Earth

Recent study reduces Casimir force to lowest recorded level

A research team that includes a physics professor at Indiana University-Purdue University Indianapolis (IUPUI) has recorded a drastically reduced measurement of the Casimir effect, a fundamental quantum phenomenon experienced between two neutral bodies that exist in a vacuum.

UCLA engineers develop new metabolic pathway to more efficiently convert sugars into biofuels

UCLA chemical engineering researchers have created a new synthetic metabolic pathway for breaking down glucose that could lead to a 50 percent increase in the production of biofuels.

Study finds tungsten in aquifer groundwater controlled by pH, oxygen

MANHATTAN, Kan. -- Two Kansas geologists are helping shed new light on how tungsten metal is leached from the sediment surrounding aquifers into the groundwater. The findings may have implications for human health.

Climate change: Fast out of the gate but slow to the finish

Washington, D.C.— A great deal of research has focused on the amount of global warming resulting from increased greenhouse gas concentrations. But there has been relatively little study of the pace of the change following these increases. A new study by Carnegie's Ken Caldeira and Nathan Myhrvold of Intellectual Ventures concludes that about half of the warming occurs within the first 10 years after an instantaneous step increase in atmospheric CO2 concentration, but about one-quarter of the warming occurs more than a century after the step increase.

Traces of immense prehistoric ice sheets

Geologists and geophysicists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), discovered traces of large ice sheets from the Pleistocene on a seamount off the north-eastern coast of Russia. These marks confirm for the first time that within the past 800,000 years in the course of ice ages, ice sheets more than a kilometre thick also formed in the Arctic Ocean.

New technique helps biologists save the world's threatened seagrass meadows

Danish and Australian biologists have developed a technique to determine if seagrass contain sulfur. If the seagrass contains sulfur, it is an indication that the seabed is stressed and that the water environment is threatened. The technique will help biologists all over the world in their effort to save the world's seagrass meadows.

The world's sharpest X-ray beam shines at DESY

The world's sharpest X-ray beam shines at DESY. At the X-ray light source PETRA III, scientists from Göttingen generated a beam with a diameter of barely 5 nanometres – this is ten thousand times thinner than a human hair. This fine beam of X-ray light allows focusing on smallest details. The research groups of Professor Tim Salditt from the Institute of X-ray Physics and of Professor Hans-Ulrich Krebs from the Institute of Materials Physics of the University of Göttingen published their work in the research journal Optics Express.

Eilat's corals stand better chance of resilience than other sites

Jerusalem, Sept. 29, 2013 – Israel's southern Red Sea resort of Eilat, one of whose prime attractions is its colorful and multi-shaped underwater coral reefs, may have a clear advantage in the future over rival coral-viewing sites around the world, scientists at the Hebrew University of Jerusalem and Bar-Ilan University have found.

Tiny sensor used in smart phones could create urban seismic network

SAN FRANCISCO -- A tiny chip used in smart phones to adjust the orientation of the screen could serve to create a real-time urban seismic network, easily increasing the amount of strong motion data collected during a large earthquake, according to a new study published in the October issue of the Bulletin of the Seismological Society of America (BSSA).

3-D models of electrical streamers

WASHINGTON D.C. September 27, 2013 -- Streamers may be great for decorating a child's party, but in dielectrics, they are the primary origin of electric breakdown. They can cause catastrophic damage to electrical equipment, harm the surrounding environment, and lead to large-scale power outages.

First long temperature reconstruction for the eastern Mediterranean based on tree rings

For the first time a long temperature reconstruction on the basis of stable carbon isotopes in tree rings has been achieved for the eastern Mediterranean. An exactly dated time series of almost 900 year length was established, exhibiting the medieval warm period, the little ice age between the 16th and 19th century as well as the transition into the modern warm phase. Moreover, Ingo Heinrich from the GFZ German Research Centre for Geosciences and colleagues revealed that the modern warming trend cannot be found in the new chronology.

U.Va. researcher: Methane out, carbon dioxide in?

A University of Virginia engineering professor has proposed a novel approach for keeping waste carbon dioxide out of the atmosphere.

Drexel researchers find new energy storage capabilities between layers of 2-D materials

Drexel University researchers are continuing to expand the capabilities and functionalities of a family of two-dimensional materials they discovered that are as thin as a single atom, but have the potential to store massive amounts of energy. Their latest achievement has pushed the materials storage capacities to new levels while also allowing for their use in flexible devices.

Spirals of light may lead to better electronics

A group of researchers at the California Institute of Technology (Caltech) has created the optical equivalent of a tuning fork—a device that can help steady the electrical currents needed to power high-end electronics and stabilize the signals of high-quality lasers. The work marks the first time that such a device has been miniaturized to fit on a chip and may pave the way to improvements in high-speed communications, navigation, and remote sensing.

First long temperature reconstruction for the eastern Mediterranean based on tree rings

For the first time a long temperature reconstruction on the basis of stable carbon isotopes in tree rings has been achieved for the eastern Mediterranean. An exactly dated time series of almost 900 year length was established, exhibiting the medieval warm period, the little ice age between the 16th and 19th century as well as the transition into the modern warm phase. Moreover, Ingo Heinrich from the GFZ German Research Centre for Geosciences and colleagues revealed that the modern warming trend cannot be found in the new chronology.