Earth

Best male biathletes 'more attractive'

Top male biathletes are more attractive to the opposite sex, according to a new study by scientists at the universities of Exeter and Bristol.

This result, say the team, fits with the theory that women have an evolved preference for more athletic men, who in past times were better able to provide for their families.

The scientists asked people to rate passport-style photos of 156 men and women who take part in the biathlon World Cup, a combination of cross-country skiing and rifle shooting.

Male biathletes with a higher career-best score were judged as physically more attractive by the opposite sex, but there was no such relationship for female biathletes.

The study, published in the journal Behavioral Ecology, is the first to show such a difference between perceptions of male and female athletes.

Dr Tim Fawcett of the University of Exeter, who led the research, said: "Previous studies had found that faster Tour de France cyclists and better NFL quarterbacks are more attractive, but they ignored female sports.

"In the biathlon, where both sexes compete, our data show that this relationship holds for men but not for women.

"This sex difference is predicted by evolutionary theories, based on the idea that in ancestral populations it was probably men who did most of the hunting."

The results imply that sporting success is linked to something visible in the photos that women find attractive.

Professor Andy Radford of the University of Bristol, a co-author on the study, said: "Successful athletes might have happier, more confident expressions, and there's also some evidence that men with wider faces are more physically dominant.

"But in our study, women did not prefer men who were smiling or had wider faces.

"Further work is needed to pinpoint what makes the top-performing men more attractive."

The study highlights how our evolutionary history has shaped the way we respond to other people's appearances.

Dr Fawcett said: "Although a preference for more athletic men doesn't have the same relevance in today's society, it's fascinating to discover how sensitive we are to subtle differences in the way people look, and how this might be linked to their abilities and success."

The biathletes rated as most attractive were US Olympian Lowell Bailey and Czech Olympian Eva Puskarčíková.

Credit: 
University of Exeter

Nitrogen from biosolids can help urban soils and plant growth

image: Tall fescue grows in an area of urban degraded soil used in this research. The disturbed soil includes a large presence of rocks and foreign materials such as asphalt and cement.

Image: 
Odiney Alvarez-Campos

The "zero waste" trend could have a friend in the form of biosolids. Biosolids are the materials produced after domestic waste is treated in urban wastewater systems. In the past, most of this solid material was transferred to landfills. But, processes developed over the past few decades can create "exceptional quality" biosolids.

These new "EQ" biosolids are low in pollutants and pathogens, but high in nutrients. They can be applied to agricultural or urban soils needing fertilizer and other soil health improvements. That reuses a former "waste" material - and helps the environment along the way.

Biosolids are valuable because they are rich in nitrogen, a key nutrient for plants. But, only a fraction of the nitrogen in biosolids used as fertilizer becomes available to plants. This fraction is called bioavailable nitrogen.

"We need to know how much nitrogen becomes bioavailable when we add biosolids to the soil," says Odiney Alvarez-Campos, a researcher at Virginia Tech. "We want to supply enough for healthy crop growth and yields, but not surplus nitrogen."

That's because too much nitrogen can pollute the environment. It can enter surface and groundwater and affect aquatic ecosystems. "It's a balance between supporting plant growth, while not polluting," says Alvarez-Campos.

In a new study, Alvarez-Campos and her colleagues tested how much of the nitrogen in different biosolid products became bioavailable in an urban soil. They discovered a complicating factor. The degraded nature of urban soils might reduce biosolids' nitrogen availability for plants.

"Urban soils are often compacted, degraded soils. They can have low organic matter and nutrients," says Alvarez-Campos. Human activities, like construction and heavy vehicle traffic, can degrade urban soils.

"Biosolids have what we need to help restore these soils," says Alvarez-Campos. For example, the organic matter in biosolids can reduce soil compaction. That can make soils easier to till and help plants' roots grow. Biosolids can also increase water infiltration and retention in soils, which are important for plant growth.

The researchers tested five different biosolids products. All the products were of "exceptional quality". Some of the biosolids had other materials mixed in. These materials included dry organic and mineral material. The goal was to dry the biosolids.

"One of the main challenges faced when applying biosolids to urban areas is their high moisture content," says Alvarez-Campos. Biosolid products that have high moisture are harder to transport, handle, and spread.

The study showed that biosolids that are not mixed with woody materials yield more bioavailable nitrogen than biosolids products mixed with woody materials. The low organic matter and high clay content of the urban soil reduced the amount of bioavailable nitrogen from biosolids. They also reduced the effectiveness of laboratory methods to estimate available nitrogen.

In addition, the researchers homed in on one commonly used laboratory method that provided best estimates of nitrogen availability from biosolids. This method is called 7-day anaerobic incubation. "It showed the greatest potential to be used as an indicator of a biosolid's nitrogen availability," says Alvarez-Campos.

Knowing that nitrogen availability might be lower in degraded soils is key. "It will help adjust biosolid application rates to match the degree of soil degradation," says Alvarez-Campos.

These findings are an important first step. The researchers are evaluating the reliability of quick tests to estimate nitrogen availability from biosolids applied to urban soils. They are also looking to expand their study area. "In this study, we used a soil representative of urban soils in southwest Virginia," says Alvarez-Campos. Future studies will evaluate the impact of biosolid applications across a greater variety of urban soils and landscapes.

