Earth

Physicists have trapped and cooled exotic particles called excitons so effectively that they condensed and cohered to form a giant matter wave.

This feat will allow scientists to better study the physical properties of excitons, which exist only fleetingly yet offer promising applications as diverse as efficient harvesting of solar energy and ultrafast computing.

It's not magic, but new materials designed by two Northwestern University researchers seem to exhibit magical properties. Some contract when they should expand, and others expand when they should contract.

When tensioned, ordinary materials expand along the direction of the applied force. The new metamaterials (artificial materials engineered to have properties that may not be found in nature) do the opposite when tensioned -- they contract. Other materials designed by the researchers expand when compressed.

Quantum physics and plant biology seem like two branches of science that could not be more different, but surprisingly they may in fact be intimately tied.

Boulder, Colo., USA – The Geological Society of America has posted a new batch of Geology papers online ahead of print (23 May 2012). Locations studied include the Rainy Lake zone, Ontario, Canada; the Black Sea; Lake Matano, Indonesia; the Great Bahama Bank; Lake Eyre, Australia; the Burullus Lagoon of the Nile Delta, Egypt; and Tungurahua volcano, Ecuador. Studies involve work both in the field and in the lab.

The influence of the ground beneath us on the air around us could be greater than scientists had previously thought, according to new research that links the long-ago proliferation of oxygen in Earth's atmosphere to a sudden change in the inner workings of our planet.

Ultracold quantum gases are an ideal experimental model system to simulate physical phenomena in condensed matter. In these gases, many-body states can be realized under highly controlled conditions and interactions between particles are highly tuneable. A research group led by Wittgenstein awardee Rudolf Grimm and START awardee Florian Schreck have now realized and comprehensively analyzed repulsive polarons for the first time.

Quantum technologies promise to redefine the landscape of information processing and communication. We already live in an information age, in which vast amounts of data are sent around the world over optical fibers, but future quantum networks may be many times more powerful. These networks will require interfaces that can transfer information from quantum processors onto light particles (photons). Such interfaces will allow optical fibers to transmit information-bearing photons between remote data registers, which are likely to be composed of quantum dots or ions.

Seagrasses are a vital part of the solution to climate change and, per unit area, seagrass meadows can store up to twice as much carbon as the world's temperate and tropical forests.

So report researchers publishing a paper this week in the journal Nature Geoscience.

The paper, "Seagrass Ecosystems as a Globally Significant Carbon Stock," is the first global analysis of carbon stored in seagrasses.

The results demonstrate that coastal seagrass beds store up to 83,000 metric tons of carbon per square kilometer, mostly in the soils beneath them.

PROVIDENCE, R.I. [Brown University] — To modify a metal surface at the scale of atoms and molecules — for instance to refine the wiring in computer chips or the reflective silver in optical components — manufacturers shower it with ions. While the process may seem high-tech and precise, the technique has been limited by the lack of understanding of the underlying physics. In a new study, Brown University engineers modeled noble gas ion bombardments with unprecedented richness, providing long-sought insights into how it works.

Environmental change is the selective force that preserves adaptive traits in organisms and is a primary driver of evolution. However, it is less well known that evolutionary change in organisms also trigger fundamental changes in the environment.

Yale University researchers found a prime example of this evolutionary feedback loop in a few lakes in Connecticut, where dams built 300 years ago in Colonial times trapped a fish called the alewife.

ASHEVILLE, NC -- Research by USDA Forest Service Southern Research Station biometrician Bernie Parresol takes center stage in a special issue of the journal Forest Ecology and Management due out in June. Parresol is lead author of two of the five articles—and co-author of two more—in an issue that focuses on methods that incorporate fine-scale data into the tools Southeastern forest managers use to assess wildfire potential and plan mitigation treatments.

Alexandria, VA – The American Geosciences Institute has released Geoscience Currents 60, which examines female enrollments and degrees in the geosciences over time. In 2011, the Current concludes, female participation in U.S. geoscience degree programs remained generally steady. After decades of steady growth in the rate of female participation, there has been little change since 2005.

A new study shows that the availability of hydrogen plays a significant role in determining the chemical and structural makeup of graphene oxide, a material that has potential uses in nano-electronics, nano-electromechanical systems, sensing, composites, optics, catalysis and energy storage.

The study also found that after the material is produced, its structural and chemical properties continue to evolve for more than a month as a result of continuing chemical reactions with hydrogen.

Archived data from the Envisat satellite show that the volcanic island of Santorini has recently displayed signs of unrest. Even after the end of its mission, Envisat information continues to be exploited for the long-term monitoring of volcanoes.