Earth

Researchers find that computer components can be damaged by key manufacturing processes

Manufacturers of increasingly minute computer chips, transistors and other products will have to take special note of research findings at the University of Huddersfield. The implications are that a key process used to transform the properties of nanoscale materials can cause much greater damage than previously realised.

Mine landslide triggered quakes

SALT LAKE CITY, Jan. 6, 2014 – Last year's gigantic landslide at a Utah copper mine probably was the biggest nonvolcanic slide in North America's modern history, and included two rock avalanches that happened 90 minutes apart and surprisingly triggered 16 small earthquakes, University of Utah scientists discovered.

Supervolcano eruptions are triggered by melt buoyancy

Supervolcanos are not usual volcanos. By effectively "exploding" as opposed to erupting, they leave a giant hole in the Earth's crust instead of a volcanic cone – a caldera, which can be up to one hundred kilometres in diameter. On average, supervolcanos are active more rarely than once every 100,000 years; since records began, none has been active. Consequently, researchers can only gain a vague idea of these events based on the ash and rock layers that have survived.

Ground-breaking work sheds new light on volcanic activity

Factors determining the frequency and magnitude of volcanic phenomena have been uncovered by an international team of researchers.

Experts from the Universities of Geneva, Bristol and Savoie carried out over 1.2 million simulations to establish the conditions in which volcanic eruptions of different sizes occur.

The team used numerical modelling and statistical techniques to identify the circumstances that control the frequency of volcanic activity and the amount of magma that will be released.

New study may aid rearing of stink bugs for biological control

Many people think of stink bugs as pests, especially as the brown marmorated stink bugs spreads throughout the U.S. However, certain stink bugs are beneficial, such as Podisus nigrispinus (Dallas), a predatory stink bug that is considered an important biological control agent for various insect pests of cotton, soybean, tomato, corn, kale, and other crops.

Another step towards understanding the quantum behavior of cold atoms

This news release is available in Spanish.

Are sweetpotato weevils differentially attracted to certain colors?

Source:

El Nino tied to melting of Antarctica's Pine Island Glacier

Pine Island Glacier is one of the biggest routes for ice to flow from Antarctica into the sea. The floating ice shelf at the glacier's tip has been melting and thinning for the past four decades, causing the glacier to speed up and discharge more ice.

Understanding this ice shelf is a key for predicting sea-level rise in a warming world. A paper published Jan. 2 in the advance online version of the journal Science shows that the ice shelf melting depends on the local wind direction, which is tied to tropical changes associated with El Nino.

Pine Island Glacier sensitive to climatic variability

A new study published in Science this month suggests the thinning of Pine Island Glacier in West Antarctica is much more susceptible to climatic and ocean variability than at first thought. Observations by a team of scientists at British Antarctic Survey, and other institutions, show large fluctuations in the ocean heat in Pine Island Bay. The team discovered that oceanic melting of the ice shelf into which the glacier flows decreased by 50 per cent between 2010 and 2012, and this may have been due to a La Ninã weather event.

Chinese herbal compound relieves inflammatory and neuropathic pain

Irvine, Calif., Jan. 2, 2014 — A compound derived from a traditional Chinese herbal medicine has been found effective at alleviating pain, pointing the way to a new nonaddictive analgesic for acute inflammatory and nerve pain, according to UC Irvine pharmacology researchers.

Earthquake lights linked to rift environments, subvertical faults

SAN FRANCISCO – Rare earthquake lights are more likely to occur on or near rift environments, where subvertical faults allow stress-induced electrical currents to flow rapidly to the surface, according to a new study published in the Jan./Feb. issue of Seismological Research Letters.

From the early days of seismology, the luminous phenomena associated with some earthquakes have intrigued scholars. Earthquake lights (EQL) appear before or during earthquakes, but rarely after.

Longmanshen fault zone still hazardous, suggest new reports

SAN FRANCISCO – The 60-kilometer segment of the fault northeast of the 2013 Lushan rupture is the place in the region to watch for the next major earthquake, according to research published in Seismological Research Letters (SRL). Research papers published in this special section of SRL suggest the 2008 Wenchuan earthquake triggered the magnitude 6.6 Lushan quake.

Atlas Mountains in Morocco are buoyed up by superhot rock, study finds

The Atlas Mountains defy the standard model for mountain structure in which high topography must have deep roots for support, according to a new study from Earth scientists at USC.

In a new model, the researchers show that the mountains are floating on a layer of hot molten rock that flows beneath the region's lithosphere, perhaps all the way from the volcanic Canary Islands, just offshore northwestern Africa.

No scrounging for scraps: UC research uncovers the diets of the middle and lower class in Pompeii

University of Cincinnati archaeologists are turning up discoveries in the famed Roman city of Pompeii that are wiping out the historic perceptions of how the Romans dined, with the rich enjoying delicacies such as flamingos and the poor scrounging for soup or gruel. Steven Ellis, a University of Cincinnati associate professor of classics, will present these discoveries on Jan. 4, at the joint annual meeting of the Archaeological Institute of America (AIA) and American Philological Association (APA) in Chicago.

Cloud confusion resolved: Global temperatures could rise at least 4°C by 2100

Global average temperatures will rise at least 4°C by 2100 and potentially more than 8°C by 2200 if carbon dioxide emissions are not reduced according to new research published in Nature. Scientists found global climate is more sensitive to carbon dioxide than most previous estimates.

The research also appears to solve one of the great unknowns of climate sensitivity, the role of cloud formation and whether this will have a positive or negative effect on global warming.