Tech

Montreal, September 11, 2008 – When an electrical current passes through a wire it emanates heat – a principle that's found in toasters and incandescent light bulbs. Some materials, at low temperatures, violate this law and carry current without any heat loss. But this seemingly trivial property, superconductivity, is now at the forefront of our understanding of physics.

Older people could make better use of computers if icons, links and menu headings automatically grew bigger as the cursor moves towards them.

A new University of Reading study has shown that 'expanding targets' of this kind, which grow to twice their original size and provide a much larger area to click on, could deliver:

University of Chicago scientists have discovered how to make magnetic sensors capable of operating at the high temperatures that ceramic engines in cars and aircraft of the future will require.

The key to fabricating the sensors involves slightly degrading samples of a well-known semiconductor material, called indium antimonide, which is valued for its purity. Chicago's Thomas Rosenbaum and associate Jingshi Hu, now of the Massachusetts Institute of Technology, have published their formula in the September issue of the journal Nature Materials.

Troy, N.Y. – The emergence of electric lighting at night nearly a century ago has positively affected countless aspects of human life, ranging from improved safety and security to stronger economic development. But too much nighttime illumination can cause problems for stargazing, animal health, and may even compromise sleep, often leading some people to say "lights out."

The first images from Rosetta's OSIRIS imaging system and VIRTIS infrared spectrometer were derived from raw data this morning and have delivered spectacular results.

"Steins looks like a diamond in the sky," said Uwe Keller, Principal Investigator for the OSIRIS imaging system from the Max Planck Institut Fuer Sonnensystemforschung, Lindau.

Visible in the image are several small craters on the asteroid, and two huge ones, one of which is 2 km in diameter, indicating that the asteroid must be very old.

Blacksburg, Va. –– Technologies used today by companies, such as Direct TV, Iridium Satellite, Bluetooth, and Globalstar, are based on satellite communications efforts started at Virginia Tech four decades ago in its Bradley Department of Electrical and Computer Engineering (ECE).

CAMBRIDGE, Mass.--MIT researchers may have found a way to overcome a key barrier to the advent of super-fast quantum computers, which could be powerful tools for applications such as code breaking.

Ever since Nobel Prize-winning physicist Richard Feynman first proposed the theory of quantum computing more than two decades ago, researchers have been working to build such a device.

PASADENA, Calif.--Scientists at the California Institute of Technology (Caltech) have developed a simple process for mass producing molecular tubes of identical--and precisely programmable--circumferences. The technological feat may allow the use of the molecular tubes in a number of nanotechnology applications.

Quicker microwave meals that use less energy may soon be possible with new ceramic microwave dishes and, according to the material scientists responsible, this same material could help with organic waste remediation.

"Currently, food heated in a microwave loses heat to the cold dish because the dishes are transparent to microwaves," says Sridhar Komarneni, distinguished professor of clay mineralogy, College of Agricultural Sciences at Penn State. "The plates are still cool when the cooking is completed."

PITTSBURGH—The growth of shared Wi-Fi and other wireless computer networks has increased the risk of eavesdropping on Internet communications, but researchers at Carnegie Mellon University's School of Computer Science and College of Engineering have devised a low-cost system that can thwart these "Man-in-the-Middle" (MitM) attacks.

The system, called Perspectives, also can protect against attacks related to a recently disclosed software flaw in the Domain Name System (DNS), the Internet phone book used to route messages between computers.

The semiconductor silicon and the ferromagnet iron are the basis for much of mankind's technology, used in everything from computers to electric motors. In this week's issue of the journal Nature (August 21st) an international group of scientists, including academic and industrial researchers from the UK, USA and Lesotho, report that they have combined these elements with a small amount of another common metal, manganese, to create a new material which is neither a magnet nor an ordinary semiconductor.

ANN ARBOR, Mich.---The fastest quantum computer bit that exploits the main advantage of the qubit over the conventional bit has been demonstrated by researchers at University of Michigan, U.S. Naval Research Laboratory and the University of California at San Diego.

The scientists used lasers to create an initialized quantum state of this solid-state qubit at rates of about a gigahertz, or a billion times per second. They can also use lasers to achieve fundamental steps toward programming it.

Computer scientists at the UC San Diego's Jacobs School of Engineering have proposed a new way to build data centers that could save companies money and deliver more computing capability to end-users.

The proliferation of solar, wind and even tidal electric generation and the rapid emergence of hybrid electric automobiles demands flexible and reliable methods of high-capacity electrical storage. Now a team of Penn State materials scientists is developing ferroelectric polymer-based capacitors that can deliver power more rapidly and are much lighter than conventional batteries.

Researchers from the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (JQI), a collaborative center of the University of Maryland and NIST, have reported a new way to fine-tune the light coming from quantum dots by manipulating them with pairs of lasers. Their technique, published in Physical Review Letters,* could significantly improve quantum dots as a source of pairs of “entangled” photons, a property with important applications in quantum information technologies.