Tech

Extra-tropical Cyclone Harold caught by NASA's Terra Satellite

image: On April 10, the MODIS instrument that flies aboard NASA's Terra provided a visible image of extra-tropical cyclone Harold in the Southern Pacific Ocean.

Image: 
NASA Worldview, Earth Observing System Data and Information System (EOSDIS).

NASA's Terra satellite passed over the Southern Pacific Ocean and captured a visible image of extra-tropical cyclone Harold.

On April 10, the visible image captured by the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite showed that extra-tropical cyclone Harold was elongated from strong northwesterly wind shear. Wind shear had pushed the bulk of clouds and convection (rising air that forms the thunderstorms that make up a tropical cyclone) to the southeast of the center. Sheared convection and initial frontal features indicate that the system is undergoing extra-tropical transition.

In general, wind shear is a measure of how the speed and direction of winds change with altitude. Tropical cyclones are like rotating cylinders of winds. Each level needs to be stacked on top each other vertically in order for the storm to maintain strength or intensify. Wind shear occurs when winds at different levels of the atmosphere push against the rotating cylinder of winds, weakening the rotation by pushing it apart at different levels.

When a storm becomes extra-tropical, it means that a tropical cyclone has lost its "tropical" characteristics. The National Hurricane Center defines "extra-tropical" as a transition that implies both poleward displacement (meaning it moves toward the north or south pole) of the cyclone and the conversion of the cyclone's primary energy source from the release of latent heat of condensation to baroclinic (the temperature contrast between warm and cold air masses) processes. It is important to note that cyclones can become extra-tropical and retain winds of hurricane or tropical storm force.

The Joint Typhoon Warning Center or JTWC issued the final warning on this system on April 9. On April 10, extra-tropical cyclone Harold continued to move through the South Pacific Ocean and weaken. The storm is no threat to land areas.

Tropical cyclones/hurricanes are the most powerful weather events on Earth. NASA's expertise in space and scientific exploration contributes to essential services provided to the American people by other federal agencies, such as hurricane weather forecasting.

Credit: 
NASA/Goddard Space Flight Center

Fungus-derived gene in wild wheatgrass relative confers fusarium resistance in wheat

In a wild relative of cultivated wheat, researchers have found a gene, likely delivered through horizontal gene transfer from a fungus, they show, that drives resistance to fusarium head blight (FHB) - an intractable fungal disease devastating wheat crops worldwide. According to a new study, introgression of the newly identified FHB resistance gene Fhb7 in agricultural wheat confers resistance to the disease without a decline in overall yield. The findings suggest a possible solution for breeding Fusarium-resistant cereal crops. And they are surprising as there is little evidence for horizontal gene transfer events involving nuclear DNA transmission from fungi or other eukaryotes. FHB is a fungal disease of wheat caused by pathogenic Fusarium fungi. Outbreaks of the disease are widespread worldwide and increasing in prevalence due to climate change and agricultural practices that promote infection. In addition to greatly reduced wheat yield, the disease is also associated with widespread contamination of the crop by mycotoxins produced by the fungi, which promote infection and have harmful toxic effects on human and animal health. Because contaminated grain cannot be sold for food or feed, FHB infections often result in severe economic losses. Hongwei Wang and colleagues assembled the genome of Thinopyrum elongatum, a wild wheatgrass relative of modern wheat known to harbor Fusarium resistance. From this reference genome and using years' worth of genetic mapping data, Wang et al. identified and cloned the Th. elongatum FHB resistance gene Fhb7, which confers broad resistance to Fusarium species by detoxifying their virulent mycotoxins. Strikingly, the authors found no known homolog of Fhb7 in the entirety of the plant kingdom but discovered its coding sequence shares notable overlap with a species of fungus, Epichloë aotearoae, known to infect grass. The findings suggest that Fhb7 in the Th. Elongatum genome may owe its origin to the fungus via horizontal gene transfer. In further analyses, the authors show that engineering Fhb7 into wheat via distant hybridization makes wheat of a variety of backgrounds resistant to both FHB and crown rot, without affecting yield.

Credit: 
American Association for the Advancement of Science (AAAS)

Reframing biosecurity governance as an experimental space, including as relates to handling COVID-19

Biological science and its applications are rapidly evolving, and to keep up with emerging security concerns, governance of biosecurity applications should evolve as well. In a Policy Forum, Sam Evans and colleagues argue for rethinking biosecurity governance - moving beyond assuming the related threats are known, as one major change, and making efforts more experimental. Evans et al. loosely define biosecurity governance as the policies and processes designed to prevent or deter misuse of biological science and technology. Due many factors, existing biosecurity processes are being pushed to their limits, the authors say. Processes related to recognition and handling of natural biological threats like COVID-19 are but one example. "It should not take hundreds of thousands of corpses around the world and a recession to get us to assess and address the limitations of our current systems of governing health security and biosecurity," said Evans. "One of the biggest lessons we can learn from the current pandemic is the need to learn lessons without a pandemic. We can do that by taking a more experimental approach to biosecurity and health security governance, periodically testing and reassessing basic assumptions we are making about science, security, and society." Traditional approaches have focused mostly on risk management and the malicious exploitation of research. According to the authors, this approach assumes the threats are known and able to be addressed. However, many recent advancements in the biological sciences, including the development of powerful new technologies like CRISPR and synthetic genomics, have created previously unknown and poorly understood security concerns. The authors demonstrate how reframing biosecurity governance as an experiment in itself focuses attention on ways to systematically evaluate the effectiveness and limitations of current and future solutions to biosecurity issues.

