Tech

Pollution exposure at work may be associated with heart abnormalities among Latinx community

DALLAS, August 26, 2020 -- Hispanic/Latinx adults who are exposed to smoke from burning wood, vehicle exhaust, pesticides or metals at workplaces are more likely to have abnormalities of the heart structure and function that could lead to cardiovascular disease, according to new research published today in the Journal of the American Heart Association, an open access journal of the American Heart Association.

Environmental toxin exposure is a recognized cardiovascular disease risk factor. Researchers have found environmental pollutant exposure is associated with stroke, heart attack, heart failure, atrial fibrillation and sudden cardiac death.

"Prior studies have focused on the effects of exposures where people live. And in those studies, people with Hispanic or Latinx backgrounds have been underrepresented," said Jean Claude Uwamungu, M.D., study co-lead author and a cardiology fellow in training at Montefiore Health System/Albert Einstein College of Medicine in Bronx, New York. "We looked specifically at a population of Hispanic/Latinx adults to assess the relationship between exposures at work and their heart health."

Researchers used questionnaires completed by participants to report frequency of exposures and ultrasound to examine the hearts of 782 working adults who were part of the Hispanic Community Health Study/Study of Latinos (HCSL/SOL). The study participants were of Mexican, Puerto Rican, Cuban, Dominican, Central American or South American background and lived in the Bronx neighborhood of New York City; Chicago; Miami; and San Diego, and were average age 52.9 years, half women (52%).

Participants reported on their exposures to workplace pollutants, including burning wood; pesticides; metals, such as manganese, lead or mercury; and vehicle exhaust. Exposure to vehicle exhaust at work was the most-reported pollutant compared to any other.

The researchers found:

Occupational exposure to burning wood or wood smoke was associated with decreased ability (3.1% lower) of the left ventricle of the heart to pump blood.

Occupational exposure to vehicle exhaust was associated with decreased right ventricular systolic function and a decreased left ventricular longitudinal strain, both are indicators of the heart's reduced pumping ability.

People exposed to burning wood, vehicle exhaust, pesticides and metals who had worked in their jobs for many years (average of 18 years) were more likely to have features of abnormal heart function and structure.

Occupational pesticide exposure was associated with an abnormal global left ventricular longitudinal strain, which is a measure of left ventricle's ability to contract.

Individuals exposed to metals at work were more likely to have abnormal left ventricular longitudinal strain and increased left ventricular muscle mass, which is a known risk factor for cardiovascular disease.

The relationship they found between wood and vehicle smoke exposures and measures of heart function and structure did not vary notably between smokers and non-smokers, which suggests independent associations between these exposures and heart structure and function.

"These findings support the notion that where people live and work affects cardiovascular health. Policies and interventions to protect the environment and safeguard workers' health could reduce the risk of cardiovascular disease such as heart failure especially among low income occupations that have higher exposure to these harmful pollutants," Uwamungu said. "Health care professionals should routinely ask patients about exposure to pollutants at work to guide prevention, diagnosis and treatment of early stages of heart disease."

Limitations of this study include that it was observational, and exposures were self-reported. In addition, it looked at associations and not whether the exposures could cause changes to the heart muscle. "However, the findings of this study have public health relevance given the potential for heart damage with long-term occupational exposure to these pollutants," Uwamungu said.

Credit: 
American Heart Association

New device can measure toxic lead within minutes

image: Sediments collected by a ship can be rapidly tested for toxic lead with a new portable lab-on-a-chip device. The miniature device extracts lead from a sample and purifies it, using graphene oxide as a lead detector.

Image: 
Azam Gholizadeh

Rutgers researchers have created a miniature device for measuring trace levels of toxic lead in sediments at the bottom of harbors, rivers and other waterways within minutes - far faster than currently available laboratory-based tests, which take days.

The affordable lab-on-a-chip device could also allow municipalities, water companies, universities, K-12 schools, daycares and homeowners to easily and swiftly test their water supplies. The research is published in the IEEE Sensors Journal.

"In addition to detecting lead contamination in environmental samples or water in pipes in homes or elementary schools, with a tool like this, someday you could go to a sushi bar and check whether the fish you ordered has lead or mercury in it," said senior author Mehdi Javanmard, an associate professor in the Department of Electrical and Computer Engineering in the School of Engineering at Rutgers University-New Brunswick.

