addictive qualities of nicotine, and the maturation of children and children's judgment through adolescence are universal," said Jacobs. "As children mature through adolescence, they may have developed a better ability to resist impulses and to reject social pressures.

"Cigarette smoking is an avoidable health risk, and its seeds are in childhood. These results strongly support Tobacco 21, a national movement to restrict all sales of tobacco products to people under age 21. The American Heart Association is an advocate of Tobacco 21," Jacobs said.

"This is a very important study, both because it has data from multiple countries and because it has been able to follow individuals into middle age, a critical observation. It re-emphasizes the importance of keeping tobacco products out of the hands of children before age 21 to prevent long-term addiction," said Rose Marie Robertson, M.D., FAHA, deputy chief science and medical officer for the Association and co-principal investigator of the American Heart Association's Tobacco Center for Regulatory Science, who was not involved in this study. "Vaping products had not been introduced at the time these study participants were teens, but it is plausible that the findings may relate to vaping as well, since both addiction to nicotine and the adverse effects of nicotine on the developing brain in youth are relevant to these nicotine delivery devices as well."

Credit: 
American Heart Association

New 'refrigerator' super-cools molecules to nanokelvin temperatures

For years, scientists have looked for ways to cool molecules down to ultracold temperatures, at which point the molecules should slow to a crawl, allowing scientists to precisely control their quantum behavior. This could enable researchers to use molecules as complex bits for quantum computing, tuning individual molecules like tiny knobs to carry out multiple streams of calculations at a time.

While scientists have super-cooled atoms, doing the same for molecules, which are more complex in their behavior and structure, has proven to be a much bigger challenge.

Now MIT physicists have found a way to cool molecules of sodium lithium down to 200 billionths of a Kelvin, just a hair above absolute zero. They did so by applying a technique called collisional cooling, in which they immersed molecules of cold sodium lithium in a cloud of even colder sodium atoms. The ultracold atoms acted as a refrigerant to cool the molecules even further.

Collisional cooling is a standard technique used to cool down atoms using other, colder atoms. And for more than a decade, researchers have attempted to supercool a number of different molecules using collisional cooling, only to find that when molecules collided with atoms, they exchanged energy in such a way that the molecules were heated or destroyed in the process, called "bad" collisions.

In their own experiments, the MIT researchers found that if sodium lithium molecules and sodium atoms were made to spin in the same way, they could avoid self-destructing, and instead engaged in "good" collisions, where the atoms took away the molecules' energy, in the form of heat. The team used precise control of magnetic fields and an intricate system of lasers to choreograph the spin and the rotational motion of the molecules. As result, the atom-molecule mixture had a high ratio of good-to-bad collisions and was cooled down from 2 microkelvins to 220 nanokelvins.

"Collisional cooling has been the workhorse for cooling atoms," adds Nobel Prize laureate Wolfgang Ketterle, the John D. Arthur professor of physics at MIT. "I wasn't convinced that our scheme would work, but since we didn't know for sure, we had to try it. We know now that it works for cooling sodium lithium molecules. Whether it will work for other classes of molecules remains to be seen."

Their findings, published in the journal Nature, mark the first time researchers have successfully used collisional cooling to cool molecules down to nanokelvin temperatures.

Ketterle's coauthors on the paper are lead author Hyungmok Son, a graduate student in Harvard University's Department of Physics, along with MIT physics graduate student Juliana Park, and Alan Jamison, a professor of physics at the University of Waterloo and visiting scientist in MIT's Research Laboratory of Electronics.

Reaching ultralow temperatures

In the past, scientists found that when they tried to cool molecules down to ultracold temperatures by surrounding them with even colder atoms, the particles collided such that the atoms imparted extra energy or rotation to the molecules, sending them flying out of the trap, or self-destructing all together by chemical reactions.
The MIT researchers wondered whether molecules and atoms, having the same spin, could avoid this effect, and remain ultracold and stable as a result. They looked to test their idea with sodium lithium, a "diatomic" molecule that Ketterle's group experiments with regularly, consisting of one lithium and one sodium atom.

"Sodium lithium molecules are quite different from other molecules people have tried," Jamison says. "Many folks expected those differences would make cooling even less likely to work. However, we had a feeling these differences could be an advantage instead of a detriment."

The researchers fine-tuned a system of more than 20 laser beams and various magnetic fields to trap and cool atoms of sodium and lithium in a vacuum chamber, down to about 2 microkelvins -- a temperature Son says is optimal for the atoms to bond together as sodium lithium molecules.