Credit: 
American Association for the Advancement of Science (AAAS)

Ordering of atoms in liquid gallium under pressure

image: Simulation snapshot of liquid gallium at 30 GPa and 1000 K with gallium atoms shown as small grey spheres. Regions of exceptionally low configurational entropy populated exclusively by clusters of Ga atoms in five-fold symmetric (10B, orange spheres) and crystal-like (11F, blue spheres) motifs may help to stabilize the glassy phase below the high-pressure melting point. Coloured bonds highlight rings in the two structural motifs: pentagons for 10B, triangles and squares for 11F.

Image: 
University of Bristol

Liquid metals and alloys have exceptional properties that make them suitable for electrical energy storage and generation applications.

Low-melting point gallium-based liquid metals are used as heat exchange fluids for cooling integrated electronics and in the manufacture of flexible and reconfigurable electronic devices and soft robotics.

Gallium is an enigmatic metal with remarkable physical characteristics including an anomalously low melting point just above room temperature, one of the largest liquid ranges of any element, and a volume contraction on melting similar to that observed for water.

In contrast to the regular periodic arrangements of atoms in crystalline solids, the liquid state is characteristically disordered. Liquids can flow and their atoms move chaotically as in a gas.

However, unlike a gas, the strong cohesive forces in liquids produce a degree of order on a local scale. Understanding how this order changes at high-pressures and temperatures is important for the development of materials with novel physical properties or for operating under extreme conditions and is key to understanding processes in deep terrestrial and exoplanetary interiors, such as metallic core formation and magnetic field generation.

In a new study led by scientists from the University of Bristol, and published in the journal Physical Review Letters, in situ synchrotron x-ray diffraction measurements made at Diamond Light Source, UK of the melting curve, density, and structure of liquid gallium are reported to pressures up to 26 GPa using a resistively heated diamond anvil cell to generate these extreme conditions.

The results of ab initio Molecular Dynamics simulations, run on the University of Bristol's Advanced Computing Research Centre's supercomputer "BlueCrystal phase 4", are in excellent agreement with the experimental measurements.

Previous studies predict the liquid structures of gallium and other metals develop from complex configurations with low coordination numbers at ambient-pressure to simple 'hard-sphere' arrangements at high-pressure.

However, using topological cluster analysis the researchers found significant deviation from this simple model: even at extreme pressures local order in liquid gallium is maintained, with the formation of regions of low local entropy containing structural motifs with five-fold symmetry and crystal-like ordering.

Lead author Dr James Drewitt from the University of Bristol's School of Earth Sciences, said: "This strikingly unexpected emergence of low configurational entropy motifs in liquid gallium at high-pressure potentially provides a mechanism for the promotion of metastable glass phases below the melting curve.

"This opens up a new avenue of research for future experimental and theoretical studies to explore rapid temperature quenched melts at high-pressure leading to the production of new metallic glass materials."

Credit: 
University of Bristol

Now metal surfaces can be instant bacteria killers

video: Bacterial pathogens can live on surfaces for days. What if frequently-touched surfaces such as doorknobs could instantly kill them off?

Image: 
Purdue University/Erin Easterling

WEST LAFAYETTE, Ind. -- Bacterial pathogens can live on surfaces for days. What if frequently touched surfaces such as doorknobs could instantly kill them off?

Purdue University engineers have created a laser treatment method that could potentially turn any metal surface into a rapid bacteria killer - just by giving the metal's surface a different texture.

In a study published in the journal Advanced Materials Interfaces, the researchers demonstrated that this technique allows the surface of copper to immediately kill off superbugs such as MRSA.

"Copper has been used as an antimicrobial material for centuries. But it typically takes hours for native copper surfaces to kill off bacteria," said Rahim Rahimi, a Purdue assistant professor of materials engineering.

"We developed a one-step laser-texturing technique that effectively enhances the bacteria-killing properties of copper's surface."

The technique is not yet tailored to killing viruses such as the one responsible for the COVID-19 pandemic, which are much smaller than bacteria.

Since publishing this work, however, Rahimi's team has begun testing this technology on the surfaces of other metals and polymers that are used to reduce risks of bacterial growth and biofilm formation on devices such as orthopedic implants or wearable patches for chronic wounds.

Giving implants an antimicrobial surface would prevent the spread of infection and antibiotic resistance, Rahimi said, because there wouldn't be a need for antibiotics to kill off bacteria from an implant's surface.

The technique might apply to metallic alloys that also are known to have antimicrobial properties.