"Detecting toxic metals like lead, mercury and copper normally requires collecting samples and sending them to a lab for costly analysis, with results returned in days," Javanmard said. "Our goal was to bypass this process and build a sensitive, inexpensive device that can easily be carried around and analyze samples on-site within minutes to rapidly identify hot spots of contamination."

The research focused on analyzing lead in sediment samples. Many river sediments in New Jersey and nationwide are contaminated by industrial and other waste dumped decades ago. Proper management of contaminated dredged materials from navigational channels is important to limit potential impacts on wildlife, agriculture, plants and food supplies. Quick identification of contaminated areas could enable timely and cost-effective programs to manage dredged materials.

The new device extracts lead from a sediment sample and purifies it, with a thin film of graphene oxide as a lead detector. Graphene is an atom thick layer of graphite, the writing material in pencils.

More research is needed to further validate the device's performance and increase its durability so it can become a viable commercial product, possibly in two to four years.

Credit: 
Rutgers University

Parental instruction instrumental for children to learn how to safely cross busy roads

video: Parents can do a lot to help their children learn how to safely cross busy streets, according to researchers at the University of Iowa. Constructive advice from parents is key as children return to school this fall.

Image: 
Jodie Plumert lab, University of Iowa

Learning to cross a busy street is anything but easy for a child, especially in places where the traffic doesn't stop.

Children must first identify a safe gap in traffic, use refined motor skills to precisely step off a curb the moment a car passes, and safely reach the other side of the street before the next vehicle arrives.

The good news: Research says parents can help their children--a lot.

A new study from the University of Iowa reports that parents who use road crossings as teachable moments help their youngsters learn road-crossing skills faster and become better at crossing streets. The researchers learned this by watching sets of parent-child duos--with the children varying in age from 6 to 12 years old--cross a virtual road with continuous traffic.

One finding: Children who received constructive advice from their parents--especially the pointing out of safe gaps in traffic ahead of time--learned best-practices in crossing more readily and crossed more safely.

"This is something children need to learn how to do. It's an important, common, real-world skill," says Elizabeth O'Neal, a postdoctoral researcher in the Department of Psychological and Brain Sciences at Iowa and the first author on the study. "Children learning ahead of time how to choose a sizable gap between vehicles leads to safer crossing outcomes. We found there's a lot that parents can do to help their children learn those skills and to keep their kids safe."

By far, the safest way for a child to cross a road is at an intersection with a walk sign, a stoplight, or with marked crosswalks. But vehicles may not stop, even at crosswalks, and there are many roads where no crossing markings exist.

This puts children at risk. In 2018 alone, 175,000 youngsters between the ages of 1 and 14 were injured as pedestrians, according to the National Center for Injury Prevention and Control, a branch of the federal Centers for Disease Control and Prevention.

The Iowa researchers wanted to understand whether parents could help their children cross roads more safely, as well as study how the parents offered help. In multiple rounds, 64 parents with a child aged 6, 8, 10, or 12 crossed a virtual, single-lane road with a line of oncoming vehicles traveling at 25 miles per hour. The participating pairs were instructed to watch the traffic and then decide together when to cross.

The main results: Across all ages, parents proactively pointed out safe traffic gaps in just 30% of the crossing exercises. In the other instances, parents simply instructed their children to cross (such as saying, "Let's go!") or began crossing without saying anything.

When parents gave helpful instruction, their children showed a 10% improvement in how quickly they entered the road after the first car passed and a 7% gain in the margin of time between when they reached the other side of the road before the next car arrived. The researchers say those seemingly small gains in motor timing substantively increase the chances of a successful crossing.

So, what is helpful instruction? Jodie Plumert, professor in the UI Department of Psychological and Brain Sciences and a co-author on the study, explains:

"When you're crossing roads with your child, don't just say, 'Let's go!' when you want to go. Help the child look at the oncoming traffic and pick out ahead of time which gap you're going to choose. It helps the child learn how to pick the gap ahead of time and to correctly time when to cross."