Once the researchers were able to produce enough molecules, they shone laser beams of specific frequencies and polarizations to control the quantum state of the molecules and carefully tuned microwave fields to make atoms spin in the same way as the molecules. "Then we make the refrigerator colder and colder," says Son, referring to the sodium atoms that surround the cloud of the newly formed molecules. "We lower the power of the trapping laser, making the optical trap looser and looser, which brings the temperature of sodium atoms down, and further cools the molecules, to 200 billionths of a kelvin."

The group observed that the molecules were able to remain at these ultracold temperatures for up to one second. "In our world, a second is very long," Ketterle says. "What you want to do with these molecules is quantum computation and exploring new materials, which all can be done in small fractions of a second."

If the team can get sodium lithium molecules to be about five times colder than what they have so far achieved, they will have reached a so-called quantum degenerate regime where individual molecules become indistinguishable and their collective behavior is controlled by quantum mechanics. Son and his colleagues have some ideas for how to achieve this, which will involve months of work in optimizing their setup, as well as acquiring a new laser to integrate into their setup.

"Our work will lead to discussion in our community why collisional cooling has worked for us but not for others," Son says "Perhaps we will soon have predictions how other molecules could be cooled in this way."

Credit: 
Massachusetts Institute of Technology

Examining association of preoperative metformin, surgical outcomes in patients with diabetes

What The Study Did: Metformin is the most commonly prescribed noninsulin medication for type 2 diabetes and this observational study examined postoperative death and hospital readmission among adults with type 2 diabetes who had a prescription for metformin before major surgery with those who didn't.

Authors: Christopher W. Seymour, M.D., M.Sc., of the Clinical Research, Investigation and Systems Modeling of Acute Illness Center in Pittsburgh, is the corresponding author.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamasurg.2020.0416)

Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the articles for additional information, including other authors, author contributions and affiliations, conflicts of interest and financial disclosures, and funding and support.

Credit: 
JAMA Network

A rapidly changing Arctic

video: A polar bear sighting off the U.S. Coast Guard Cutter Healy during the 2015 Arctic GEOTRACES expedition. The Arctic has experienced the highest degree of warming on the planet, causing sea ice to thin and recede. The region's iconic polar bears rely on sea ice to hunt, travel and mate.

Image: 
© Woods Hole Oceanographic Institution, Video courtesy of Bill Schmoker PolarTrek teacher 2015 GEOTRACES Arctic expedition

Key Takeaways

Trace elements may increase with future Arctic melt releasing dissolved organic matter from permafrost thaw.

Nutrient levels and productivity may increase in the Arctic, but loss of ice cover will continue to worsen overall warming as more heat is absorbed from the atmosphere.

A new study by researchers at Woods Hole Oceanographic Institution (WHOI) and their international colleagues found that freshwater runoff from rivers and continental shelf sediments are bringing significant quantities of carbon and trace elements into parts of the Arctic Ocean via the Transpolar Drift--a major surface current that moves water from Siberia across the North Pole to the North Atlantic Ocean.

In 2015, oceanographers conducting research in the Arctic Ocean as part of the International GEOTRACES program found much higher concentrations of trace elements in surface waters near the North Pole than in regions on either side of the current. Their results published this week in the Journal of Geophysical Research-Oceans.

"Many important trace elements that enter the ocean from rivers and shelf sediments are quickly removed from the water column," explains WHOI marine chemist Matthew Charette, lead author of the study. "But in the Arctic they are bound with abundant organic matter from rivers, which allows the mixture to be transported into the central Arctic, over 1,000 kilometers from their source."

Trace elements, like iron, form essential building blocks for ocean life. As the Arctic warms and larger swaths of the ocean become ice-free for longer periods of time, marine algae are becoming more productive. A greater abundance of trace elements coming from rivers and shelf sediments can lead to increases in nutrients reaching the central Arctic Ocean, further fueling algal production.

"It's difficult to say exactly what changes this might bring," says Charette. "but we do know that the structure of marine ecosystems is set by nutrient availability."

Nutrients fuel the growth of phytoplankton, a microscopic algae that forms the base of the marine food web. Generally speaking, more phytoplankton brings more zooplankton--small fish and crustaceans, which can then be eaten by top ocean predators like seals and whales.

Higher concentrations of trace elements and nutrients previously locked up in frozen soils (permafrost) are expected to increase as more river runoff reaches the Arctic, which is warming at a much faster rate than most anywhere else on Earth.  While an increase in nutrients may boost Arctic marine productivity, Charette cautions that the continued loss of sea ice will further exacerbate climate warming, which will impact ecosystems more broadly.

