"Now she's taking that experience and applying it to these very different areas," Marschilok continues. "Could a variation on one of the battery systems one day be applied to powering homes and buildings? That's the kind of perspective she has and it's what battery research really needs."
In the past year, Takeuchi been awarded more than $1 million in funding by several federal agencies to develop better materials for batteries and ways to prevent their degradation.
With a new project recently funded by the New York State Energy Research and Development Authority, Takeuchi and her husband, SUNY Distinguished Teaching Professor Kenneth Takeuchi, are developing new, low-cost materials for rechargeable batteries.
The focus is on developing a distributed grid where renewable power is generated closer to where it's needed, rather than in a central place and transmitted long distances, the way the current grid operates.
"One of the key challenges in moving from our fossil-fuel based system to greener, renewable forms of energy is that whether you're talking about solar or wind power, these forms of energy are intermittent," says Takeuchi.
And even though the sun may be shining or the wind may be blowing, it's unlikely that either phenomenon will occur at a constant rate over time.
"There will be fairly large fluctuations in the amount of power being generated," she says.
That makes a robust, reliable method of storing energy absolutely critical. And it's a feature that has been essential in the life-saving biomedical devices Takeuchi has worked on in the past.
"To generate energy at a usable, consistent level, we will need to couple a dependable, energy-storage system with renewable power sources," she says.
Takeuchi's work on biomedical devices has provided her with an unusual appreciation for the properties of batteries that have exceptional longevity. The typical lifetime of a battery in an implantable device is 5-10 years and Takeuchi is one of those leading the push to increase that for both biomedical and utility applications.
"Whether you're talking about the power grid, electrical vehicles or biomedical devices the quest is for low cost, longer life and rechargeability," she says.
Esther Takeuchi developed the battery that made possible the first implantable cardiac defibrillators. Now she is applying her unique perspective on how to coax the best performance out of battery chemicals to the electrical grid.
(Photo Credit: University at Buffalo)
Esther Takeuchi developed the battery that made possible the first implantable cardiac defibrillators. Now she is applying her unique perspective on how to coax the best performance out of battery chemicals to the electrical grid.
(Photo Credit: University at Buffalo)
Source: University at Buffalo