"Recycling biosolids into the soil is one of the most sustainable ways to manage waste," says Alvarez-Campos. "It returns carbon and nutrients - like nitrogen - to the soil, and helps vegetation grow."

If biosolids are not applied to agricultural fields or urban landscapes, they are disposed of in landfills or incinerated. "When applied to soils, biosolids become a valuable resource rather than an unpleasant waste," says Alvarez-Campos.

Credit: 
American Society of Agronomy

Jump test tool to predict athletic performance

image: Dr Paul Wu

Image: 
QUT

Researchers studying the impact of fatigue on athletic performance have developed prototype software that can enable coaches to predict when elite athletes will be too fatigued to perform at their best.

QUT's Dr Paul Wu led the study published today in the journal PLOS One.

The research, which applies the tools of statistics to physiology research, provides new insights for athletes and their coaches into how best to manage and predict fatigue levels.

The software algorithm enables coaches to conduct a simple test of an athlete's energy and performance levels and make predictions about how their level of fatigue could impact on their performance.

"This is a tool to assist coaches," Dr Wu said.

"Let's say you have a game tomorrow and the model predicts you're going to be very fatigued, that might change the coach's strategy.

"Having that knowledge ahead of time can be helpful."

The information could also enable coaches to personalise the training for individual athletes depending on their predicted fatigue levels as a result of different types of training.

The researchers in the study examined the two main types of fatigue athlete's experience in training.

The first is metabolic fatigue, which only takes up to three hours to recover from. The more serious fatigue, neuromuscular fatigue, can take upwards of 48 hours or more to recover from.

"In the elite sports setting, athletes often train twice a day, five days or more a week. If you develop neuromuscular fatigue and have training or competition the next day, you'll still be fatigued and have an elevated risk of injury," said Dr Wu.

In this research, Dr Wu and his collaborators studied data from a test called the countermovement jump (CMJ). To do the test, an athlete stands on a force plate, squats down, and jumps straight up as high as he or she can. The force plate records the force profile generated throughout the jump.

"In our study, we tested the athletes after low, moderate, and high-intensity training sessions. We did many jumps over time, from just before training sessions, to right after, and then in regular intervals up to 48 hours later," said Dr Wu.

That many jumps involving multiple athletes led to a lot of data, and that data isn't simple either. So Dr Wu and his team used a statistical analysis tool called functional Principal Components Analysis (fPCA) to find the hidden information about fatigue in all that data.

"By doing a few jump tests up to 30 minutes after training and then doing our analysis, we can predict the degree of neuromuscular fatigue. This allows coaches and athletes to prepare for the next workout or for competition ahead of time," said Dr Wu.

In addition, it arms athletes with important information about how they fatigue.

"It helps them to customise their training to avoid neuromuscular fatigue, and also allows them to benchmark themselves against others," said Dr Wu.

The researchers have produced a prototype of software which could be used in the future by coaches to manage an athlete's fatigue and ensure peak performance.

Never before, have athletes and their trainers had access to so much data about their training. It's only through statistical analysis, like the one in this study, that is unlocking some of the key, hidden stories that athletes need to take advantage of the data.

Dr Wu believes the statistical analysis used here will help with other types of training data as well.

Credit: 
Queensland University of Technology

Discovered: A new way to measure the stability of next-generation magnetic fusion devices

image: Physicist Andrew "Oak" Nelson.

Image: 
Elle Starkman/PPPL Office of Communications

Scientists seeking to bring to Earth the fusion that powers the sun and stars must control the hot, charged plasma -- the state of matter composed of free-floating electrons and atomic nuclei, or ions -- that fuels fusion reactions. For scientists who confine the plasma in magnetic fields, a key task calls for mapping the shape of the fields, a process known as measuring the equilibrium, or stability, of the plasma. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), researchers have proposed a new measurement technique to avoid problems expected when mapping the fields on large and powerful future tokamaks, or magnetic fusion devices, that house the reactions.

Neutron bombardments

Such tokamaks, including ITER, the large international experiment under construction in France, will produce neutron bombardments that could damage the interior diagnostics now used to map the fields in current facilities. PPPL is therefore proposing use of an alternative diagnostic system that could operate in high-neutron environments.

The system, a type of plasma diagnostic called "Electron Cyclotron Emission (ECE)," measures the temperature of the electrons cycling around the field lines. "By using an ECE system, we can learn about the plasma temperature and about fluctuations in the plasma," said Andrew "Oak" Nelson, a graduate student in plasma physics at PPPL and first author of a Plasma Physics and Controlled Fusion paper that reports the research. "This proposed method could be developed into a stand-alone mapping tool or used with existing tools."

The method combines ECE data with a fast-camera image used to measure the boundary of the plasma. The combination provides "diagnostics which can be robustly designed in high-neutron environments," according to the paper. The process works as follows:

Researchers observe the radiation that the cycling electrons emit;

The radiation provides data about the temperature and modes, or instabilities, that grow in the plasma;

The data allow measurement of the "q-profile" -- the helicity, or spiraling, of the magnetic field;

Measurement of the helicity enables tokamak operators to map and control the equilibrium of the plasma.

Reversing a process

This technique, which researchers tested on a simulated discharge of the National Spherical Torus Experiment (NSTX) at PPPL prior to its upgrade, reverses a process normally used in fusion research. "People usually get the q-profile from the equilibrium," said Nelson, "but our paper shows that that you can also get the equilibrium from knowing the q-profile."