"The Arctic plays an important role in regulating Earth's climate, with the ice cover reflecting sunlight back to space, helping to mitigate rising global temperatures due to greenhouse gas emissions," he adds. "Once the ice is gone, the Arctic Ocean will absorb more heat from the atmosphere, which will only make our climate predicament worse."

Credit: 
Woods Hole Oceanographic Institution

Don't look to mature forests to soak up carbon dioxide emissions

Research published today in Nature suggests mature forests are limited in their ability to absorb "extra" carbon as atmospheric carbon dioxide concentrations increase. These findings may have implications for New York state's carbon neutrality goals.

Dr. John Drake, assistant professor in ESF's Department of Sustainable Resources Management, is a co-author of the paper in collaboration with researchers at Western Sydney University.

The experiment, conducted at Western Sydney University's EucFACE (Eucalyptus Free Air CO2 Enrichment) found new evidence of limitations in the capacity of mature forests to translate rising atmospheric carbon dioxide concentrations into additional plant growth and carbon storage.

Carbon dioxide (CO2) is sometimes described as "food for plants" as it is the key ingredient in plant photosynthesis. With CO2 concentrations in the atmosphere increasing steadily due to human emissions, there is ample evidence that plant photosynthesis is going up. Experiments that have exposed single trees and young, rapidly growing forests to elevated CO2 concentrations have shown that plants use the extra carbon to grow faster. "Forests provide a wide array of environmental, economic and social benefits. Importantly, forests remove large amounts of carbon from the atmosphere and store it, which slows down our climate crisis," said Drake.

However, scientists have long wondered whether mature native forests would be able to take advantage of the extra photosynthesis, given that the trees also need nutrients from the soil to grow. Drake joined in the first experiment of its kind applied to a mature native forest to expose a 90-year old eucalypt woodland on Western Sydney's Cumberland Plain to elevated carbon dioxide levels.

The researchers combined their measurements into a carbon budget that accounts for all the pathways of carbon into and out of the EucFACE forest ecosystem, through the trees, grasses, insects, soils and leaf litter. This carbon-tracking analysis showed that the extra carbon absorbed by the trees was quickly cycled through the soil and returned to the atmosphere, with around half the carbon being returned by the trees themselves, and half by fungi and bacteria in the soil.

"The trees convert the absorbed carbon into sugars, but they can't use those sugars to grow more, because they don't have access to additional nutrients from the soil. Instead, they send the sugars below-ground where they 'feed' soil microbes," said Dr. Belinda Medlyn, distinguished professor at the Hawkesbury Institute for the Environment.

These findings have global implications: models used to project future climate change, and impacts of climate change on plants and ecosystems, currently assume that mature forests will continue to absorb carbon over and above their current levels, acting as carbon sinks. The findings from EucFACE suggest that those sinks may be weaker or absent for mature forests.

"While we can't say what we found in this one Australian forest directly translates to northeastern forests in the United States," Drake said this information has implications for forests in New York state.

"Forests of the northeastern United States for the last 100 years have been regrowing and providing an important carbon sink. As those forests transition to a more mature state, there are some uncertainties whether that will continue," said Drake.

The results may also impact New York's first statewide forest carbon assessment led by Dr. Colin Beier of ESF's Climate and Applied Forest Research Institute (CAFRI).

"Forests are increasingly seen in policy circles as a critical part of the solution to climate change, and that's certainly the case for New York, where the carbon absorbed by our forests and stored in trees, soils and harvested wood products will be essential for reaching our state's legislated goal of net carbon neutrality by 2050," said Beier, associate professor of ecology and CAFRI director.

"As we develop forest carbon accounting for New York, one of our biggest questions is how forest ecosystems and their many benefits to society, including reducing climate risk, will respond to a rapidly changing environment," said Beier. "This groundbreaking study fills a major gap and reduces this uncertainty, allowing us to make more reliable predictions and provide better guidance to policymakers, landowners, and forest managers." 

"Forest carbon storage is vitally important in a climate change context," said Drake, adding "and the recent work in Nature would suggest mature forests might not store additional extra carbon as CO2 concentrations rise in the atmosphere."

Looking to restoration ecology to encourage forests to grow in some particular areas would be useful, said Drake "There are also possibilities for managing existing forests to increase their carbon storage."

Drake is working with colleagues Dr. Julia Burton, Dr. René Germain and Beier to develop and field test alternative forest management strategies that mitigate climate change by increasing the capacity of forests to adapt to changes in climate conditions as well as remove carbon from the atmosphere.

