Tech

1. Risk for some cancers may be determined before birth
Normal tissue BRCA1 methylation associated with risk for high-grade ovarian cancer

Abstract: http://annals.org/aim/article/doi/10.7326/M17-0101

Editorial: http://annals.org/aim/article/doi/10.7326/M17-3340

URLs go live when the embargo lifts

An international team, led by researchers from the Max Planck Institute for the Science of Human History (MPI-SHH), Harvard University and the Mexican National Institute of Anthropology and History (INAH), has used ancient DNA and a new data processing program to identify the possible cause of a colonial-era epidemic in Mexico. Many large-scale epidemics spread through the New World during the 16th century but their biological causes are difficult to determine based on symptoms described in contemporaneous historical accounts.

You don't have to be perfectly organized to pull off a wave, according to University of Chicago scientists.

Using a set of gyroscopes linked together, physicists explored the behavior of a material whose structure is arranged randomly, instead of an orderly lattice. They found they could set off one-way ripples around the edges, much like spectators in a sports arena--a "topological wave," characteristic of a particularly unusual state of matter.

Researchers program biomaterials with 'logic gates' that release therapeutics in response to environmental triggers

Drug treatments can save lives, but sometimes they also carry unintended costs. After all, the same therapeutics that target pathogens and tumors can also harm healthy cells.

To reduce this collateral damage, scientists have long sought specificity in drug delivery systems: A package that can encase a therapeutic and will not disgorge its toxic cargo until it reaches the site of treatment -- be it a tumor, a diseased organ or a site of infection.

[CAMBRIDGE, Mass.] Immunologists and oncologists are harnessing the body's immune system to fight cancers and other diseases with adoptive cell transfer techniques. In a normal immune response, a type of white blood cell known as T cells are instructed by another kind of immune cell called an antigen-presenting cell (APC) to expand their numbers and stay alive.

Conjugated tetraenes are important key substructures in electronic materials, natural products and pharmaceutical molecules. However, they are difficult to synthesize. They are conventionally prepared by repetitions of the stoichiometric reactions using phosphorus reagents and subsequent reduction and partial oxidation. For making one C=C double bond, one needs to conduct 3 step reactions by this procedure. Each process produces wastes of phosphorus oxides and metal compounds such as lithium, aluminum and manganese.

Nearly one-quarter of children and teens who had their blood pressure screened at a primary care appointment showed a reading in the hypertensive range, but less than half of those readings could be confirmed after the blood pressure was repeated, according to a new Kaiser Permanente study released today in The Journal of Clinical Hypertension. The research shows the importance of taking a second blood pressure reading for those ages 3 to 17 years when the first reading is elevated.

PHILADELPHIA - Acute respiratory tract infections (ARTI) are the leading global cause of death in early childhood, according to the Centers for Disease Control and Prevention (CDC). Lower respiratory tract infections, including bronchiolitis and viral and bacterial pneumonia, take a toll on children's health, too, causing the majority of pediatric hospital admissions for infectious diseases.

A nanostructured gate dielectric may have addressed the most significant obstacle to expanding the use of organic semiconductors for thin-film transistors. The structure, composed of a fluoropolymer layer followed by a nanolaminate made from two metal oxide materials, serves as gate dielectric and simultaneously protects the organic semiconductor - which had previously been vulnerable to damage from the ambient environment - and enables the transistors to operate with unprecedented stability.

UCLA bioengineering professor Ali Khademhosseini has led the development of a tissue-based soft robot that mimics the biomechanics of a stingray. The new technology could lead to advances in bio-inspired robotics, regenerative medicine and medical diagnostics.

The study was published in Advanced Materials.