Working closely with Nelson was his advisor, PPPL physicist Egemen Kolemen, an assistant professor at Princeton University's Department of Mechanical and Aerospace Engineering. "Oak is an extremely talented student," Kolemen said. "The method he developed allows construction of the state of the fusion plasma using only a single diagnostic, ECE. This will be useful for many tokamaks including ITER, because combining many different diagnostics is problematic and error prone."

Researchers now plan to test the ECE technique on a wide variety of plasma discharges. A proven and fully developed technique could provide a valuable system for mapping the crucial magnetic fields in ITER and next-generation tokamaks.

Credit: 
DOE/Princeton Plasma Physics Laboratory

UNH research finds thicker pavement is more cost effective down the road

DURHAM, N.H. - As the summer months heat up, so will the asphalt and other materials used to make roads. Pavements, which are vulnerable to increased temperatures and excessive flooding due to sea level rise, can crack and crumble. Climate change can be a major contributor and as greenhouse gas emissions continue, which scientists say have caused an increase in global temperatures since the mid-20th century, these issues are projected to accelerate. Researchers at the University of New Hampshire say because of this one of the best ways to extend the life cycle of roads, and keep future costs down, is to increase the thickness of asphalt on certain roads.

"It's all about being strategic with the maintenance of our highways and byways," says Jo Sias, professor of civil and environmental engineering. "Just like a regular oil change can help extend the life of a car, our research shows regular maintenance, like increasing the asphalt-layer thickness of some roads, can help protect them from further damage related to climate change."

In their study, recently published in the journal Transportation Research Record, the researchers looked at the seasonal and long-term effects on pavement life, like climate-change-induced temperature rise and higher groundwater levels due to sea level rise and heavy rains. They looked at the changes in season length, increased flooding, average temperatures, projected temperatures and resilience based on those temperatures. As global temperatures continue to rise, road conditions will shift. The winter pavement season is projected to end by mid-century, replaced by a longer fall season. Pavement damage, now seen mostly in the spring and summer, is projected to be more distributed throughout the entire year. Based on their analysis that looked at the wear and tear of roads, the researchers determined that a 7% to 32% increase in the asphalt-layer thickness might be the best way to maintain the service ability of some roads.

"For agencies and towns, it is a balancing act to repair roads so we're trying to find some reasonable action that can be taken now to help manage their infrastructure," said Sias. "If global warming continues then we know temperatures will rise and pavement doesn't respond well to increased temperatures. The hope is to find some answers now so cities and towns can plan for the future."

The researchers recognize that increasing the asphalt thickness to certain roads can be an added expense for cities and towns but they point to considerable future savings of between 40% and 50% if done now rather than later. Along with the rise in cost of materials, there could also be other expense increases down the road like project planning, design, and construction. Environmental impacts could also be costly with rough pavements adding to increased greenhouse gas production, which has the potential to accelerate climate change.

While the study looked specifically at the impact of the changing pavement seasons and the increase in temperatures and flooding at a site in coastal New Hampshire, the researchers say the approach has the potential to be applied to most roads and highways both nationally and globally. The adaptation approach, of calculating the pavement layer thickness required to maintain a safe road reliability level, could provide the guidance to address the effects of rising temperatures and changing seasons on those byways.

Credit: 
University of New Hampshire

UCLA-developed terahertz sensors work at room temperature, unlike current technology

image: Ning Wang, the study's lead author, and Professor Mona Jarrahi working on the terahertz detector setup.

Image: 
UCLA Engineering

Researchers at the UCLA Samueli School of Engineering have developed an ultra-sensitive light-detecting system that could enable astronomers to view galaxies, stars and planetary systems in superb detail.

The system works at room temperature -- an improvement over similar technology that only works in temperatures nearing 270 degrees below zero Celsius, or minus 454 degrees Fahrenheit. A paper detailing the advance is published today in Nature Astronomy.

The sensor system detects radiation in the terahertz band of the electromagnetic spectrum, which includes parts of the far-infrared and microwave frequencies.

The system produces images in ultra-high clarity, and it can detect terahertz waves across a broad spectral range -- an improvement of at least 10 times more than current technologies that only detect such waves in a narrow spectral range. Its broad range capabilities could allow it to do observations that currently require several different instruments. It identifies what elements and molecules -- for example, water, oxygen, carbon monoxide and other organic molecules, are present in those regions of space by seeing if their individual telltale spectral signatures are present.

"Looking in terahertz frequencies allows us to see details that we can't see in other parts of the spectrum," said Mona Jarrahi, a UCLA professor of electrical and computer engineering who led the research. "In astronomy, the advantage of the terahertz range is that, unlike infrared and visible light, terahertz waves are not obscured by interstellar gas and dust that surround these astronomical structures."

The technology could be especially effective in space-based observatories, Jarrahi said, because unlike on Earth, terahertz waves can be detected without interference from the atmosphere.

The system could help scientists glean new insights into the composition of astronomical objects and structures and into the physics of how they form and die. It could also help answer questions about how they interact with the gases, dust and radiation that exists between stars and galaxies, and it could reveal clues about the cosmic origins of water or organic molecules that could indicate whether a planet is hospitable to life.

