Earth

Some of the steepest mountain slopes in the world got that way because of the interplay between terrain uplift associated with plate tectonics and powerful streams cutting into hillsides, leading to erosion in the form of large landslides, new research shows.

The work, presented online May 27 in Nature Geoscience, shows that once the angle of a slope exceeds 30 degrees – whether from uplift, a rushing stream carving away the bottom of the slope or a combination of the two – landslide erosion increases significantly until the hillside stabilizes.

WASHINGTON — Without immediate action, a new National Research Council report warns, the academic veterinary community could fail to prepare the next generation of veterinarians for faculty teaching and research positions as well as for jobs in state diagnostic laboratories, federal research and regulatory agencies, and the pharmaceutical and biologics industry. Although the supply of veterinarians is growing, more than half of veterinary students seek training in companion animal or pet medicine.

Boulder, Colorado, USA – The June GSA TODAY science article is now online and open access at http://www.geosociety.org/gsatoday/. In this issue, Gregory Retallack and Joshua Roering of the University of Oregon enter the long-standing debate as to whether rock platforms along coasts and rivers are the product of physical erosion or chemical weathering above the water table.

San Andreas Fault in Santa Cruz Mountains – large quakes more frequent than previously thought

HOUSTON -- (May 30, 2012) -- A detailed analysis of more than 4 million absorbent minerals has determined that new materials could help electricity producers slash as much as 30 percent of the "parasitic energy" costs associated with removing carbon dioxide from power plant emissions.

The research by scientists at Rice University, the University of California, Berkeley, Lawrence Berkeley National Laboratory (LBNL) and the Electric Power Research Institute (EPRI) was published online this week in the journal Nature Materials.

Most people value large chunks of gold – but scientists at the Vienna University of Technology are interested in gold at the smallest possible scale, because single gold atoms are potentially the most reactive catalysts for chemical reactions. However, when gold atoms are placed on a surface they tend to ball up into tiny nuggets consisting of several atoms. A team of surface scientists now managed to fix single gold atoms on special sites of an iron-oxide surface. This could open the door to more efficient catalysts, requiring less of the precious material.

ALBUQUERQUE, N.M. — A Sandia National Laboratories technology has been used to remove radioactive material from more than 43 million gallons of contaminated wastewater at Japan's damaged Fukushima Daiichi nuclear power plant. Sandia researchers had worked around the clock following the March 2011 disaster to show the technology worked in seawater, which was pumped in to cool the plant's towers.

COLUMBUS, Ohio - A chance discovery of 80-year-old photo plates in a Danish basement is providing new insight into how Greenland glaciers are melting today.

Researchers at the National Survey and Cadastre of Denmark - that country's federal agency responsible for surveys and mapping - had been storing the glass plates since explorer Knud Rasmussen's expedition to the southeast coast of Greenland in the early 1930s.

The storage of light-encoded messages on film and compact disks and as holograms is ubiquitous---grocery scanners, Netflix disks, credit-card images are just a few examples. And now light signals can be stored as patterns in a room-temperature vapor of atoms. Scientists at the Joint Quantum Institute (*) have stored not one but two letters of the alphabet in a tiny cell filled with rubidium (Rb) atoms which are tailored to absorb and later re-emit messages on demand.

A majority of California's coastal planners and resource managers now view the threats from climate change as sufficiently likely that practical steps on the ground need to be taken to protect against growing threats, according to results from a new survey published by Stanford University's Center for Ocean Solutions (COS) and the California Sea Grant.

Alexandria, VA – Global seismic hazard maps exist to help societies and decision-makers anticipate and prepare for earthquakes. These maps are supposed to depict the maximum level of ground shaking likely to be produced by an earthquake in a given area. In the past decade, however, ground motions and death tolls in areas struck by earthquakes have far exceeded these maps' projections. Thus, scientists are calling into question the standard methods used to estimate seismic risk, and accepted assumptions and calculations have come under fire.

Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin of sliding friction has been unknown. Dr. Lasse Makkonen, Principal Scientist at VTT Technical Research Centre of Finland, has now presented an explanation for the origin of sliding friction between solid objects. According to his theory, the amount of friction depends on the surface energy of the materials in question.

CryoSat was launched in 2010 to measure sea-ice thickness in the Arctic, but data from the Earth-observing satellite have also been exploited for other studies. High-resolution mapping of the topography of the ocean floor is now being added to the ice mission's repertoire.

The main objective of the polar-orbiting CryoSat is to measure the thickness of polar sea ice and monitor changes in the ice sheets that blanket Greenland and Antarctica.But the satellite's radar altimeter is not only able to detect tiny variations in the height of the ice but it can also measure sea level.

A new study combining the latest archaeological evidence with state-of-the-art geoscience technologies provides evidence that climate change was a key ingredient in the collapse of the great Indus or Harappan Civilization almost 4000 years ago. The study also resolves a long-standing debate over the source and fate of the Sarasvati, the sacred river of Hindu mythology.

Scientists have created and imaged the smallest possible five-ringed structure – about 100,000 times thinner than a human hair – and you'll probably recognise its shape.

A collaboration between the Royal Society of Chemistry (RSC), the University of Warwick and IBM Research – Zurich has allowed the scientists to bring a single molecule to life in a picture, using a combination of clever synthetic chemistry and state-of-the-art imaging techniques.