Metals such as copper normally have a really smooth surface, which makes it difficult for the metal to kill bacteria by contact.

The technique developed by Rahimi's team uses a laser to create nanoscale patterns on the metal's surface. The patterns produce a rugged texture that increases surface area, allowing more opportunity for bacteria to hit the surface and rupture on the spot. A YouTube video is available at https://youtu.be/3vFFdNXsoN0.

Researchers in the past have used various nanomaterial coatings to enhance the antimicrobial properties of metal surfaces, but these coatings are prone to leach off and can be toxic to the environment.

"We've created a robust process that selectively generates micron and nanoscale patterns directly onto the targeted surface without altering the bulk of the copper material," said Rahimi, whose lab develops innovative materials and biomedical devices to address health care challenges.

The laser-texturing has a dual effect: The technique not only improves direct contact, but also makes a surface more hydrophilic. For orthopedic implants, such a surface allows bone cells to more strongly attach, improving how well the implant integrates with bone. Rahimi's team observed this effect with fibroblast cells.

Due to the simplicity and scalability of the technique, the researchers believe that it could easily be translated into existing medical device manufacturing processes.

Credit: 
Purdue University

USC scientists develop a better redox flow battery

image: How the redox flow battery works

Image: 
Source: USC

USC scientists have developed a new battery that could solve the electricity storage problem constraining widespread use of renewable energy.

The technology is a new spin on a known design that stores electricity in solutions, sorts the electrons and releases power when it's needed. So-called redox flow batteries have been around awhile, but the USC researchers have built a better version based on low-cost and readily available materials.

"We have demonstrated an inexpensive, long-life, safe and eco-friendly flow battery attractive for storing the energy from solar and wind energy systems at a mass-scale," said chemistry professor Sri Narayan, lead author for the study and co-director of the Loker Hydrocarbon Research Institute at USC.

The study was published today in the Journal of the Electrochemical Society.

Energy storage is a big hurdle for renewable power because power demand doesn't always coincide when wind turbines spin or sunshine hits solar panels. The search for a viable storage solution faces multiple challenges, which is the problem the USC scientists sought to solve.

They focused on the redox flow battery because it's proven technology and has been deployed in limited applications so far. It uses fluids to store electrochemical energy, sorting electrons and recombining by reduction and oxidation, and releasing them to make electricity when its needed.

The key innovation achieved by the USC scientists involves using different fluids: an iron sulfate solution and a type of acid. Iron sulfate is a waste product of the mining industry; it is plentiful and inexpensive. Anthraquinone disulfonic acid (AQDS) is an organic material, already used in some redox flow batteries for its stability, solubility and energy storage potential.

While the two compounds are well known individually, it's the first time they've been combined to prove potential for large-scale energy storage. Tests at the USC lab proved the battery has big advantages over competitors.

For example, iron sulfate is cheap and abundant - a dime buys about 2.2 pounds - while large scale manufacturing of AQDS would cost about $1.60 per pound. At those prices, material costs for the type of battery developed by the USC scientists would cost $66 per kilowatt hour; if manufactured at scale, electricity would cost less than half the energy derived from the redox batteries that use vanadium, which is more expensive and toxic.

Also, in tests at USC, the researchers found that the iron-AQDS battery can cycle, or recharge, hundreds of times with virtually no loss of power, unlike competing technologies. Durability for energy storage systems is important for large-scale use.

"The materials developed are highly sustainable," said Surya Prakash, co-author of the study and director of the Loker Institute, who collaborates with Narayan in developing new organic quinones. "AQDS can be manufactured from any carbon-based feedstocks, including carbon dioxide. Iron is an earth-abundant, non-toxic element."

The technology also has advantages over lithium ion battery storage. The proliferation of consumer electronics and electric vehicles, powered by lithium ion batteries, creates scarcity for the element, which drives up costs. In turn, those economics make other, less expensive energy storage options more appealing, the study says. Also, lithium ion batteries don't last as long, due to recharging, as most anyone who's recharged cellphones and laptops know.

"... The iron-AQDS flow battery system presents a good prospect for simultaneously meeting the demanding requirements of cost, durability and scalability for large-scale energy storage," the study says.

Renewable energy use is growing, yet is constrained due to energy storage limitations. Storing just 20% of today's solar and wind energy requires reserve capacity of 700 gigawatt hours. One gigawatt hour is enough electricity for about 700,000 homes for an hour.

Said Narayan: "To date there has been no economically viable, eco-friendly solution to energy storage that can last for 25 years. Lithium-ion batteries do not have the long-life and vanadium-based batteries uses expensive, relatively toxic materials limiting large-scale use. Our system is the answer to this challenge. We foresee these batteries used in residential, commercial and industrial buildings to capture renewable energy."

Credit: 
University of Southern California

COVID-19 news from Annals of Internal Medicine

Below please find a summary and link(s) of new coronavirus-related content published today in Annals of Internal Medicine. The summary below is not intended to substitute for the full article as a source of information. A collection of coronavirus-related content is free to the public at http://go.annals.org/coronavirus.