"We are not looking for a silver bullet," said Burton. "Climate-smart forest management will likely involve a variety of approaches."

"The limited capacity of mature trees to respond suggests the need for a diversity of age classes of trees (younger trees sequester, older trees store carbon) and species, including species that may be better adapted to future climate conditions," said Drake.

Credit: 
SUNY College of Environmental Science and Forestry

First study on the health conditions of adults one month into COVID-19 lockdown

A new study provides some of the earliest pieces of evidence that the COVID-19 outbreak affected people mentally as well as physically.

The preliminary results reveal adults in locations more affected by COVID-19 had distress, and lower physical and mental health, and life satisfaction.

Researchers from the University of Adelaide, Tongji University and University of Sydney surveyed 369 adults living in 64 cities in China after they had lived under one-month of confinement measures in February this year.

Led by Dr Stephen Zhang from the University of Adelaide, the study identifies adults with existing health conditions and those who stopped working as most at risk of worse mental and physical health.

"As many parts of the world are only just beginning to go into lockdown, we examined the impact of the one-month long lockdown on people's health, distress and life satisfaction," said Dr Zhang.

"The study offers somewhat of a 'crystal ball' into the mental health of Australian residents once they have been in the lockdown for one month."

More than a quarter of the participants worked at the office during the lockdown period while 38 percent worked from home and 25 percent stopped work due to the outbreak.

Published in Psychiatry Research, the study suggests adults living in locations more affected by COVID-19 reported negative life satisfaction only among adults with chronic medical issues but not for those without existing health issues.

Co-author on the study, Professor Andreas Rauch from the University of Sydney said; "We weren't surprised that adults who stopped working reported worse mental and physical health conditions as well as distress. Work can provide people with a sense of purpose and routine, which is particularly important during this global pandemic."

Study participants who exercised for more than 2.5 hours per day reported worse life satisfaction in more affected locations while those who exercised for half an hour or less during the lockdown reported positive life satisfaction.

"We were really surprised by the findings around exercising hours because it appears to be counter-intuitive," said lead author Dr Zhang.

"It's possible adults who exercised less could better justify or rationalise their inactive lifestyles in more severely affected cities. More research is needed but these early findings suggest we need to pay attention to more physically active individuals, who might be more frustrated by the restrictions."

Credit: 
University of Sydney

Next gen solar cells perform better when there's a camera around

image: Perovskite solar cells bathed in blue light, and responding in infrared.

Image: 
Exciton Science

A literal "trick of the light" can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

The discovery opens a pathway to improved quality control for commercial production.

On small scales, perovskite solar cells - which promise cheap and abundant solar energy generation - are already almost as efficient as silicon ones.

However, as scale increases the perovskite cells perform less well, because of nanoscale surface imperfections resulting from the way they are made.

As the number of unwanted tiny lumps and bumps grows, the amount of solar power generated per square centimetre drops off.

Now, however, Australian researchers have come up with a solution - using a camera.

In a paper published in the journal Nano Energy, first author Dr Kevin Rietwyk and his colleagues from Australia's ARC Centre of Excellence in Exciton Science, Monash University, Wuhan University of Technology and CSIRO Energy, describe how critical imperfections invisible to the naked eye can be detected by shining blue light onto the cells and recording the infrared light that bounces back.

The technique employs a property of solar cells called "photoluminescence".

This is the process by which an electron inside a molecule or semiconductor is briefly powered-up by an incoming photon. When the electron returns to its normal state, a photon is spat back out.

Microscale flaws alter the amount of infrared produced. Analysing how the extent of the light emitted from the solar cell varies under different operating conditions gives clues to how well the cell is functioning.

"Using this technique, we can rapidly identify a whole range of imperfections," said Dr Rietwyk, an Exciton Science researcher based at Monash University.

"We can then figure out if there are enough of them to cause a problem and, if so, adjust the manufacturing process to fix it. It makes for a very effective quality control method."

Equivalent checking methods are common in silicon cell manufacture. By employing an innovative light modulation, Dr Rietwyk and colleagues have designed a new approach that rises to the challenges posed by next-gen cells - opening a pathway to a scalable and potentially commercial device.

Senior author Professor Udo Bach, also of Exciton Science and Monash University, said the team had performed successful test runs on batches of small research cells. The technology, he explained, will be simple to scale up and commercialise.

"This research shows clearly that the performance of perovskite solar cell devices is influenced by the number of small imperfections in the cells themselves," he said.

"Using light modulation to find these flaws is a quick and robust way to solve the problem - and one that should work on any level of production."

