"Our research suggests that a large set of rich and important functions related to 3-D motion perception may have been previously overlooked in MT+," says Alexander Huk, assistant professor of neurobiology. "Given how much we already know about MT+, this research gives us strong clues about how the brain processes 3-D motion."
For the study, Huk and his colleagues had people watch 3-D visualizations while lying motionless for one or two hours in an MRI scanner fitted with a customized stereovision projection system.