The findings add to previous results by researchers in the UI's Hank Virtual Environments Lab (led by Plumert and Joseph Kearney, professor in the Department of Computer Science at Iowa) showing that most children don't fully grasp how to identify gaps in traffic and correctly time their road crossings until age 14. That study appeared in April 2017 in the Journal of Experimental Psychology: Human Perception and Performance, published by the American Psychological Association.

A few previous studies have looked at how children cross roads and then interviewed their parents afterward. According to the Iowa researchers, it was clear from those studies that on the whole, parents weren't actively helping their children learn how to safely negotiate road crossings.

Plumert says the most recent study is the first to examine how parents can help children learn to prospectively control their movements, and to understand what is needed mentally and physically to cross safely.

"If this was something that parents were doing most of the time, then that would be great," Plumert says. "But our study shows that parents aren't using effective strategies to help their child learn about safe road crossings all that often. But the times the parents do have useful instructions, it's really helpful to the child. They just show much better performance crossing roads."

Credit: 
University of Iowa

Getting to the root of the problem

image: Experiments on common bean were done at the Agricultural Research Institute of Mozambique in Sussundenga, Mozambique.

Image: 
James Burridge

Roots play a vital role in crop plants. They take up water and nutrients for the plant and keep it help firmly in the ground. But not all roots are the same.

Different plants have different kinds of roots that help them survive in their environment. Two well-known examples are carrots and cactus. Carrots have a long taproot that penetrates deep into the soil. Cacti usually have shallow roots. These allow them to quickly soak up the little rainfall they receive in the desert.

Can studying roots lead to better crops? It's a question that researchers from Pennsylvania State University set out to answer, focusing on beans. They know that crops like beans are critical for feeding a rapidly growing population.

"Grain legumes are critical for global food security, but achieve low yields in most areas," says Jonathan P. Lynch, a professor at Pennsylvania State University. "This is especially true in areas of the developing world that experience drought, heat, and low soil fertility."

Breeding is a way to improve how crops perform in different environments. However, looking at the roots for beneficial characteristics for breeding is rarely done.

"Optimizing how plants get resources from the soil in stressful environments is important for increasing food production, but specific breeding objectives are ill defined," Lynch says. "We sought to test hypotheses about the link between root system architecture and life strategy in order to generate breeding targets."

In their study, they analyzed the root systems of several kinds of beans and other legumes, like chickpeas. This allowed them to see tradeoffs and to determine what kind of root characteristics would perform better in certain environments. This can help plant breeders devise better plants.

Roots explore both the topsoil and subsoil. Nutrients like phosphorus and potassium are more present in the topsoil, while water and nitrogen are usually deeper in the soil. They observed that many crops focus on one or the other of these soil layers, which results in a tradeoff.

"Root architecture is an important component of crop adaptation to environments where water and nutrients are lacking," Lynch says. "We suggest that root phenotypes capable of balancing topsoil and subsoil exploration would be useful."

The researchers say that breeding programs could use trait-based selection on root characteristics they are interested in. They could then use various techniques to get well-adapted plants with stronger primary roots or longer root hairs, for example.

"Everyone knows that roots are important for crops, especially in poor soils and in dry conditions," Lynch adds. "However, very few crop breeders actively select for these root characteristics because it can be difficult. This paper is one of a growing number by our team and others showing how specific root characteristics are associated with crop resilience under stress."

Lynch says his personal goal is to improve food security in developing nations. 850 million people are chronically malnourished around the world and with the human population expanding, the problem will only increase.

Grain legumes have the potential to help address this problem because they are good for the soil and for humans. They take nitrogen from the air and make it usable in the soil and are rich in nutrients humans need like protein, iron, and zinc.

"It is important for us all to recognize the magnitude of the challenge represented by assuring food security for 10 billion people in a degraded global environment," Lynch says. "We must do what we can to help the next generation of agricultural scientists meet this challenge."

Credit: 
American Society of Agronomy

Battery life for wearable electronic devices could be improved

image: An image demonstrating the stresses to anodes and cathodes after cycles.

Image: 
WMG, University of Warwick

Researchers in WMG and the Department of Physics at the University of Warwick have found that asymmetric stresses within electrodes used in certain wearable electronic devices provides an important clue as to how to improve the durability and lifespan of these batteries.