The system could also be used on Earth, to detect harmful gases for security or environmental monitoring purposes.

The key to the new system is how it converts incoming terahertz signals, which are not easy to sense and analyze with standard scientific equipment, into radio waves that are easy to handle.

Existing systems use superconducting materials to translate terahertz signals to radio waves. But to work, those systems use specialized liquid coolant to keep those materials at extremely low temperatures, approaching absolute zero. Supercooling the equipment is feasible on Earth, but when the sensors are taken on spacecraft, their lifespans are limited by the amount of coolant aboard. Also, because spacecrafts' weight is so important, it can be problematic to carry the extra pounds of coolant the equipment needs.

The UCLA researchers created a new technology to address the coolant and related weight issues. Their device uses a beam of light to interact with the terahertz signals inside a semiconductor material with metallic nanostructures. The system then converts the incoming terahertz signal into radio waves, which are read by the system and can be interpreted by astrophysicists.

Credit: 
UCLA Samueli School of Engineering

Carbon nanotube tape stays sticky in extreme temperatures

image: A new type of nanomaterial tape, shown here mounted in a conventional tape dispenser, sticks strongly to surfaces over a wide range of temperatures.

Image: 
Adapted from <i>Nano Letters</i> <b>2019</b>, DOI: 10.1021/acs.nanolett.9b01629

In very hot or cold environments, conventional tape can lose its stickiness and leave behind an annoying residue. But while most people can avoid keeping taped items in a hot car or freezer, those living in extreme environments such as deserts and the Antarctic often can't avoid such conditions. Now, researchers reporting in ACS' journal Nano Letters say they have developed a new nanomaterial tape that can function over a wide temperature range.

In previous work, researchers have explored using nanomaterials, such as vertically aligned multi-walled carbon nanotubes (VA-MWNTs), to make better adhesive tapes. Although VA-MWNTs are stronger than conventional tapes at both high and low temperatures, the materials are relatively thick, and large amounts can't be made cost-effectively. Kai Liu, Xide Li, Wenhui Duan, Kaili Jiang and coworkers wondered if they could develop a new type of tape composed of superaligned carbon nanotube (SACNT) films. As their name suggests, SACNTs are nanotubes that are precisely aligned parallel to each other, capable of forming ultrathin but strong yarns or films.

To make their tape, the researchers pulled a film from the interior of an array of SACNTs -- similar to pulling a strip of tape from a roll. The resulting double-sided tape could adhere to surfaces through van der Waals interactions, which are weak electric forces generated between two atoms or molecules that are close together. The ultrathin, ultra-lightweight and flexible tape outperformed conventional adhesives, at temperatures ranging from -321 F to 1,832 F. Researchers could remove the tape by peeling it off, soaking it in acetone or burning it, with no noticeable residues. The tape adhered to many different materials such as metals, nonmetals, plastics and ceramics, but it stuck more strongly to smooth than rough surfaces, similar to regular tape. The SACNT tape can be made cost-effectively in large amounts. In addition to performing well in extreme environments, the new tape might be useful for electronic components that heat up during use, the researchers say.

Credit: 
American Chemical Society

Satellites analyzing developing gulf potential Tropical Cyclone Two

image: On July 10, 2019 at 11 a.m. EDT (1500 UTC) NOAA's GOES-East satellite provided a visible image of Potential Tropical Cyclone Two as it continued to develop in the northeastern Gulf of Mexico.

Image: 
NOAA/NRL

A massive complex of thunderstorms over the southeastern United States slid into the northeastern Gulf of Mexico and now has the potential to develop into a tropical cyclone. NOAA's National Hurricane Center or NHC in Miami, Florida issued the first advisory of Potential Tropical Cyclone Two and NOAA's GOES-East satellite and NASA's GPM satellite provided views of the storm.

On July 10 at 11 a.m. EDT (1500 UTC), NOAA's GOES-East satellite provided a visible image of the developing storm. The NHC said, "High-resolution satellite imagery along with surface and upper-air data indicate that the broad low pressure system located over the northeastern Gulf of Mexico has become a little better defined."

The Global Precipitation Measurement mission or GPM core satellite passed over the developing area of low pressure early on July 10 and found rain was falling at a rate of more than 50 mm (about 2 inches) per hour. Forecasters at the NHC said that the system has the potential to produce very heavy rainfall along and inland of the central Gulf Coast through early next week. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency, JAXA.

NHC noted, "A tropical cyclone is expected to form by Thursday [July 11] over the north-central Gulf of Mexico. At 2 p.m. EDT on July 10, NHC reported that heavy rains and flooding were already occurring over portions of southeastern Louisiana.

Because this developing area of low pressure has the potential to bring tropical storm conditions and storm surge to portions of the coast of Louisiana by late Thursday or Friday, the NHC initiated Potential Tropical Cyclone advisories. A Storm Surge Watch is in effect from the mouth of the Pearl River to Morgan City, Louisiana and a Tropical Storm Watch is in effect from the mouth of the Mississippi River to Morgan City.

At 2 p.m. EDT (1800 UTC), the disturbance was centered near latitude 28.3 degrees north and longitude 86.7 degrees west. That's about 155 miles (250 km) east-southeast of the mouth of the Mississippi River. The system is moving toward the west-southwest near 8 mph (13 kph). On the forecast track, the system is expected to approach the central U.S. Gulf Coast this weekend.