Awareness, Attitudes, and Actions Related to COVID-19 Among Adults With Chronic Conditions at the Onset of the U.S. Outbreak

The evolving COVID-19 outbreak is requiring social distancing and other measures to protect public health. However, messaging has been inconsistent and unclear. This study surveyed 630 adults aged 23 to 88 years living with 1 or more chronic conditions who were participants in other research studies taking place at 5 academic internal medicine and 2 federally qualified health center primary care settings in the greater Chicago area. The study reported on COVID-19 awareness, knowledge, attitudes, and related behaviors in this group of adults who are more vulnerable to complications of infection. Read the full text: http://annals.org/aim/article/doi/10.7326/M20-1239.

Media contacts: A PDF for this article is not yet available. Please click the link to read full text. The lead author, Michael S. Wolf, PhD, MPH, MA, can be reached through Marla Paul at marla-paul@northwestern.edu.

Credit: 
American College of Physicians

Women's lifestyle changes, even in middle age, may reduce future stroke risk

DALLAS, April 9, 2020 -- Middle age may not be too late for women to substantially reduce their stroke risk by not smoking, exercising, maintaining a healthy weight and making healthy food choices, according to new research published today in Stroke, a journal of the American Stroke Association, a division of the American Heart Association.

In general, women are more likely than men to have a stroke, die from stroke and have poorer health and physical function after a stroke. The average age of first stroke in women is 75 years. Based on this information, researchers theorized that making mid-life lifestyle changes might help reduce stroke's burden among women.

"We found that changing to a healthy lifestyle, even in your 50s, still has the potential to prevent strokes," said Goodarz Danaei, Sc.D., lead study author and Bernard Lown Associate Professor of Cardiovascular Health at Harvard T.H. Chan School of Public Health in Boston. "Women who made lifestyle modifications in middle age reduced their long-term risk of total stroke by nearly a quarter and ischemic stroke, the most common type of stroke, by more than one-third."

Researchers analyzed the Nurses' Health Study, which includes health information on nearly 60,000 women who enrolled at average age of 52 and continued in the study for an average of 26 years. Researchers studied the impact on stroke risk from smoking cessation, exercising 30 minutes or more daily and gradual weight loss if women were overweight. The researchers also studied the impact of making recommended dietary modifications that emphasize eating more fish, nuts, whole grains, fruits and vegetables and less red meat, no processed meat and less alcohol.

During the 26-year follow-up, researchers found:

4.7% of women with no lifestyle interventions had a stroke of any type; 2.4% had ischemic stroke; and 0.7% had hemorrhagic stroke.

Engaging in the three non-dietary interventions -- smoking cessation, daily exercise and weight loss -- was estimated to reduce the risk of total stroke by 25% and ischemic stroke by 36%.

Sustained dietary modifications were estimated to reduce the risk of total stroke by 23%.

Researchers also found that increasing fish and nut consumption and reducing unprocessed red meat consumption appeared to have positive impacts on reducing stroke risk, although the degree of impact from these dietary changes was not as big as those achieved through increased physical activity, smoking cessation and maintaining a healthy weight.

While this was an observational study that included mostly white, middle-aged women, Danaei said, "there are other studies to support that the proportional changes in stroke risk from lifestyle and dietary modifications may be generalizable to men. We also estimate that exercising 30 minutes or more daily may reduce the risk of stroke by 20%."

Credit: 
American Heart Association

3D-printed corals could improve bioenergy and help coral reefs

image: This is a scanning electron microscope image of the microalgal colonies in the hybrid living biopolymers.

Image: 
University of Cambridge

Researchers from Cambridge University and University of California San Diego have 3D printed coral-inspired structures that are capable of growing dense populations of microscopic algae. Their results, reported in the journal Nature Communications, open the door to new bio-inspired materials and their applications for coral conservation.

In the ocean, corals and algae have an intricate symbiotic relationship. The coral provides a host for the algae, while the algae produce sugars to the coral through photosynthesis. This relationship is responsible for one of the most diverse and productive ecosystems on Earth, the coral reef.

"Corals are highly efficient at collecting and using light," said first author Dr Daniel Wangpraseurt, a Marie Curie Fellow from Cambridge's Department of Chemistry. "In our lab, we're looking for methods to copy and mimic these strategies from nature for commercial applications."

Wangpraseurt and his colleagues 3D printed coral structures and used them as incubators for algae growth. They tested various types of microalgae and found growth rates were 100x higher than in standard liquid growth mediums.

To create the intricate structures of natural corals, the researchers used a rapid 3D bioprinting technique originally developed for the bioprinting of artificial liver cells.

The coral-inspired structures were highly efficient at redistributing light, just like natural corals. Only biocompatible materials were used to fabricate the 3D printed bionic corals.

"We developed an artificial coral tissue and skeleton with a combination of polymer gels and hydrogels doped with cellulose nanomaterials to mimic the optical properties of living corals," said Dr Silvia Vignolini, who led the research. "Cellulose is an abundant biopolymer; it is excellent at scattering light and we used it to optimise delivery of light into photosynthetic algae."