Credit: 
ARC Centre of Excellence in Exciton Science

House cleaning on the nanoscale

A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale. The technique successfully removes even the tiniest contaminants down to the atomic scale, achieving an unprecedented level of cleanliness. The results of this study led by Prof. Dr. Erdmann Spiecker from the Department of Materials Science at FAU have now been published in the prestigious journal Nature Communications.

World's smallest broom

Inspiration for the technique was drawn from everyday life as cleaning with a broom works in a similar way. Of course, on the nanoscale instead of using an entire broom, only a single bristle in the form of a very small metal tip is used. This 'bristle' is pressed onto a surface and moved back and forth in a sweeping motion. 'It really is surprisingly similar to a regular broom,' says Prof. Spiecker, Chair of Micro- and Nanostructure Research. 'A broom removes loose particles such as dust or breadcrumbs, and it is no different on the nanoscale.' However, on small scales, the broom is not controlled by hand, but instead by joystick that controls a small piezo motor. Moreover, powerful electron microscopes are used to monitor and control the cleaning process in real time.

Cleaning the world's thinnest window

By cleaning graphene, the team managed to apply their technique to the thinnest material in existence, as graphene is made of a single atomic layer of carbon. 'A major challenge was to clean the graphene from both sides, similar to cleaning a window pane,' says Peter Schweizer, a research associate at the Chair of Micro- and Nanostructure Research, who performed the delicate experiments with his colleague Christian Dolle. 'With our electron microscopes, we always have to look through the material. Otherwise, it's impossible to reveal the atomic structure.' Graphene is known for its mechanical strength. Nevertheless, it is highly surprising that a monoatomic layer can survive the high mechanical forces of a cleaning procedure without being damaged. 'When we first told our colleagues about it, they didn't believe us,' adds Prof. Spiecker.

Nano-dust: Nothing stays clean for ever

Having atomically-clean surfaces enabled the authors of this study to also explore the origins and mechanisms of recontamination at the nanoscale. Leaving a cleaned sample out in air leads to the rapid accumulation of dust on its surface. 'This is really not surprising as we are all too familiar with dust settling in our homes. There is no reason why this should be different on the nanoscale,' says Prof. Spiecker. Besides airborne contamination, the team also found a prevalence of surface diffusion when a cleaned specimen is put into a vacuum environment, a phenomenon often encountered in scientific experiments.

Molecular assembly

Finally, the research team used the atomically clean surfaces as a basis for the targeted assembly of an atomically thin layer from molecular building blocks. Porphyrin molecules synthesized in the Department of Chemistry were applied to the cleaned surfaces and welded in place by a high-powered electron beam. The result was a graphene-like monolayer with nanocrystalline structure.

Interdisciplinary research fostered at FAU

The paper highlights one of FAU's strengths in the field of materials research: interdisciplinary research across different departments and faculties. Prof. Dr. Andreas Hirsch and his team from the Department of Chemistry provided both important chemicals for nanostructure assembly and valuable insights into chemical processes on surfaces. This collaboration was further aided by the DFG funded projects CRC 953 'Synthetic Carbon Allotropes' and RTG 1896 "In situ microscopy with electrons, X-rays and scanning probes". Finally, the research would not have been possible without the excellent equipment and microscopes at FAU's Center for Nanoanalysis and Electron Microscopy (CENEM).

Credit: 
Friedrich-Alexander-Universität Erlangen-Nürnberg

Tracking the atomic pathways by in-situ liquid cell TEM

image: (a, e) Time-lapse sequence of TEM images showing the nucleation growth process of single layer Ni(OH)2 in the Pt3Ni-Ni(OH)2 core-shell structure extracted from movie. (b, f) Schematic illustrations of the growth process of Ni(OH)2 single layer in (a, e). The corresponding statistics of the length of growth layer in (a, e) as a function of time (c, g), and statistics of growth rate in (a, e) as a function of time (d, h), respectively.

Image: 
©Science China Press

Recently, platinum-containing core-shell structures with tunable magnetic and catalytic properties have attracted intensive attentions and offered a wide range of applications. To date, their synthetic routes are mostly based on galvanic replacement, co-reduction, thermal decomposition and seed-mediated method. But the detailed formation mechanisms of core-shell structures in solution, especially, at gas-liquid interface are still not completely clear, which is mostly achieved based on post reaction studies or ex situ characterizations. In this regard, it is worthwhile but still very challenging to directly visualize the complicate and delicate dynamic processes.