Maximum sustained winds are near 30 mph (45 kph) with higher gusts. Strengthening is forecast during the next 72 hours, and the disturbance is forecast to become a tropical depression Thursday morning, a tropical storm Thursday night, and a hurricane on Friday, July 12. The estimated minimum central pressure is 1011 millibars. The chance the system will develop into a tropical depression in the next 48 hours is near 100 percent.

Residents along the Gulf need to heed the warnings issued by the National Hurricane Center and National Weather Service local offices. Already, Flash Flood Watches and Warnings were in effect today in southern Louisiana including New Orleans.

Dangerous storm surge is possible in portions of southeast Louisiana and the risk for dangerous storm surge impacts also exists farther west along the Louisiana coast into the Upper Texas coast. The National Weather Service Office in New Orleans issued a local statement today that also urged residents to prepare for dangerous rainfall flooding having possible significant impacts across extreme southeast Louisiana and coastal Mississippi.

For forecast updates on the system, visit: http://www.nhc.noaa.gov.

Credit: 
NASA/Goddard Space Flight Center

Study contributes to the production of flexible electronic devices

image: This is an image of a disordered polythiophene film.

Image: 
Marília Junqueira Caldas

Flexible electronics is one of the most important trends in technology today. The market is growing so fast that it is expected to double in value in the next decade.

Extremely light and even bendable optoelectronic equipment that supplies, detects and controls light will become commonplace in the near future. A great deal of research is progressing in this direction, as exemplified by a paper recently published in Scientific Reports.

The paper describes an experimental and theoretical study conducted by Brazilian and Italian researchers to enhance the optical and electronic properties of polythiophene, an electrically conductive and electroluminescent polymer. Organic, light, flexible and easy to process, it is highly attractive in mechanical terms.

"The configuration of polythiophene processed in the most common way, by spin casting, is so disordered as to impair its optical and electronic performance. In our study, we set out to pattern the material in a more ordered manner and make it more selective in emitting and absorbing light," Marilia Junqueira Caldas told. Caldas is a Full Professor at the University of São Paulo's Physics Institute (IF-USP) in Brazil and participated in the study by contributing to the theoretical framework that described and explained the experimental data.

The pattern she mentioned was obtained via a surprisingly simple stacking arrangement. A droplet of the polymer in solution was deposited on a substrate. As it evaporated, an elastomeric stamp was placed on it to produce a sequence of parallel stripes, which organized the internal structure of the material.

"Patterning made the polymer absorb and emit light in a highly predictable manner, so that stimulated light emission was possible at frequencies not feasible with disordered film. In addition to this gain in selectivity, the resulting device was far lighter than others with a similar function based on stacked layers of several types of semiconductor," Caldas said.

She explained the relationship between selectivity and ordering as follows. "We calculated its molecular dynamics to find out how it behaved in the disordered phase. We obtained a set of tortuous, intertwined and coupled structures. In this situation, an electron shifted from its initial position by light incidence may become misaligned with the hole left in the atom chain and migrate to distant regions in the interior of the material," she said.

"This happens to a large number of electrons, and light absorption and emission are highly disordered as a result. Patterning makes the atom chains almost linear, and electrons and holes are very close together in the same chains. The electrons migrate and then return to their starting point, where they emit and absorb light."

This technique organized the intrinsically disordered material during the process of "growth," and as such, it can be used in a wide range of optoelectronic applications.
"Our approach demonstrates a viable strategy to direct optical properties through structural control, and the observed optical gain opens up the possibility of using polythiophene nanostructures as building blocks for organic optical amplifiers and active photonic devices," the authors say in the article.

Credit: 
Fundação de Amparo à Pesquisa do Estado de São Paulo

Study explores how social movements can use virtual worlds

Online virtual worlds can help social movements raise awareness and create safe spaces for their members, according to a new study by an academic at the University of East Anglia (UEA).

The research examined how an LGBT group used a virtual world for their own cause, which was different to its intended design. These worlds are immersive, three-dimensional environments, where users create an avatar, or character, that enables them to interact with other users.

The study, by Dr Brad McKenna of UEA's Norwich Business School, focused on the game World of Warcraft (WoW) and analysed data from an LGBT 'guild' within it. It looked at how its members used the technology compared to ordinary game play.

The guild, known as 'Alpha' for the purposes of the study, was created to "better service the LGBT community and offer a safe, inclusive place to game for members of any sexual orientation or gender identity". The group was the largest special interest guild in WoW, with up to 7800 members during the course of the study. There were approximately 15,000 characters in the guild, as it was possible for one player to have multiple characters.

The group held regular activities inside the game, including an annual Pride parade, model competitions and dance parties. The movement also had a website with discussion forums.

The findings, published in Information Systems Journal, show how members used the game's features and virtual environment for their specific needs and objectives. For example, in ordinary game play, players have spells they can use in battle against others. However, the members used these as lighting effects to create an atmosphere during the parade and dance party.

They also show how the group navigated changes made to the game by the developers. On one occasion, the parade route had to move when the virtual landscape it previously went through changed after an update.

Another change involved introducing a cap on the size of guilds because the developers found that large ones did not function well in the system. This saw the group having to come up with creative ways to continue their existence without losing members.