The team used an optical analogue to ultrasound, called optical coherence tomography, to scan living corals and utilise the models for their 3D printed designs. The custom-made 3D bioprinter uses light to print coral micro-scale structures in seconds. The printed coral copies natural coral structures and light-harvesting properties, creating an artificial host-microenvironment for the living microalgae.

"By copying the host microhabitat, we can also use our 3D bioprinted corals as a model system for the coral-algal symbiosis, which is urgently needed to understand the breakdown of the symbiosis during coral reef decline," said Wangpraseurt. "There are many different applications for our new technology. We have recently created a company, called mantaz, that uses coral-inspired light-harvesting approaches to cultivate algae for bioproducts in developing countries. We hope that our technique will be scalable so it can have a real impact on the algal biosector and ultimately reduce greenhouse gas emissions that are responsible for coral reef death."

Credit: 
University of Cambridge

In Israel, public compliance with self-quarantine order tied to compensation

In February 2020, the Israeli government issued emergency rules to contain the spread of COVID-19, ordering individuals considered as exposed to COVID-19 to self-quarantine. This regulation was extended in March to include almost the entire population. In enacting the rules, the country's health officials hoped that the public would comply with the orders. However, one potential obstacle to compliance is concern over loss of income. Moran Bodas and Kobi Peleg, both with the Gertner Institute's Israel National Center for Trauma and Emergency Medicine, report the results of a poll of a randomized sample of Israeli adults to ascertain their willingness to self-quarantine. The survey was conducted during the last week of February 2020, as COVID-19 cases began appearing around the globe. The authors found that when survey respondents were told that compensation for lost wages would be provided, 94 percent said they would comply with a self-quarantine order. However, when lost wage compensation was not provided, the compliance rate dropped to less than 57 percent. "This study demonstrates that providing people with assurances for their livelihood during self-quarantine is an important component in compliance with public health regulations," the authors conclude. "Continuous earning is a crucial factor in determining public compliance with public health regulations, in particular self-quarantine."

Credit: 
Health Affairs

Integrated crop-livestock systems in paddy fields: New strategies for flooded rice nutrition

image: Conventional rice cultivation system (left), under plowing and heavy disking and winter fallow; and integrated crop-livestock system (right), under no-till and cattle grazing in winter season in a Brazilian subtropical region.

Image: 
Luiz G. Denardin

Worldwide, flooded rice cultivation has degraded soil quality, reducing rice yield and requiring intense use of inputs like fertilizers. On the other hand, integrated crop-livestock systems (ICLS) appear to be a good alternative to increase nutrient-use efficiency of rice, improving rice yield.

In a recent Agronomy Journal article, researchers evaluated the impact of no-till and ICLS adoption on soil fertility and flooded rice nutrition and yield. Although these practices are not widely adopted in paddy fields, their combination has demonstrated several benefits.

The team found that flooded rice under ICLS yields more grain while requiring lower fertilizer application. Rice yield under ICLS does not respond to P and K fertilization supply, suggesting an important contribution of nutrient cycling to plant nutrition. The ICLS has higher nutrient-use efficiency, demonstrated by the greater use efficiency of nutrients, yielding a higher amount of grain with the same amount of nutrient uptake.

Efforts to better understand the processes regarding nutrient cycling under conservation management systems in rice cultivation, such as ICLS, seem to be necessary to develop new standards of fertilization. By focusing on conservation management systems in rice cultivation, researchers can find more efficient systems regarding nutrient use with less dependence on external inputs.

Credit: 
American Society of Agronomy

Noninvasive treatment for men suffering from enlarged prostate

image: Inflammatory hypothesis underlying benign prostatic hyperplasia pathogenesis and biophysical mechanism of pulsed electromagnetic field therapy efficacy.

Image: 
Tenuta et al., 2020

Physicians from Sapienza University in Rome have published promising results of a small prospective interventional trial using noninvasive pulsed electromagnetic field therapy (PEMF) to treat men suffering from benign prostatic hyperplasia (BPH). After one month of treatment, prostate volume and symptoms significantly decreased. Men with moderate-severe lower urinary tract symptoms and without metabolic syndrome benefitted more from the treatment. The study was recently published in Andrology, the highest ranked journal of andrological research.

Benign prostatic hyperplasia is a common affliction of older men

Most men over the age of 50 will develop enlarged prostate, or BPH. The walnut-sized prostate gland produces prostatic fluid, which is a main component of semen. It can grow to the size of a lemon by the time a man is 60 years of age and may press against the bladder and urethra. BPH includes chronic lower urinary tract symptoms, such as frequent and urgent urination, sense of incomplete bladder emptying, and decreased force of the urine stream. A common complaint is having to get up at night to urinate. Approximately 60% of men over the age of 60, and 80% of men over the age of 80, will experience the symptoms of BPH.

