Tech

EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals.

Michael Graetzel and his team found that, by briefly reducing the pressure while fabricating perovskite crystals, they were able to achieve the highest performance ever measured for larger-size perovskite solar cells, reaching over 20% efficiency and matching the performance of conventional thin-film solar cells of similar sizes. Their results are published in Science.

EUGENE, Ore. - June 9, 2016 -- University of Oregon chemists have synthesized a stable and long-lasting carbon-based molecule that, they say, potentially could be applicable in solar cells and electronic devices.

The molecule changes its bonding patterns to a magnetic biradical state when heated; it then returns to a fully bonded non-magnetic closed state at room temperature. That transition, they report, can be done repeatedly without decomposition. It remains stable in the presence of both heat and oxygen.

Decades of unregulated industrial waste dumping in areas of the Great Lakes have created a host of environmental and wildlife problems. Now it appears that Lake Michigan painted and snapping turtles could be a useful source for measuring the resulting pollution.

June 9, 2016 - Many new robots look less like the metal humanoids of pop culture and more like high-tech extensions of ourselves and our capabilities.

In the same way eyeglasses, wheelchairs, pacemakers and other items enable people to see and move more easily in the world, so will many cutting-edge robotic systems. Their aim is to help people be better, stronger and faster. Further, due to recent advances, most are far less expensive than the Six Million Dollar Man.

The U.S. Forest Service's Pacific Northwest Research Station today released a general technical report presenting raw data and dot maps for 22 elements measured in moss samples in 2013 as part of its Portland moss and air quality study.

The data and maps, which show the concentrations and distributions of elements in 346 moss samples gathered across the city, can help regulators, researchers, and citizens further investigate the importance and possible sources of moss-identified "hotspots."

UNIVERSITY OF CALIFORNIA, BERKELEY'S HAAS SCHOOL OF BUSINESS -- If you purchased a Toyota Prius, you may have been driven by the desire to conserve the environment or to save yourself some money at the gas pump. But consumers may also choose to buy sustainable products to make themselves appear socially responsible to others. Before making purchases, they evaluate how their decisions will stack up against their peers', according to a new study.

Clermont, Fla, (June 9, 2016) ­ Rather than make appointments to see their family doctor on a regular basis, men are often more likely to make excuses for not going, according to a new survey that lists the top excuses men most often make.

Scientists at UC San Diego, MIT and Harvard University have engineered "topological plexcitons," energy-carrying particles that could help make possible the design of new kinds of solar cells and miniaturized optical circuitry.

The researchers report their advance in an article published in the current issue of Nature Communications.

Within the Lilliputian world of solid state physics, light and matter interact in strange ways, exchanging energy back and forth between them.

As you read this paragraph, a NASA satellite orbits around planet Earth, gathering data on -- of all things -- soil moisture. Moisture in the soil acts like a thermostat for the planet. Along with affecting agricultural production, it has a large influence on the weather and climate. Its impact on the planet is so important, NASA has sent a satellite into space to measure it.

The Materials Project, a Google-like database of material properties aimed at accelerating innovation, has released an enormous trove of data to the public, giving scientists working on fuel cells, photovoltaics, thermoelectrics, and a host of other advanced materials a powerful tool to explore new research avenues. But it has become a particularly important resource for researchers working on batteries.

A team of researchers at the University of Delaware has found that incorporating rice husk to soil can decrease toxic inorganic arsenic levels in rice grain by 25 to 50 percent without negatively affecting yield.

This research could have important implications for developing countries whose populations rely on rice as a staple of their diets and are in need of cheap, readily available material to improve soil quality and decrease arsenic levels that threaten human health.

A new development from Northwestern University's Manijeh Razeghi could be another tool for protecting our borders.

Supported by the Department of Homeland Security, Razeghi's lab has created a new, broad-band tunable infrared laser that has implications for the detection of drugs and explosives.

WASHINGTON, D.C., June 7, 2016 - Researchers at the Paul Scherrer Institute's Swiss Light Source in Villigen, Switzerland, have developed a new design for X-ray spectrometers that eschews a commonly utilized component to lowers overall production costs and increase the efficiency of x-ray flux, which may lead to faster acquisition times for sample imaging and increased efficiency for the system. This is essential for biological samples which may be damaged by continued x-ray exposure.

VTT Technical Research Centre of Finland developed an extremely efficient small-size energy storage, a micro-supercapacitor, which can be integrated directly inside a silicon microcircuit chip. The high energy and power density of the miniaturized energy storage relies on the new hybrid nanomaterial developed recently at VTT. This technology opens new possibilities for integrated mobile devices and paves the way for zero-power autonomous devices required for the future Internet of Things (IoT).

Scientists can now identify the exact location of a single atom in a silicon crystal, a discovery that is key for greater accuracy in tomorrow's silicon based quantum computers.

It's now possible to track and see individual phosphorus atoms in a silicon crystal allowing confirmation of quantum computing capability, but which also has use in nano detection devices.