To conduct his research Dr McKenna joined the LGBT guild, with permission from its leaders, and participated in their movement over a period of 18 months. He created an avatar, which became his identity when in WoW.

"This study provides some practical examples of how virtual worlds can act as a safe haven for social movements or to create awareness, for example about for LGBT issues, within a broader gaming community," said Dr McKenna, a lecturer in information systems. "Many group members came from countries that do not support LGBT rights, so this was a safe space for them.

"By understanding the affordances, or possible actions, available to them groups can shape how the world works for them and think of more creative uses of the technology and features, using them in a much different way, without involvement from the game's developers.

"This paper also raises some important issues for virtual world social movements. If a movement wants to use these worlds to advance their cause, their leaders and members need to be aware of what the virtual world can offer them and how they could use that to their advantage, or be aware of actions which could potentially be a hindrance to their cause.

"Social movements also need to be aware of the type of virtual world they might use, for example a social virtual world, or a gaming virtual world, as depending on the type, different limitations or affordances might impact the movement."

Other social movements have previously used WoW, for example to raise awareness for breast cancer, for political rallies and environmental protests. Dr McKenna said the findings may have implications for other users of virtual worlds and businesses.

"Different online communities could use these ideas, look at how the technology can be shaped for their causes. For organisations which operate within virtual worlds, these findings begin to shed light on the issues faced, and suggests that they need to be willing to evolve if they want to continue operating in these environments, which may constantly be changing.

"Going forward, social movements may make use of other emerging technologies, such as virtual or augmented reality. Insights from this study could provide the analytical tools necessary to understand how different technologies impact LGBT and other movements."

Credit: 
University of East Anglia

Will your future computer be made using bacteria?

image: From left to right, A vial of graphite (Gr), like what you would find in an ordinary pencil; a vial of graphene oxide (GO), produced by exfoliating Gr--shedding the layers of the material -- and mixing it with the bacteria Shewanella; a vial of the resulting product -- graphene materials (mrGO); and a vial of graphene materials that have been produced chemically (crGO). The graphene materials produced by Anne Meyer's lab are significantly thinner than the graphene materials produced chemically.

Image: 
Delft University of Technology photo / Benjamin Lehner

In order to create new and more efficient computers, medical devices, and other advanced technologies, researchers are turning to nanomaterials: materials manipulated on the scale of atoms or molecules that exhibit unique properties.

Graphene--a flake of carbon as thin as a single later of atoms--is a revolutionary nanomaterial due to its ability to easily conduct electricity, as well as its extraordinary mechanical strength and flexibility. However, a major hurdle in adopting it for everyday applications is producing graphene at a large scale, while still retaining its amazing properties.

In a paper published in the journal ChemOpen, Anne S. Meyer, an associate professor of biology at the University of Rochester, and her colleagues at Delft University of Technology in the Netherlands, describe a way to overcome this barrier. The researchers outline their method to produce graphene materials using a novel technique: mixing oxidized graphite with bacteria. Their method is a more cost-efficient, time-saving, and environmentally friendly way of producing graphene materials versus those produced chemically, and could lead to the creation of innovative computer technologies and medical equipment.

Graphene is extracted from graphite, the material found in an ordinary pencil. At exactly one atom thick, graphene is the thinnest--yet strongest--two-dimensional material known to researchers. Scientists from the University of Manchester in the United Kingdom were awarded the 2010 Nobel Prize in Physics for their discovery of graphene; however, their method of using sticky tape to make graphene yielded only small amounts of the material.

"For real applications you need large amounts," Meyer says. "Producing these bulk amounts is challenging and typically results in graphene that is thicker and less pure. This is where our work came in."

In order to produce larger quantities of graphene materials, Meyer and her colleagues started with a vial of graphite. They exfoliated the graphite--shedding the layers of material--to produce graphene oxide (GO), which they then mixed with the bacteria Shewanella. They let the beaker of bacteria and precursor materials sit overnight, during which time the bacteria reduced the GO to a graphene material.

"Graphene oxide is easy to produce, but it is not very conductive due to all of the oxygen groups in it," Meyer says. "The bacteria remove most of the oxygen groups, which turns it into a conductive material."

While the bacterially-produced graphene material created in Meyer's lab is conductive, it is also thinner and more stable than graphene produced chemically. It can additionally be stored for longer periods of time, making it well suited for a variety of applications, including field-effect transistor (FET) biosensors and conducting ink. FET biosensors are devices that detect biological molecules and could be used to perform, for example, real-time glucose monitoring for diabetics.

"When biological molecules bind to the device, they change the conductance of the surface, sending a signal that the molecule is present," Meyer says. "To make a good FET biosensor you want a material that is highly conductive but can also be modified to bind to specific molecules." Graphene oxide that has been reduced is an ideal material because it is lightweight and very conductive, but it typically retains a small number of oxygen groups that can be used to bind to the molecules of interest.

The bacterially produced graphene material could also be the basis for conductive inks, which could, in turn, be used to make faster and more efficient computer keyboards, circuit boards, or small wires such as those used to defrost car windshields. Using conductive inks is an "easier, more economical way to produce electrical circuits, compared to traditional techniques," Meyer says. Conductive inks could also be used to produce electrical circuits on top of nontraditional materials like fabric or paper.