A poorly understood disease

Risk factors for BPH include age, diabetes, cardiovascular disease, hypertension, and metabolic syndrome. The etiology of the disease is not completely known, but inflammatory damage is the most likely cause. Inflammation triggers fibrosis and lack of oxygen to affected tissue, resulting in structural changes in the prostate. This creates a cycle of inflammation-fibrosis-hypoxia-inflammation, which in turn causes glandular remodeling and tissue growth (Berger, et al., 2003; Mishra, et al., 2007).

Traditional treatment options for BPH include medications such as alpha-blockers and 5α-reductase inhibitors or surgical interventions. Side effects of treatments may include the inability to ejaculate, retrograde ejaculation (semen flows backwards into the bladder), erectile dysfunction, and even loss of bladder control. Some men affected have reported that taking saw palmetto, an herbal supplement, gives them relief but clinical evidence for its effectiveness is not conclusive. Clearly, effective and less invasive treatments for this common disease are needed.

Pulsed Electromagnetic Field Therapy and BPH

PEMF consists of low frequency pulsed energy waves and has been used for a variety of ailments such as various orthopedic conditions. For example, PEMF has been shown to reduce pain and improve function for those afflicted with osteoarthritis. The electromagnetic field is produced by a device that reduces inflammation by promoting growth of new blood vessels, dilation of blood vessels, and tissue remodeling. The overall effect is reduction in tissue hypoxia. These aspects of PEMF make it an ideal noninvasive option to treat BPH (Frey, 1974; Hug and Roosli, 2012).

In this regard, only a few studies have used PEMF to treat enlarged prostate. Two published studies used a desktop PEMF device to treat BPH in men with positive, but variable, results (Elgohary and Tantawy, 2017; Giannakopoulos, et al., 2011). A more recent study in 20 dogs, which also suffer from enlarged prostate as they age, found an average of 57% reduction in prostatic volume following three weeks of treatment with a portable PEMF device, without any interference in semen quality, testosterone levels, or libido (Leoci, et al., 2014).

The current study used a similar PEMF device and treatment program as the dog study. Twenty-seven naive patients with BPH and lower urinary tract symptoms were enrolled. They received a battery of tests including transrectal ultrasound and standardized questionnaires at baseline. They then used a handheld PEMF device (Magcell® Microcirc, Physiomed Elektromedizin) for five minutes twice daily for 28 consecutive days. The tests were then repeated. Nine patients elected to continue therapy for three more months while others discontinued. A final health evaluation was completed at four months for all patients.

"The patients were happy with this simple treatment plan, and we were very pleased that their symptoms significantly improved after only one month of treatment, without any sort of side effects," noted corresponding author Prof. Andrea Isidori.

PEMF was able to significantly reduce prostate volume after just 28 days of therapy, resulting in a median decrease of 5.4%. Symptoms also improved, with high compliance and no effects on hormonal and sexual function. There were no differences between subjects who continued therapy for three more months and those who did not, showing that one month of therapy may be sufficient for the device to effectively reduce prostate volume and symptoms. Patients with moderate-severe lower urinary tract symptoms and without metabolic syndrome (a cluster of conditions that include increased blood pressure, high blood sugar, excess body fat around the waist, and abnormal cholesterol or triglyceride levels and that increase the risk of heart disease, stroke, and type 2 diabetes) seemed to benefit more from this treatment.

Next steps

The pilot study provided promising evidence for the usefulness of PEMF to treat BPH. The decrease in prostate size was less than that attained in dogs, however. This may be due to differences between dogs and humans in the architecture of prostate tissue and growth characteristics due to BPH. Additional research with a larger number of men and a control group is needed to better understand the optimal schedule and duration of treatment, the impact of treatment on prostate tissue, and the potential use of PEMF in conjunction with traditional BPH therapies.

"The Parsemus Foundation supported this pilot study in men following the successful trial in dogs, with the goal of finding an inexpensive, noninvasive method to alleviate the symptoms of enlarged prostate," said Executive Director Linda Brent, PhD. "We look forward to partnering with other funders to sponsor additional research on the use of PEMF to treat BPH."

Credit: 
Parsemus Foundation

How do mantis shrimp find their way home?

image: Neogonodactylus oerstedii is a shallow-water species of mantis shrimp. It was the species used in the very first study of mantis shrimp navigation by Rickesh Patel at University of Maryland, Baltimore County. In a creative set of experiments, Patel found that the shrimp use the sun, polarized light patterns, and internal cues (in that order) to determine their distance and direction from their home burrows after trips out to seek food or mates.

Image: 
Rickesh Patel

Mantis shrimps have earned fame for their powerful punching limbs, incredibly unusual eyes, and vivid exoskeletons. And, it turns out, they're also really good at finding their way home. Through a series of painstaking experiments with these often-uncooperative creatures, Rickesh Patel has produced new findings on mantis shrimp navigation, published this week in Current Biology.

Patel, a Ph.D. candidate in biological sciences at UMBC, found that the species of mantis shrimp he investigated relies on the sun, patterns in polarized light, and internal cues--in that order--to navigate directly back to their non-descript burrows. These straight-line returns often follow forays that meander and zig zag as the shrimp looks for a meal or a mate. The ability to get home quickly comes in handy when seeking shelter in the presence of predators, or a perceived one, as Patel noted on his first research fieldwork expedition.

