Austin, Tex., Feb. 16, 2018 - Are we alone in the universe? Few questions have captured the public imagination more than this. Yet to date we know of just one sample of life, that which exists here on Earth.

Although there is plenty of habitable real estate out there, "habitable" is not the same as "inhabited," says Arizona State University Regents Professor and noted cosmologist Paul Davies. Because nobody knows how non-life transitioned to life on Earth, it is impossible to estimate the odds of it springing forth elsewhere in the universe.

Astronomers have discovered that our nearest big neighbour, the Andromeda galaxy, is roughly the same size as the Milky Way.

It had been thought that Andromeda was two to three times the size of the Milky Way, and that our own galaxy would ultimately be engulfed by our bigger neighbour.

But the latest research, published today, evens the score between the two galaxies.

It found the weight of the Andromeda is 800 billion times heavier than the Sun, on par with the Milky Way.

A hole at the heart of a stunning rose-like interstellar cloud has puzzled astronomers for decades. But new research, led by the University of Leeds, offers an explanation for the discrepancy between the size and age of the Rosetta Nebula's central cavity and that of its central stars.

A study led by University of Colorado Boulder researchers provides new insight into the Moon's excessive equatorial bulge, a feature that solidified in place over four billion years ago as the Moon gradually distanced itself from the Earth.

The research sets parameters on how quickly the Moon could have receded from the Earth and suggests that the nascent planet's hydrosphere was either non-existent or still frozen at the time, indirectly supporting the theory of a fainter, weaker Sun that at the time radiated around 30 percent less energy than it does today.

Extremely distant galaxies are usually too faint to be seen, even by the largest telescopes. But nature has a solution: gravitational lensing, predicted by Albert Einstein and observed many times by astronomers. Now, an international team of astronomers, led by Harald Ebeling of the Institute for Astronomy at the University of Hawaii at Manoa, has discovered one of the most extreme instances of magnification by gravitational lensing.

Irvine, Calif. - An international team of astronomers has determined that Centaurus A, a massive elliptical galaxy 13 million light-years from Earth, is accompanied by a number of dwarf satellite galaxies orbiting the main body in a narrow disk. In a paper published today in Science, the researchers note that this is the first time such a galactic arrangement has been observed outside the Local Group, home to the Milky Way.

A new international study involving The Australian National University (ANU) has found a plane of dwarf galaxies orbiting around Centaurus A in a discovery that challenges a popular theory about how dwarf galaxies are spread around the Universe.

Co-researcher Associate Professor Helmut Jerjen from ANU said astronomers had previously observed planes of dwarf galaxies whirling around our galaxy, the Milky Way, and the neighbouring Andromeda.

The nearby dwarf galaxy known as the Large Magellanic Cloud (LMC) is a chemically primitive place.

Unlike the Milky Way, this semi-spiral collection of a few tens-of-billions of stars lacks our galaxy's rich abundance of heavy elements, like carbon, oxygen, and nitrogen. With such a dearth of heavy elements, astronomers predict that the LMC should contain a comparatively paltry amount of complex carbon-based molecules. Previous observations of the LMC seem to support that view.

MADISON - Space physicists at University of Wisconsin-Madison have just released unprecedented detail on a bizarre phenomenon that powers the northern lights, solar flares and coronal mass ejections (the biggest explosions in our solar system).

The data on so-called "magnetic reconnection" came from a quartet of new spacecraft that measure radiation and magnetic fields in high Earth orbit.

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy and the magnetic fields that surround them.