"Our bacterially produced graphene material will lead to far better suitability for product development," Meyer says. "We were even able to develop a technique of 'bacterial lithography' to create graphene materials that were only conductive on one side, which can lead to the development of new, advanced nanocomposite materials."

Credit: 
University of Rochester

Understanding how the mTOR complex comes together

In the world of biology, each individual cell also has many moving parts and pieces, each with specific roles and places to be. If one of those pieces isn't working correctly, it can affect the entire cell.

For the past five years, researchers at Brigham Young University have studied protein complexes that have the job of regulating cell growth and survival, processes that are essential for cells the grow healthily. Consequently, these protein complexes are also a target for cancer and other diseases.

The team is working to better understand the role and functionality of the complex, named the mechanistic target of rapamycin - or mTOR for short.

Learning more about mTOR and how it works is a stepping stone for others who might look for cancer therapies or ways to help treat diabetes and other diseases.

"We are not developing cancer therapies directly, but we contribute to the fundamental understanding of cellular function that underlies those types of treatments," said BYU professor and lead author Barry Willardson.

In a study published in Nature Communications, Willardson, along with several others, including current BYU graduate students Nicole Tensmeyer and Grant Ludlam, looked at how the mTOR complexes are assembled.

In a cell, proteins seldom work on their own, they work in complexes with other proteins. In this instance, mTOR has subunits called mLST8 and Raptor, two proteins that help to stabilize mTOR.

"Proteins are made as a linear string of amino acids, but eventually they have to come together into a three-dimensional shape," Tensmeyer said. "How they fold into this shape affects the way they can function. Additionally, they have to be in a very specific shape to work properly. Sometimes that can happen without assistance but sometimes it needs help getting into that shape, and that's where a chaperonin comes into play."

Much like an adult chaperone would watch over a group of children, a chaperonin is a cellular machine that supervises proteins and helps them get folded into the aforementioned specific shapes or get into position to operate correctly. In the case of the mTOR complex, a chaperonin called CCT is needed to fold both mLST8 and Raptor and help them assemble with mTOR.

"The folding done by CCT is normally a good thing," Ludlam said. "But in diseases like diabetes or cancer, mTOR can get out of control. We think if we can stop CCT from folding mLST8 then we can stop the cancer progression."

The group at BYU worked closely with scientists in Spain who were able to view the complex with a cryo-electron microscope, a cutting-edge instrument that uses electrons to give researchers an almost atomic-level look at the complexes and allows them to understand what is going on at the molecular level.

Credit: 
Brigham Young University

Metabolic reprogramming of branched-chain amino acid facilitates drug resistance in lung cancer

Despite the remarkable success of molecular targeted therapy in recent years, the rapid increase of drug resistance is a major obstacle to effective treatment of lung cancer.

How do lung cancer cells adapt to targeted therapy? What is the molecular basis of such adaptive behavior? Can this adaptive response be memorized by cancer cells? If so, is it heritable? The answers to these questions will provide a deeper understanding of the evolutionary process of drug resistance during molecular targeted therapy.

In a study published online in Cell Reports, research teams led by Dr. JI Hongbin at the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences, Dr. ZHOU Caicun at the Shanghai Pulmonary Hospital, Tongji University School of Medicine, and Dr. LI Cheng at the School of Life Sciences, Peking University, revealed the important role of epigenetic regulation-mediated metabolic reprogramming in lung cancer's capacity to resist molecular targeted therapy.

The researchers found that low-dose targeted drug pretreatment allowed epidermal growth factor receptor (EGFR)-mutant lung cancer cells to adapt to subsequent high-dose drug treatment, thus exhibiting a transient drug-tolerant state. They also found that continuous stimulation with low-dose drugs reinforced this adaptive response, and eventually promoted the development of drug resistance.

Such adaptive behavior occurs not only in EGFR-mutant lung cancer, but also in ALK-rearranged lung cancer, thus indicating this phenomenon is not restricted to one lung cancer type.

In addition, the researchers revealed the molecular basis of this adaptive response, which involves epigenetic regulation-mediated metabolic reprogramming. During the adaptation of lung cancer cells to drug therapy, the level of intracellular histone H3K9 methylation is reduced, thus up-regulating the branched-chain amino acid aminotransferase 1 (BCAT1). In this process, more glutathione is generated by BCAT1, thereby effectively eliminating detrimental oxidative stress caused by targeted therapy and eventually causing drug resistance.

Not surprisingly, correlation analyses of clinical data showed that high expression of BCAT1 in tumors is associated with an unfavorable therapeutic response to drug treatment and predicts poor patient prognosis.

However, using preclinical mouse models, the researchers demonstrated that the combination of targeted therapies with reactive oxygen species (ROS)-inducing drugs can effectively overcome lung cancer drug resistance, suggesting a potential therapeutic strategy for dealing with such drug resistance.

Credit: 
Chinese Academy of Sciences Headquarters

New antibacterial fillings from Tel Aviv University may combat recurring tooth decay

Tooth decay is among the costliest and most widespread bacterial diseases. Virulent bacteria cause the acidification of tooth enamel and dentin, which, in turn, causes secondary tooth decay.