Batteries for medical applications and wearable devices continue to evolve in size and shape, with miniaturisation of Li-ion technologies becoming increasingly popular. However, as the size of the battery shrinks, the fabrication process for composite electrodes and the use of liquid electrolyte is becoming a processing challenge for microfabrication using conventional approaches.Diagram of how tensile strain leads to the film cracking

Lithium cobalt oxide LiCoO2 (LCO) has remained a common choice of cathode for these small formats due to its high voltage platform and energy density. However, following the initial reported performance benefits of LCO, it is known that LCO cells have large impedance issues due to the growth of high surface layer resistance and charge transfer resistance. This can affect how efficiently the battery charges and discharges. There are also ethical and health considerations around the use of the element cobalt. The increasing impedance was thought to be attributable to the growth of a surface layer on both the anode (solid electrolyte interface, SEI) and cathode (cathode electrolyte interface, CEI) due to the reaction between the electrodes and the electrolyte.

However, in the paper "Ageing analysis and asymmetric stress considerations for small format cylindrical cells for wearable electronic devices" published recently in the Journal of Power Sources, the University of Warwick's WMG and Physics department researchers disassembled these cells. They have found that and the condition of the cathode and anode varied greatly after 500 cycles, as a function of which side of the current collector it was on.Caption: A diagram of how tensile strain leads to the film cracking Credit: WMG, University of Warwick

The inward facing cathode (under compression) when rolled into a jelly-roll, develops significant signs of coating delamination from the aluminium foil. On the outward facing cathode side (under tension), however, only a partial delamination was evident and the coating was transferred unto the separator. By contrast, severe delamination was observed on both sides of the anode coating. The inward facing anode side (under compression) showed almost no coating still adherent to the copper foil, compared to the outward facing anode side (under tension). Likewise, the delaminated coating had become adhered to the separator during operation.

Dr Mel Loveridge from WMG, University of Warwick comments:

"It is interesting to note that, for both the cathode and the anode, the delamination is more severe on the electrode coating side that would have been subjected to compression stress, rather than tensile strain. This can be further explained by considering the asymmetric forces in place on either side of double side coated electrodes."

The research team also carried out electrochemical testing, X-ray photoelectron spectroscopy (XPS), X-ray computed tomography (XCT) and scanning electron microscopy SEM), to reveal the battery's structural features and changes. They found that it maintains 82% cell capacity after 500 continuous charging and discharging, after which it shows severe delamination due to high bending stress exerted on the cell components. However this seemingly has minimum impact on the electrochemical performance if the coating is sufficiently compressed in the jelly roll with a good electrical contact. After ageing, the surface layers continue to grow, with more LiF found on the cathode and anode.

Their research opens up exciting areas in battery manufacturing to address winding issues for cylindrical cells (especially miniaturised formats). For example, highlighting the need to understand whether there is merit in varying the coating properties on each side of double-sided coating for wound cylindrical cells, in order to improve the mechanical resilience of coatings that have asymmetric stresses exerted on them.

Credit: 
University of Warwick

Less "sticky" cells become more cancerous

They found out that during tumour development the way cells move can change from coordinated and collective to individual and chaotic behaviour. They have just published their research findings in the journal Nature Cell Biology.

The paper was supervised by tumour biologist Professor Peter Friedl of Radboud University in Nijmegen, the Netherlands, in cooperation with the research groups headed by Professor Josef A. Käs (Leipzig University), Professor Andreas Deutsch (TU Dresden) and Professor Stefano Zapperi (University of Milan). The scientists studied biological changes that cells usually undergo as cancer develops. The most typical of these is the degradation of the epithelial adhesion molecule E-cadherin. In other words: the cells become less "sticky". The researchers showed that this degradation is accompanied by a change in the type of mobility in the tissue. Cells that are more cancerous can move freely past others of their kind, while the epithelial cells are "trapped" by their neighbours.

"It has long been assumed that the reduction in cell 'stickiness' during tumour development increases the mobility of these cancer cells. Our international team was able to confirm this fundamental assumption and show that a dense environment can still hold cancer cells back," said Professor Käs. In his view, it is clear that tumour invasion is strongly influenced by the local environment: cells acting individually can also move in groups if this reduces the resistance of the surrounding tissue. Both types of cell movement led to metastases in the researchers' experiments.