After his first year at UMBC, Patel traveled with Tom Cronin's lab to Lizard Island in the Great Barrier Reef to collect mantis shrimp for study. "As soon as they notice you, they'll turn around and zip straight to some sort of shelter," Patel says. Like a true scientist, "That got me wondering how they go about finding their way home."

A crucial starting point

Scientists have written a great deal on navigation in other species--primarily bees, ants, and mice--but Patel's is the first work on navigation in mantis shrimp.

First, Patel had to find a behavior he could work with to test ideas about how mantis shrimp navigate. So he created a small arena with an artificial shrimp burrow buried in sand. He placed the shrimp in the arena, and to his delight, the mantis shrimp was happy to occupy the small section of PVC pipe. Then he placed a piece of food at a distance from the burrow. He watched as the shrimp left its burrow, meandered until it found the food, and then returned to its burrow in a fairly straight line.

From those initial observations, Patel hypothesized that mantis shrimps use a process called path integration to find their way home. In other words, they are somehow able to track both their distance and direction from their burrow.

"That was probably the most exciting part of the experiments for me, because I knew I had a really robust behavior that I could work with," Patel says. "Everything I did really extended from that initial point."

Sunshine surprise

After that first discovery, the challenging work began, to figure out what cues the animals were using to determine the path home.

Patel built eight much larger arenas, each about 1.5 meters in diameter, to run his experiments. The first question he asked was whether the shrimp were using internal or external cues to go home.

To test that, Patel created a setup that rotated the animal 180 degrees as it retrieved the food. If the shrimp was using external cues to remember its distance and direction from home, it would still head in the right direction. If it was using internal cues, based on the orientation of its own body, it would head in the opposite direction. In the first round of trials, the animals consistently headed in the exact opposite direction.

"That was really cool, but it didn't make a lot of sense," Patel says, "because an internal compass is going to be a lot less accurate than something that is tied to the environment." Then it hit him: "We just happened to have a really overcast week when I did these experiments, so I waited until we had a clear day, and then every time, they went right back home."

Putting together the puzzle

Patel realized that his experiment perfectly demonstrated the hierarchy of cues used by the animals. They used external cues first, but when those weren't available, they used internal cues.

That was the beginning of a long series of creative experiments that further teased out how these animals navigate. When Patel used a mirror to trick the animals into thinking the sun was coming from the opposite direction, they went the wrong way. This indicated they use the sun as a primary cue. When it was cloudy but not totally dark, they used polarization patterns in light, which are still detectable when it's overcast. And when the sky was completely covered, they reverted to their internal navigation system.

A varied skill set

For Patel, creating the experimental arenas--essentially, the shrimp obstacle course--was almost as fun as getting the results. "That's something I really enjoy--building things, creating things," he shares. Patel studied art and biology as an undergraduate at California State University, Long Beach. "I think those skills lent me a hand in designing my experiments."

Other skills Patel needed were patience and perseverance. "The animals will only behave maybe once a day, so if you scare the animal, you've lost that day," he says.

For example, one of the experiments involved putting the animals on a track that pulled them to a new position, and seeing where they headed from there. "If the track is too jerky or goes too fast, they get scared and just don't behave," Patel says. "So I had to design the experiment so that it was so gentle they didn't realize they were being moved."

New questions

All of Patel's patience has paid off with new findings that open up an array of future questions to answer. While path integration is well-documented in other species, mantis shrimp are the first to demonstrate the technique underwater. Looking up at the sky through water is a very different view than doing so through air, so Patel is curious how the animals' process is different from other species.

Patel is also ultimately interested in the neural basis of navigation behavior, but "before you can investigate what's happening in the brain, you have to understand what the animal's doing," he says. "So that's why I really focused on the behavior work, to figure out what the animal is doing and what kind of stimuli are appropriate to show the animal that we can use to investigate its neurology."

So far, other work has demonstrated that a brain region called the central complex has uncanny similarities between insects and mantis shrimps. This is especially interesting considering how far apart bees and shrimp are on the tree of life. The central complex is known to contribute to navigation in bees, so Patel is intrigued to learn more about its function in mantis shrimp. Alice Chou, another graduate student in the Cronin lab, is also investigating the brain structures of mantis shrimp.

UMBC to Europe

Other scientists in the U. S. and around the world are also interested in this work. Patel's research, like other work in his mentor's lab, is supported by the Air Force. They would like to know more about how animals use polarized light for navigation, on land and underwater, in hopes of imitating it in human-made systems.

Patel will have the chance to work on some of these questions as he continues his research career at Lund University in Sweden as a postdoctoral fellow, starting this summer. Right now, he's thankful for the experience he's had at UMBC, from that first summer through his dissertation research.

Patel says he benefited from being the mentee of Tom Cronin, professor of biological sciences and a preeminent scholar of mantis shrimp vision. "Tom has been great in that he's given me complete freedom to approach any question I want to, while also being happy to offer advice when asked," Patel says. "That combination has helped me grow into my own as a researcher."

