Tech

WASHINGTON, Oct. 31—Misshapen red blood cells (RBCs) are a sign of serious illnesses, such as malaria and sickle cell anemia. Until recently, the only way to assess whether a person's RBCs were the correct shape was to look at them individually under a microscope – a time-consuming process for pathologists. Now researchers from the University of Illinois at Urbana-Champaign (UIUC) have pioneered a technique that will allow doctors to ascertain the healthy shape of red blood cells in just a few seconds, by analyzing the light scattered off hundreds of cells at a time.

For those who live or work in cities, parking is a major source of stress and frustration. Researchers estimate that for every 110 vehicles circulating on the roads looking for spaces, there are 100 available spots, both in lots and on the street.

PITTSBURGH—Internet users who want to protect their privacy by stopping advertisers and other companies from tracking their online behavior will have great difficulty doing so with commonly available "opt-out" tools, researchers at Carnegie Mellon University report.

User testing found that privacy options in popular browsers, as well as online tools or plug-ins for blocking access by certain websites or otherwise opting out of tracking, were hard for the typical user to understand or to configure successfully.

Tests at a school beside an informal electronic waste salvage site in Ghana's capital Accra reveal contamination due to lead, cadmium and other health-threatening pollutants over 50 times higher than risk-free levels.

A produce market, a church headquarters and a soccer field are likewise polluted to varying degrees, all neighbours of the Agbogbloshie scrap metal site, where electronic trash is scavenged for valuable metals - especially copper. Schoolchildren as young as six work around bonfires of circuitry, plastic and other leftover high-tech trash.

Across-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height. Although researchers have investigated the problem for over 30 years now, the research achievements of across-wind loads and effects and the computation methods of equivalent static wind loads are still not satisfactory. Professor GU Ming and his group from the State Key Laboratory of Disaster Reduction in Civil Engineering set out to tackle this problem.

A milestone in the description of complex processes - for example the ups and downs of share prices - has been reached by mathematicians at the Ruhr-Universität Bochum. Researchers led by Prof. Dr. Holger Dette (stochastics) have developed a new method in spectral analysis, which allows a classical mathematical model assumption, so-called stationarity, to be precisely measured and determined for the first time. The approach also makes it possible to construct statistical tests that are considerably better and more accurate than previous methods.

Electrical engineers in Bochum have succeeded in developing a new concept for ultrafast semiconductor lasers. The researchers make clever use of the intrinsic angular momentum of electrons, called spin, to successfully break the previous speed barriers. The new spin lasers have the potential to achieve modulation frequencies of well above 100 GHz in future. This is a decisive step towards high-speed data transmission, e.g. for the Internet of tomorrow. The researchers report their results inApplied Physics Letters .

The human genome has been decoded. Of all the puzzles it contains, though, many remain unsolved. We know that the genome provides the blueprint for various proteins, the building blocks of each and every cell. But what role do they play? Which proteins control cell division in a healthy body, for instance? And what takes place in tumor tissue in which cells incessantly subdivide and control over proteins gets out of hand?

Managing light to carry computer data, such as text, audio and video, is possible today with laser light beams that are guided along a fibre-optic cable. These waves consist of countless billions of photons, which carry information down the fibre across continents.

A research team at the University of Alberta wants to refine the optical transmission of information by using a single photon, the fundamental building block of light that can allow unprecedented applications in optical information transfer.

Researchers at the Georgia Institute of Technology have developed a prototype wireless sensor capable of detecting trace amounts of a key ingredient found in many explosives.

The device, which employs carbon nanotubes and is printed on paper or paper-like material using standard inkjet technology, could be deployed in large numbers to alert authorities to the presence of explosives, such as improvised explosive devices (IEDs).

Scientists have designed a novel, noninvasive system that allows users to control a virtual helicopter using only their minds, they report in the online journal PLoS ONE.

The researchers, led by Dr. Bin He of University of Minnesota, created an EEG-based, noninvasive brain-computer interface that allowed users to accurately and continually navigate a virtual helicopter simply by thinking about where they wanted to craft to go.

If quantum computers are ever to be realized, they likely will be made of different types of parts that will need to share information with one another, just like the memory and logic circuits in today's computers do. However, prospects for achieving this kind of communication seemed distant—until now. A team of physicists working at the National Institute of Standards and Technology (NIST) has shown* for the first time how these parts might communicate effectively.

LIVERMORE, Calif. -- Climate models have a hard time representing clouds accurately because they lack the spatial resolution necessary to accurately simulate the billowy air masses but Livermore scientists and international collaborators have developed a new tool that will help scientists better represent the clouds observed in the sky in climate models.

The "electronic nose," which detects odors, has a companion among emerging futuristic "e-sensing" devices intended to replace abilities that once were strictly human-and-animal-only. It is a "magnetic tongue" -- a method used to "taste" food and identify ingredients that people describe as sweet, bitter, sour, etc. A report on use of the method to taste canned tomatoes appears in Journal of Agricultural and Food Chemistry.

Scientists are reporting the development and successful tests in humans of a sensor array that can diagnose multiple sclerosis (MS) from exhaled breath, an advance that they describe as a landmark in the long search for a fast, inexpensive and non-invasive test for MS -- the most common neurological disease in young adults. Their report appears in the journal ACS Chemical Neuroscience.