Most cancers are carcinomas that develop from epithelial tissue that covers and separates the organs. Its functions include protection and support. Immobile under healthy conditions, cells in this epithelium are a standard example in new research into "cell jamming", a field which is currently developing rapidly. This immobility is explained by the fact that the cells are in each other's way - similar to cars in a traffic jam or individual grains in a pile of sand. And to metastasise, cancer cells need the ability to move through the body. Their phenotype changes during tumour development, moving away from epithelial behaviour.

In experiments on tumour cells taken from patients, the researchers found that cancer cells spread in different ways in different environments: cells with an epithelial phenotype remained in a closed network, in which their movements were coordinated and collective. Less "sticky" cells in turn became more cancerous, with their cohesion reducing and movements growing more fluid. Individual, less "sticky" cells separated into the surrounding tissue. "This only happens if this tissue is not too dense. This movement is not coordinated, in step, as it would be in cells with an epithelial phenotype, but random and not coordinated with adjacent cells," said doctoral researcher Jürgen Lippoldt from Leipzig University. "In order to turn this understanding into an advantage for cancer patients, further research is needed to find out which migration method can lead to metastases under which circumstances."

Credit: 
Universität Leipzig

Plastics, waste and recycling: It's not just a packaging problem

Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

But a new University of Michigan study shows that two-thirds of the plastic put into use in the United States in 2017 was used for other purposes, including electronics, furniture and home furnishings, building construction, automobiles and various consumer products.

"Managing plastics has become a grand and complex environmental challenge, and plastic packaging clearly warrants current efforts on reductions and coordinated material recovery and recycling," said Gregory Keoleian, senior author of a paper published Aug. 25 in the journal Environmental Research Letters.

"However, while packaging was the largest defined-use market for U.S. plastics in 2017, our study shows that two-thirds of the plastic put into use that year went into other markets," said Keoleian, director of the Center for Sustainable Systems at the U-M School for Environment and Sustainability. "Those other sectors introduce unique challenges, as well as opportunities, as we attempt a fundamental shift away from the largely linear flow of plastics and toward a circular economy for plastics."

The authors of the new study say it's the first comprehensive characterization of plastics use across the entire U.S. economy. The study concludes that the overall recycling rate for plastics in the U.S is slightly lower than previous estimates: Just 8% of the plastics that reached the end of their useful life in 2017 were recycled.

Previous estimates, including one from the Environmental Protection Agency, focused on solid plastic waste in municipal landfills, composed largely of containers and packaging. The new study also includes plastic from construction and demolition waste and from automobile shredder residue.

When those sources were added, the 2017 recycling rate for U.S. plastics dropped even lower than the EPA's 8.4% estimate. Both studies found that about 76% of the plastics that reached end of life in 2017 were buried in landfills.

The new study, known as a material flow characterization, details a single year of plastics production, use and disposal in the U.S and uses the best available data from industry and public sources. The goal was to generate a road map to help guide industry, policymakers and academics along the path toward accelerated plastic waste reduction.

Specifically, the information is expected to be of interest to material scientists and engineers, resin producers, product and packaging designers and manufacturers, retailers, material recovery innovators and operators, and solutions-oriented academics, research institutions and policymakers.

"We created a detailed map of the plastics flows--from production through use and waste management--and we tracked plastics by type and markets," Keoleian said. "We characterized the scale of the problem through this broader lens to prioritize solutions that will have impact."

The study also found that:

An estimated 2% of end-of-life North American plastics ended up in the natural environment in 2017. "Leakage" of plastics into the environment is now a major concern due to the persistence and potential impacts of plastics on organisms and ecosystems.

The amount of plastic in use across the U.S. in 2017 was about 400 metric tons, an amount eight times greater than the quantity of plastics manufactured that year.
While an estimated 8% of plastics disposed in the U.S. in 2017 were recycled, inefficiencies in sorting and reprocessing likely mean that an even smaller percentage returned as feedstock for new products.

Plastics, formally known as synthetic organic polymers, are ubiquitous in today's society. These versatile materials are inexpensive, lightweight, strong, durable and corrosion-resistant, with valuable thermal and electrical-insulation properties.

But most common plastics do not biodegrade and their accumulation in, and contamination of, natural environments is an ever-increasing concern.