With this initial paper and more on the way, Patel has made the most of that freedom. His next chapter is sure to be one of further discovery.

Credit: 
University of Maryland Baltimore County

Scientists use the Tokyo Skytree to test Einstein's theory of general relativity

In another verification of the validity of Einstein's theory of general relativity, published in Nature Photonics, scientists from the RIKEN Center for Advanced Photonics and Cluster for Pioneering Research, with colleagues, have used two finely tuned optical lattice clocks, one at the base and one on the 450-meter observatory floor of Tokyo Skytree, to make new ultraprecise measurements of the time dilation effect predicted by Einstein's theory of general relativity.

Einstein theorized that the warping of time-space by gravity was caused by massive objects. In line with this, time runs more slowly in a deep gravitational field than in a shallower one. This means that times runs slightly more slowly at the base of the Skytree tower than at the top.

The difficulty with actually measuring the change in how quickly clocks run in different gravity field is that the difference is very small. Performing a stringent test of the theory of relativity requires either a very precise clock or a large different in height. One of the best measurements so far was involved large and complex clocks such as those developed by the RIKEN group, which can measure a difference of around a centimeter in height. Outside the laboratory, the best tests have been taken by satellites, with altitudes that are thousands of kilometers different. Such space experiments have constrained any violation of general relativity about 30 parts per million, a tremendously precise measurement that essentially shows Einstein to be correct.

The scientists from RIKEN and their collaborators took up the task of developing transportable optical lattice clocks that could make comparably precise tests of relativity, but on the ground. The ultimate purpose, however, is not to prove or disprove Einstein. According to Hidetoshi Katori of RIKEN and the University of Tokyo, who led the group, "Another major application of ultraprecise clocks is to sense and utilize the curvature of spacetime by gravity. Using it, clocks can distinguish small differences in altitude, allowing us to measure ground swelling in places such as active volcanoes or crustal deformation, or to define the reference for height. We wanted to demonstrate that we could conduct these accurate measurements anywhere outside the laboratory, with transportable devices. This is the first step toward making ultraprecise clocks into real-world devices"

The key to the engineering feat was to miniaturize the laboratory-sized clocks into transportable devices and to make them insensitive to environmental noises such as temperature changes, vibrations, and electromagnetic fields. Each of the clocks was enclosed in a magnetic-shield box, around 60 centimeters on each side. The various laser devices and electronic controllers required for trapping and interrogating the atoms confined in a lattice were housed in two rack-mountable boxes. The two clocks were connected by an optical fiber to measure the beat note. In parallel, the scientists conducted laser ranging and gravity measurement to independently evaluate the difference of gravitational field for the two clocks.

The figure they attained for violations of general relativity was another validation of Einstein's theory, like others before. What is key about the experiment, according to Katori, is that they demonstrated this to a precision comparable to the best space-based measurements, but using transportable devices operating on the ground . In the future, the group plans to compare clocks hundreds of kilometers apart to monitor the long-term uplift and depression of the ground, one of the potential applications of ultraprecise clocks.

Credit: 
RIKEN

Ear's inner secrets revealed with new technology

What does it actually look like deep inside our ears? This has been very difficult to study as the inner ear is protected by the hardest bone in the body. But with the help of synchrotron X-rays, it is now possible to depict details inside the ear three-dimensionally. Together with Canadian colleagues, researchers from Uppsala University have used the method to map the blood vessels of the inner ear.

The study, which was published in the scientific journal Scientific Reports, can provide an explanation for why it is so effective to treat deafness in people with cochlear implants (CI). This is a method that means that an electrode that electrically stimulates the auditory nerve is operated into the inner ear. To-date, around 500,000 people worldwide have been treated with this technique. In Uppsala, the operation is also performed on patients with severe hearing loss, but who can perceive sounds with lower frequencies.

"We need to get better at understanding the micro-anatomy of the human auditory organ and how electrodes operated in affect structures in the cochlea. It can lead to an improved electrode design and better hearing results. 3D reconstructions mean that we can study new surgical paths to the auditory nerve," says Helge Rask-Andersen, Senior Professor in Experimental Otology at the Department of Surgical Sciences.

To be able to study the blood vessels in the inner auditory organ, the researchers used the synchrotron system in Saskatoon, Saskatchewan, Canada. The system, which is one of eight in the world, is as large as a football pitch and accelerates particles with very high energy. This makes it possible to create pictures of the smallest parts of the inner ear. Through computer processing, the images can then be made three-dimensional.

The researchers hope the method in the future can contribute to new knowledge about diseases of the ear, such as Meniere's disease, sudden deafness and tinnitus, the causes of which are still largely unknown. But as yet, it is not possible to study living patients with this technique. The radiation is too strong.

"We study specimens from the deceased, meaning donated temporal bones. We hope that the technology can be modified in the future to achieve better resolution than today," says Helge Rask-Andersen.

Credit: 
Uppsala University