Tech

Researchers from North Carolina State University have developed new techniques for stretching carbon nanotubes (CNT) and using them to create carbon composites that can be used as stronger, lighter materials in everything from airplanes to bicycles.

By stretching the CNT material before incorporating it into a composite for use in finished products, the researchers straighten the CNTs in the material, which significantly improves its tensile strength – and enhances the stiffness of the composite material and its electrical and thermal conductivity.

By force of habit we tend to assume computers are made of silicon, but there is actually no necessary connection between the machine and the material. All that an engineer needs to do to make a computer is to find a way to build logic gates — the elementary building blocks of digital computers — in whatever material is handy.

So logic gates could theoretically be made of pipes of water, channels for billiard balls or even mazes for soldier crabs.

CAMBRIDGE, Mass. — A new approach that allows objects to become "invisible" has now been applied to an entirely different area: letting particles "hide" from passing electrons, which could lead to more efficient thermoelectric devices and new kinds of electronics.

The concept — developed by MIT graduate student Bolin Liao, former postdoc Mona Zebarjadi (now an assistant professor at Rutgers University), research scientist Keivan Esfarjani, and mechanical engineering professor Gang Chen — is described in a paper in the journal Physical Review Letters.

The potential of GMES for crisis management and environmental monitoring is highlighted in a new publication with users demonstrating the importance of Earth observation data to European regions.

A new breakthrough in solar technology means portable electronic devices such as e-book readers could soon be re-charged on the move in low light levels and partial shading. Scientists from the University of Warwick, in collaboration with spin-out company Molecular Solar, have created an organic solar cell that generates a sufficiently high voltage to recharge a lithium-ion battery directly, without the need to connect multiple individual cells in series.

Researchers from North Carolina State University have created flower-like structures out of germanium sulfide (GeS) – a semiconductor material – that have extremely thin petals with an enormous surface area. The GeS flower holds promise for next-generation energy storage devices and solar cells.

Chemists at Queen's University Belfast have devised a novel, environmentally friendly technique, which allows the rapid production of Metal-Organic Frameworks porous materials (MOFs).

These revolutionary nanomaterials have the potential to transform hazardous gas storage, natural gas vehicles and drug delivery and have the highest surface-area of any known substance.

A sugar-lump sized piece of MOF material can have the same surface area as a football pitch.

University of Luxembourg's Laboratory for Photovoltaics has established a method to observe and prevent solar cell degradation before solar cell production is finished, which has implications for the solar cell manufacturing industry since chemical damage to solar cells can occur quickly.

Researchers from the University of Southampton are designing incentives for collection and verification of information to make crowdsourcing more reliable.

Crowdsourcing is a process of outsourcing tasks to the public, rather than to employees or contractors. In recent years, crowdsourcing has provided an unprecedented ability to accomplish tasks that require the involvement of a large number of people, often across wide-spread geographies, expertise, or interests.

New Haven, Conn. -- Expanding production of palm oil, a common ingredient in processed foods, soaps and personal care products, is driving rainforest destruction and massive carbon dioxide emissions, according to a new study by Yale and Stanford researchers.

The study, published in the journal Nature Climate Change, shows that deforestation for the development of oil palm plantations in Indonesian Borneo is becoming a globally significant source of carbon dioxide emissions.

Writing in Nature, Nobel Prize-winner Professor Kostya Novoselov and an international team of authors has produced a 'Graphene Roadmap' which for the first time sets out what the world's thinnest, strongest and most conductive material can truly achieve.

The paper details how graphene, isolated for the first time at The University of Manchester by Professor Novoselov and colleague Professor Andre Geim in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to anticancer drugs and computer chips.

NEW YORK - October 10, 2012 - Thanks to blogs, online forums, and product review sites, companies and marketers now have access to a seemingly endless array of data on consumers' opinions and experiences. In principle, businesses should be able to use this information to gain a better understanding of the general market and of their own and their competitors' customers.

HOUSTON – (Oct. 10, 2012) – Rice University researchers are doping graphene with light in a way that could lead to the more efficient design and manufacture of electronics, as well as novel security and cryptography devices.

Manufacturers chemically dope silicon to adjust its semiconducting properties. But the breakthrough reported in the American Chemical Society journal ACS Nano details a novel concept: plasmon-induced doping of graphene, the ultrastrong, highly conductive, single-atom-thick form of carbon.