In addition, the vast majority of plastics are derived from fossil fuels; global production of plastics currently represents about 8% of global annual oil and gas consumption. Emissions associated with the 407 metric tons of conventional plastics produced globally in 2015 correspond to 3.8% of global greenhouse gas emissions that year.

"Unmoderated production of plastic products has resulted in unacceptable accumulation of debris in landfills and in natural environments, representing a gross waste of resources and disruptions to wildlife and ecosystem function," the authors of the Environmental Research Letters paper wrote.

"Solutions to these rising problems will come in a myriad of forms, but there is widespread agreement that greatly improved coordination between product design and end of life is necessary."

Credit: 
University of Michigan

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

image: Scientists from Japan have found concluding evidence for the presence of a particular complex organic molecule in the regions of less dense gas clouds for the first time.

Image: 
Tokyo University of Science

The origin of life on Earth is a topic that has piqued human curiosity since probably before recorded history began. But how did the organic matter that constitutes lifeforms even arrive at our planet? Though this is still a subject of debate among scholars and practitioners in related fields, one approach to answering this question involves finding and studying complex organic molecules (COMs) in outer space.

Many scientists have reported finding all sorts of COMs in molecular clouds--gigantic regions of interstellar space that contain various types of gases. This is generally done using radio telescopes, which measure and record radiofrequency waves to provide a frequency profile of the incoming radiation called spectrum. Molecules in space are usually rotating in various directions, and they emit or absorb radio waves at very specific frequencies when their rotational speed changes. Current physics and chemistry models allow us to approximate the composition of what a radio telescope is pointed at, via analysis of the intensity of the incoming radiation at these frequencies.

In a recent study published in Monthly Notices of the Royal Astronomical Society, Dr Mitsunori Araki from Tokyo University of Science, along with other scientists from across Japan, tackled a difficult question in the search for interstellar COMs: how can we assert the presence of COMs in the less dense regions of molecular clouds? Because molecules in space are mostly energized by collisions with hydrogen molecules, COMs in the low-density regions of molecular clouds emit less radio waves, making it difficult for us to detect them. However, Dr Araki and his team took a different approach based on a special organic molecule called acetonitrile (CH3CN).

Acetonitrile is an elongated molecule that has two independent ways of rotating: around its long axis, like a spinning top, or as if it were a pencil spinning around your thumb. The latter type of rotation tends to spontaneously slow down due to the emission of radio waves and, in the low-density regions of molecular clouds, it naturally becomes less energetic or "cold."

In contrast, the other type of rotation does not emit radiation and therefore remains active without slowing down. This particular behavior of the acetonitrile molecule was the basis on which Dr Araki and his team managed to detect it. He explains: "In low-density regions of molecular clouds, the proportion of acetonitrile molecules rotating like a spinning top should be higher. Thus, it can be inferred that an extreme state in which a lot of them would be rotating in this way should exist. Our research team was, however, the first to predict its existence, select astronomical bodies that could be observed, and actually begin exploration."

Instead of going for radio wave emissions, they focused on radio wave absorption. The "cold" state of the low-density region, if populated by acetonitrile molecules, should have a predictable effect on the radiation that originates in celestial bodies like stars and goes through it. In other words, the spectrum of a radiating body that we perceive on Earth as being "behind" a low-density region would be filtered by acetonitrile molecules spinning like a top in a calculable way, before it reaches our telescope on earth. Therefore, Dr Araki and his team had to carefully select radiating bodies that could be used as an appropriate "background light" to see if the shadow of "cold" acetonitrile appeared in the measured spectrum. To this end, they used the 45 m radio telescope of the Nobeyama Radio Observatory, Japan, to explore this effect in a low-density region around the "Sagittarius molecular cloud Sgr B2(M)," one of the largest molecular clouds in the vicinity of the center of our galaxy.

After careful analysis of the spectra measured, the scientists concluded that the region analyzed was rich in acetonitrile molecules rotating like a spinning top; the proportion of molecules rotating this way was actually the highest ever recorded. Excited about the results, Dr Araki remarks: "By considering the special behavior of acetonitrile, its amount in the low-density region around Sgr B2(M) can be accurately determined. Because acetonitrile is a representative COM in space, knowing its amount and distribution though space can help us probe further into the overall distribution of organic matter."