A new study by Tel Aviv University researchers finds potent antibacterial capabilities in novel dental restoratives, or filling materials. According to the research, the resin-based composites, with the addition of antibacterial nano-assemblies, can hinder bacterial growth and viability on dental restorations, the main cause of recurrent cavities, which can eventually lead to root canal treatment and tooth extractions.

Research for the study was led by Dr. Lihi Adler-Abramovich and TAU doctoral student Lee Schnaider in collaboration with Prof. Ehud Gazit, Prof. Rafi Pilo, Prof. Tamar Brosh, Dr. Rachel Sarig and colleagues from TAU's Maurice and Gabriela Goldschleger School of Dental Medicine and George S. Wise Faculty of Life Sciences. It was published in ACS Applied Materials & Interfaces on May 28.

"Antibiotic resistance is now one of the most pressing healthcare problems facing society, and the development of novel antimicrobial therapeutics and biomedical materials represents an urgent unmet need," says Dr. Adler-Abramovich. "When bacteria accumulate on the tooth surface, they ultimately dissolve the hard tissues of the teeth. Recurrent cavities -- also known as secondary tooth decay -- at the margins of dental restorations results from acid production by cavity-causing bacteria that reside in the restoration-tooth interface."

This disease is a major causative factor for dental restorative material failure and affects an estimated 100 million patients a year, at an estimated cost of over $30 billion.

Historically, amalgam fillings composed of metal alloys were used for dental restorations and had some antibacterial effect. But due to the alloys' bold color, the potential toxicity of mercury and the lack of adhesion to the tooth, new restorative materials based on composite resins became the preferable choice of treatment. Unfortunately, the lack of an antimicrobial property remained a major drawback to their use.

"We've developed an enhanced material that is not only aesthetically pleasing and mechanically rigid but is also intrinsically antibacterial due to the incorporation of antibacterial nano-assemblies," Schnaider says. "Resin composite fillings that display bacterial inhibitory activity have the potential to substantially hinder the development of this widespread oral disease."

The scientists are the first to discover the potent antibacterial activity of the self-assembling building block Fmoc-pentafluoro-L-phenylalanine, which comprises both functional and structural subparts. Once the researchers established the antibacterial capabilities of this building block, they developed methods for incorporating the nano-assemblies within dental composite restoratives. Finally, they evaluated the antibacterial capabilities of composite restoratives incorporated with nanostructures as well as their biocompatibility, mechanical strength and optical properties.

"This work is a good example of the ways in which biophysical nanoscale characteristics affect the development of an enhanced biomedical material on a much larger scale," Schnaider says.

"The minimal nature of the antibacterial building block, along with its high purity, low cost, ease of embedment within resin-based materials and biocompatibility, allows for the easy scale-up of this approach toward the development of clinically available enhanced antibacterial resin composite restoratives," Dr. Adler-Abramovich says.

The researchers are now evaluating the antibacterial capabilities of additional minimal self-assembling building blocks and developing methods for their incorporation into various biomedical materials, such as wound dressings and tissue scaffolds.

Credit: 
American Friends of Tel Aviv University

Discovery in mice points to potential treatment for vestibular disorders

Researchers at the Stanford University School of Medicine have found a way to regenerate hair cells in the inner ears of mice, allowing the animals to recover vestibular function. It's the first time such recovery has been observed in mature mammals.

If further research shows that the technique can be applied to humans, it would be an initial step toward treating vestibular disorders, such as dizziness. There is currently no effective treatment for dizziness and balance disorders caused by damaged or lost vestibular hair cells. The only available therapy is teaching patients coping mechanisms through physical therapy.

"This disabling condition is very common among the elderly, and one of the primary causes of falls," said Alan Cheng, MD, associate professor of otolaryngology-head and neck surgery.

Cheng is the senior author of a paper about the research, which will be published July 9 in Cell Reports. Zahra Sayyid, an MD-PhD student at Stanford, is the lead author.

The hair cells in the utricle, a section of the inner ear, help maintain balance and spatial orientation and regulate eye movement. Some antibiotics can damage these cells. Damage can also occur from infections or genetic disorders, or as a result of aging. In mature mammals, vestibular hair cells regenerate on their own only minimally. (Birds and fish, however, have the ability to completely regenerate them.)

In the United States, about 69 million people experience vestibular dysfunction, some because of problems with inner ear hair cells. They can feel as if they're spinning, lose their balance easily, suffer from nausea and have trouble tracking objects with their eyes. The symptoms can prevent patients from engaging in activities, including exercise and driving, and can lead to social isolation.

To study these vestibular disorders, the researchers impaired the inner ear hair cells of mice and measured how well they regenerated on their own. The researchers found that about a third of the cells regenerated spontaneously but appeared immature, and vestibular function was inconsistent.

Next, they manipulated Atoh1, a transcription factor that regulates hair cell formation, in the mice. In the animals that overexpressed Atoh1, as much as 70% of hair cells regenerated. The regenerated cells appeared relatively mature, and about 70% of these mice recovered vestibular function.

"This is very exciting. It's an important first step to find treatment for vestibular disorders," Cheng said. "We couldn't get sufficient regeneration to recover function before."

The researchers plan to study how other methods to enhance Atoh1's function may affect regeneration.

While the finding is a proof of concept, "it has opened the door for many more possibilities that could lead to treatment in people with vestibular disorders," Sayyid said.

Credit: 
Stanford Medicine