Technical advantages of in-situ liquid electron microscopy (TEM) allow us to monitor the growth trajectory of pure metal nanoparticles in liquid media, including nucleation growth, nanorod self-assembly, and electrochemical deposition. Compared with pure metal nanocrystals, the growth pathway for alloy and its oxide core-shell structures is more complicated. It is noteworthy that little is known about the atomic growth pathway of Pt based-oxide core-shell structures and structural stability in solution, especially, at the gas-liquid interface. Due to the lack of direct observation method with high spatial resolution, some intermediate states may be easily missed.

Herein, Honggang Liao's group first observed the atomic growth way of Pt3Ni-Ni(OH)2 core-shell structure at gas-liquid interface using in-situ liquid cell TEM. Experiment results revealed the underlying growth and transformation mechanisms of the Pt3Ni-Ni(OH)2 core-shell structure by systematically changing the Ni:Pt ratio in the precursor solution and tuning electron beam dose rate. Key questions regarding the growth mechanism for single- and multi-layer Ni(OH)2 flakes were addressed. It is anticipated that this work could provide atomic insights on the rational design of metal-2D core-shell structures for potential wide range applications.

Credit: 
Science China Press

Film photosensitizer: High efficient singlet oxygen generation

image: (a) Photos of colony-forming units (CFU) for S. aureus incubated on LW-PBI-based films under white light irradiation (90 mW/cm2, 10 min). (b) Plot of absorbance recorded at 291 nm of the UA solution in PBS buffer versus time using a home-made conceptual device. Inset: A schematic representation of the proof-of-concept device.

Image: 
©Science China Press

Photosensitized generation of singlet oxygen attracted a great deal of interest reaching applications in various fields owing to its high biological activity and strong oxidation, including organic synthesis, wastewater treatment, photodynamic therapy (PDT). Although singlet oxygen can be produced in a variety of ways, triplet state energy transfer from some organic molecules under light illuminations is one of the most efficient and controllable way to produce the active oxygen species, where the organics are called photosensitizers.

Therefore, the performance of photosensitizers plays a vital role in the production and application of singlet oxygen. Till now, coordinated compounds based on polypyrrole are the most commonly used and studied photosensitizers. However, these photosensitizers are usually used in solution or suspension state, and hardly used in solid state. In addition, they also suffer from low photochemical stability and low absorption efficiency of visible light, which may further limit their practical applications. Therefore, developing high performance, solid state usable photosensitizers of molecular oxygen still remains a challenge.

In the past two decades, Fang group from Shaanxi Normal University has been devoted to the creation of fluorescence sensitive film materials and the relevant film devices. A series of fluorescent films have been created and applied to sensor/detector developments. In this work, they developed a unique film-based photosensitizer, where a nonplanar spirofluorene-containing perylene bisimide (PBI) derivative was synthesized and used as the active layer.

Photophysical peoperties and singlet oxygen production performance demonstrated that the ACQ effect is effectively avoided due to the intentionally introduced steric effect, leading to ideal fluorescence emission in solid state. The film also shows great photochemical stability and high absorption efficiency in the visible light region, laying foundation for them to be used in solid state. Meanwhile, the film depicts great efficiency in light production of singlet oxygen, and thereby successfully used in sterilization.

The high performance is partially ascribed to the presence of rich of molecular channels within the adlayer of the film due to the non-planar structure of the as synthesized fluorophore, which is believed to be necessary for mass transfer, a pre-requirement for efficient singlet oxygen production.

Compared to routine photosensitizers used in solution or suspension state, the film-based one possesses a number of advantages, such as: (1) reusable, (2) contamination-free, and (3) allowing device-making, which must bring convenience for practical applications. Further studies revealed that the effective photo-production of singlet oxygen can be also realized via utilization of a tiny and low-price LED lamp as a light source and as a film support. The conceptual device is expected to be usable for PDT, water purification, sterilization, antisepsis, etc.

Credit: 
Science China Press

New NUI Galway study helps improve accuracy of future climate change predictions

image: Image taken from the Spanish research vessel BIO Hesperides in the Southern Ocean.

Image: 
NUI Galway

New research published by NUI Galway's Centre for Climate & Air Pollution Studies (C-CAPS) has shone light on the impact of clouds on climate change. The study has raised serious doubts of the likely impact of human-led interventions involving methods of cloud 'brightening' to counteract climate change. The new study has been published today in the Nature's journal - Climate and Atmospheric Science.

The study looks into clouds, with one of the most important types of elements in clouds thought to be sulphate. Clouds, which are made of many droplets of condensed water on air particles, cool the climate by reflecting sunlight. According to recent theories, more air pollution serves as condensation points for cloud droplets leading to more solar reflectance. This has led many to believe that fossil fuel emissions and other air pollutions may off-set global warming through cloud 'brightening'.