Ultimately, this study may not only give us some clues about where the molecules that conform us came from, but also serve as data for the time when humans manage to venture outside the solar system.

Credit: 
Tokyo University of Science

UCF researchers develop AI to detect fentanyl and derivatives remotely

ORLANDO, Aug. 25, 2020 - To help keep first responders safe, University of Central Florida researchers have developed an artificial intelligence method that not only rapidly and remotely detects the powerful drug fentanyl, but also teaches itself to detect any previously unknown derivatives made in clandestine batches.

The method, published recently in the journal Scientific Reports, uses infrared light spectroscopy and can be used in a portable, tabletop device.

"Fentanyl is a leading cause of drug overdose death in the U.S.," said Mengyu Xu, an assistant professor in UCF's Department of Statistics and Data Science and the study's lead author. "It and its derivatives have a low lethal dose and may lead to death of the user, could pose hazards for first responders and even be weaponized in an aerosol."

Fentanyl, which is 50 to 100 times more potent than morphine according to the U.S. Centers for Disease Control and Prevention, can be prescribed legally to treat patients who have severe pain, but it also is sometimes made and used illegally.

Subith Vasu, an associate professor in UCF's Department of Mechanical and Aerospace Engineering, co-led the study.

He said that rapid identification methods of both known and emerging opioid fentanyl substances can aid in the safety of law enforcement and military personnel who must minimize their contact with the substances.

"This AI algorithm will be used in a detection device we are building for the Defense Advanced Research Projects Agency," Vasu said.

For the study, the researchers used a national organic-molecules database to identify molecules that have at least one of the functional groups found in the parent compound fentanyl. From that data, they constructed machine-learning algorithms to identify those molecules based on their infrared spectral properties. Then they tested the accuracy of the algorithms. The AI method had a 92.5 percent accuracy rate for correctly identifying molecules related to fentanyl.

Xu said this is the first time a systematical analysis has been conducted that identifies the fentanyl-related functional groups from infrared spectral data and uses tools of machine learning and statistical analysis.

Study co-author Chun-Hung Wang is a postdoctoral scholar in UCF's NanoScience Technology Center and helped study the compounds' spectral properties. He said identifying fentanyls is difficult as there are numerous formulations of analogues of fentanyl and carfentanil.

Artem Masunov, a co-author and an associate professor in UCF's NanoScience Technology Center and Department of Chemistry, investigated the functional groups that are common to the chemical structures of fentanyl and its analogues.

He said that despite differences in the analogues, they have common functional groups, which are structural similarities that enable the compounds to bind to receptors within the body and perform a similar function.

Anthony Terracciano, study co-author and a research engineer in UCF's Department of Mechanical and Aerospace Engineering, worked with Wang to examine the infrared spectra properties. He said profiling and analysis of infrared spectra is rapid, highly accurate, and can be done with a tabletop device.

The current research used infrared spectral data from compounds in gas form, but the researchers are working on a similar study to use machine-learning to detect fentanyl and its derivatives in powder form. The product of the technology is expected to be mature for practical on-site rapid identification by 2021.

Credit: 
University of Central Florida

Restoring the world's forests requires partnering with local communities

Global forest restoration is a critical strategy for removing carbon from the atmosphere but its success depends on empowering local communities, according to a new study published in Nature Ecology & Evolution .

Focusing on tropical forest restoration, the study highlights the critical importance of partnering with indigenous people and local communities to ensure the success of forest restoration for sequestering carbon, conserving biodiversity and contributing to local livelihoods. Previous studies have often sought to quantify where forest restoration might occur, without considering who lives there and what their lives might be like.

This research is one of the most comprehensive to examine opportunities for tropical forest restoration in Latin America, Asia, Africa, and Oceania (the "Global South) in relation to country-level populations and development. Based on estimates, the findings demonstrate that 294.5 million people live within areas with good potential for tropical forest restoration, and that over one billion people live nearby such land. In low income countries, nearly 12 percent of the population in this study live in areas considered important for forest restoration.

Countries which have often been understudied in past forest restoration research such as the Democratic People's Republic of Congo, Tanzania and Zambia, have a relatively high proportion of people living in forest restoration areas.