The Galway study found the addition of a small amount of sea-salt can dampen the effect of clouds becoming brighter as a result of increased sulphate in the atmosphere. Professor Colin O'Dowd, Director of C-CAPS and Established Chair of Atmospheric Physics, said: "The study backs up our previous thinking that sea-salt will factor out other substances and cause competition between potential nuclei influencing cloud reflectance. This means that recent theories that increased sulphate production can decrease the impact of climate change need to be reconsidered. Science is clearly pointing to the fact that carbon-based human activity is hurting our environment and there's only one pathway to solve this - less fossil fuel and no interference with nature."

Researchers from NUI Galway joined the Spanish research vessel BIO Hesperides circling Antarctica's Southern Ocean, known as the world's cleanest laboratory. The purpose of the expedition was to examine how the world's atmosphere is functioning in a pollution free environment.

Lead author Dr Kirsten Fossum commented: "Clouds, particularly those overlying dark ocean surfaces, are the Earth's key climate regulators, accounting for half of global reflectance. Pollution-induced changes to cloud reflectance, represent the single biggest uncertainty in predicting future climate change. The large area covered and systematic evidence from the cruise to Antarctica provided the vast sample of clean air needed to conclusively support this study."

The study was funded by SFI and the Spanish Ministry of Economy and Competitiveness. The Antarctic cruise that led to this study was organised by the Institut de Ciéncies del Mar (CSIC), Barcelona, Catalonia, Spain.

The researchers behind the study run the Mace Head Air Pollution and Climate Laboratory on the west coast of Ireland where they study the cleanest air in Europe and in the northern hemisphere. The team also recently released a unique smartphone app, known as StreamAir, it provides real-time weather forecasting and highlights key drivers of air pollution and climate disruption through air quality indications.

Credit: 
University of Galway

Cancer mutation in dual role

Analyses of cell signals provide insight into the origin of severe inflammatory symptoms that appear in various types of blood cancer and point to possible therapeutic approaches: In around one-fourth of patients suffering from juvenile myelomonocytic leukemia (JMML), there is evidence of mutations in the so-called KRAS gene in the leukemia cells. Patients affected by JMML carrying these mutations suffer particularly often from signs of inflammation, such as fever, weight loss, and an abnormal enlargement of the spleen. It was previously unknown how the sometimes severe inflammatory symptoms are connected with the cancer. A team of researchers at the University of Freiburg led by Prof. Dr. Robert Zeiser and Prof. Dr. Tilman Brummer has now demonstrated that the cancer-causing mutation in the KRAS gene is also the cause of the inflammation. The improved understanding of the symptoms will enable doctors to develop new drugs for blocking the progression of leukemia in the body.

The KRAS gene regulates the production of the K-Ras protein, which gives the cells instructions to grow or to divide. The protein ensures that cells only multiply if new cells are needed in the body. If K-Ras is excessively active in some cells due to a mutation in the genetic material, these cells divide unchecked - and cancer develops. Zeiser and his team have now discovered that K-Ras also plays an important role in the immune response: Via the NLRP3 protein complex - also known as the NLRP3 inflammasome - it leads to the release of two inflammation-promoting messenger substances, interleukin-1β and interleukin-18, which the researchers succeeded in detecting in cells from blood samples of leukemia patients. When the researchers inhibited the formation of the messenger substances with drugs, this treatment not only relieved the inflammatory symptoms but also slowed down tumor growth. "This is a promising result that is also consistent with other studies demonstrating that cancer-causing mutations influence the production of interleukin messengers," explains Zeiser. The results of the study show that the signaling pathways whose disruption leads to cancer are also directly related to the signaling processes of the immune response.

Robert Zeiser is a member of the University of Freiburg Clusters of Excellence CIBSS and BIOSS and a doctor at the Department of Medicine I of the Medical Center - University of Freiburg, where he heads the Tumor Immunology Unit. Tilman Brummer conducts research at the University of Freiburg's Institute of Molecular Medicine and Cell Research. One of the objectives of the Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies is to better understand how different signaling processes in the immune and tumor cells are interconnected. In the cluster, Zeiser and his colleagues from various disciplines are studying how molecular signals function in the body and how this can be used as a basis for developing therapies.

Credit: 
University of Freiburg

Autoimmunity may be rising in the United States

Autoimmunity, a condition in which the body's immune system reacts with components of its own cells, appears to be increasing in the United States, according to scientists at the National Institutes of Health and their collaborators.

In a study published April 8 in Arthritis and Rheumatology, the researchers found that the prevalence of antinuclear antibodies (ANA), the most common biomarker of autoimmunity, was significantly increasing in the United States overall and particularly in certain groups. These groups include males, non-Hispanic whites, adults 50 years and older, and adolescents. The study is the first to evaluate ANA changes over time in a representative sampling of the U.S. population.

"The reasons for the increases in ANA are not clear, but they are concerning and may suggest a possible increase in future autoimmune disease," said corresponding and senior author Frederick Miller, M.D., Ph.D., deputy chief of the Clinical Research Branch at the National Institute of Environmental Health Sciences (NIEHS), part of NIH. "These findings could help us understand more about the causes of these immune abnormalities and possibly learn what drives development of autoimmune diseases and how to prevent them."

The study included 14,211 participants, 12 years and older, in the U.S. National Health and Nutrition Examination Survey (NHANES). The scientists used immunofluorescence, a technique that uses fluorescent dye to visualize antibodies, to examine the frequencies of ANAs in subjects from three time periods. They found that ANA prevalence for 1988-1991 was 11.0%, while for 1999-2004 it was 11.5%, and for 2011-2012 it was 15.9%. These percentages corresponded to 22, 27, and 41 million affected individuals, respectively.

Of the four demographic groups that displayed considerable ANA increases, findings in the adolescent group were the most worrisome to the research team. Young people, ages 12-19, had the largest ANA increases in the study, going from a two-fold to a three-fold increase over the three timeframes.

The researchers want to know why they are seeing these changes in autoimmunity in each of the groups, but especially in teenagers. Since people have not changed much genetically during the past 30 years, the scientists suggest that changes in lifestyle or the environment may be involved in ANA increases.

"These new findings may have important public health implications and will help us design studies to better understand why some people develop autoimmune diseases," said Christine Parks, Ph.D., co-author and staff scientist in the NIEHS Epidemiology Branch. She added that autoimmune diseases are a group of more than 100 chronic, debilitating conditions.

Determining whether autoimmune diseases, like lupus or myositis, are increasing in prevalence requires a clinical evaluation, which was not performed in this study. Nevertheless, ANA are commonly seen in patients with these conditions and similar autoimmune disorders. Co-author and NIEHS Scientific Director Darryl Zeldin, M.D., said other studies have suggested there is an increase in autoimmune disease prevalence, but the findings are based on incomplete data. He and Miller hope that a national registry of autoimmune diseases will be established so that they can examine changes over time, define geographic hotspots, and eventually understand what is causing them.

"Hopefully, this important study will stimulate further research on the environmental factors related to the apparent increased prevalence of autoimmune diseases," Zeldin said.

Credit: 
NIH/National Institute of Environmental Health Sciences

Lobster digestion of microplastics could further foul the food chain

Tiny fragments of plastic waste are dispersed throughout the environment, including the oceans, where marine organisms can ingest them. However, the subsequent fate of these microplastics in animals that live near the bottom of the ocean isn't clear. Now, researchers report in ACS' Environmental Science & Technology that lobsters can eat and break down some of this microplastic material, releasing even smaller fragments into the water that other deep-sea organisms could ingest.

Microplastic pollution that makes its way into the ocean eventually sinks to the seabed. Nephrops norvegicus, which is also known as the Norway lobster, langoustine or scampi, lives in this region of the ocean, so it is a good indicator species for microplastic contamination of the deep sea. Prior research on the contents of stomachs or entire digestive tracts from lobsters had shown that they can ingest microplastics. And previous lab experiments had shown that a different type of crustacean that lives in the water column, rather than the seabed, can break plastic into smaller particles through digestion. Alessandro Cau and colleagues wanted to know whether this fragmentation happens in nature, and with species dwelling on the seabed.

In lobsters collected near Sardinia in the Mediterranean Sea, the researchers found that larger plastic particles became trapped in the crustaceans' stomachs. However, some particles passed into the "gastric mill," a complex of small calcified plates that grind against each other to break down food in a lobster's stomach. This process fragmented some of the plastic into smaller particles, which then moved on to the lobsters' intestines. In live animals, these smaller fragments would presumably be expelled into the ocean. These findings highlight the existence of a new kind of "secondary" microplastic, introduced into the environment by living organisms, that could represent a significant pathway of plastic degradation in the deep sea, the authors say. They also note that these tinier particles could then be more bioavailable to smaller creatures in the deep-sea food chain.

Credit: 
American Chemical Society