"Providing local communities with the right to manage forests where they live is critical to forest restoration efforts," said lead author James (J.T.) Erbaugh, a post-doctoral research fellow in environmental studies at Dartmouth College. "There are countless examples of how conservation projects-- though often well intentioned-- have excluded and disenfranchised indigenous peoples and local communities. Employing an inclusive approach to forest restoration is a just and sustainable way to address climate change, which can also help ensure the long-term viability of such initiatives," he added.

The Dartmouth-led study includes researchers from the Indian School of Business, the University of Manchester, the University of Sheffield, and the University of Michigan. The team drew on data from the Earth Innovation Institute, NASA, the Rights and Resources Initiative, the World Bank, and the World Resources Institute. The researchers examined: where tropical forest restoration opportunities exist in the tropics and the extent to which carbon can be removed from the atmosphere; the location and density of populations by country; nighttime light emittance; national income categories; and legal foundations for community forest managements rights, including whether a country recognized such rights.

"Our findings provide a path for further action on climate change, by identifying countries where investments in forest landscape restoration will create the highest synergies between mitigation and human development. Global efforts to accelerate forest regeneration must include local communities as equal partners," said co-author Ashwini Chhatre , a professor of public policy from the Indian School of Business.

As part of the Bonn Challenge by the International Union for Conservation of Nature, countries around the world are striving to meet their pledges to collectively restore 350 million hectares of forest area by 2030. The results of this study demonstrate that countries such as Brazil and Indonesia, have great potential to remove atmospheric carbon through forest restoration while also containing some of the most people living in areas important for forest restoration. "This challenge cannot be met effectively unless local communities are prioritized," added Erbaugh.

Credit: 
Dartmouth College

Deep learning algorithm to speed up materials discovery in emerging tech industries

COLUMBIA, SC -- Solid-state inorganic materials are critical to the growth and development of electric vehicle, cellphone, laptop battery and solar energy technologies. However, finding the ideal materials with the desired functions for these industries is extremely challenging. Jianjun Hu, an associate professor of computer science at the University of South Carolina is the lead researcher on a project to generate new hypothetical materials.

Due to the vast chemical design space and the high sparsity of candidates, experimental trials and first-principle computational simulations cannot be used as screening tools to solve this problem. Instead, researchers have developed a deep learning-based smart algorithm that uses a technique called generative adversarial network (GAN) model to dramatically improve the material search efficiency up to two orders of magnitude. It has the potential to greatly speed up the discovery of novel functional materials.

The work, published in NPJ Computational Materials, was a collaboration between researchers at the University of South Carolina College of Engineering and Computing and Guizhou University, a research university located in Guiyang, China.

Inspired by the deep learning technique used in Google's AlphaGo, which learned implicit rules of the board game Go to defeat the game's top players, the researchers used their GAN neural network to learn the implicit chemical composition rules of atoms in different elements to assemble chemically valid formulas. By training their deep learning models using the tens of thousands of known inorganic materials deposited in databases such as ICSD and OQMD, they created a generative machine learning model capable of generating millions of new hypothetical inorganic material formulas.

"There is almost an infinite number of new materials that could exist, but they haven't been discovered yet," said Jianjun Hu. "Our algorithm, it's like a generation engine. Using this model, we can generate a lot of new hypothetical materials that have very high likelihoods to exist."

Without explicitly modeling or enforcing chemical constraints such as charge neutrality and electronegativity, the deep learning-based smart algorithm learned to observe such rules when generating millions of hypothetical materials' formulas. The predictive power of the algorithm has been verified both by known materials and recent findings in materials discovery literature.
"One major advantage of our algorithm is the high validity, uniqueness and novelty, which are the three major evaluation metrics of such generative models," said Shaobo Li, a professor at Guizhou University who was involved in this study.

This is not the first time that an algorithm has been created for materials discovery. Past algorithms were also able to produce millions of potential new materials. However, very few of the materials discovered by these algorithms were synthesizable due to their high free energy and instability. In contrast, nearly 70 percent of the inorganic materials identified by Hu's team are very likely to be stable and then possibly synthesizable.

"You can get any number of formula combinations by putting elements' symbols together. But it doesn't mean the physics can exist," said Ming Hu, an associate professor of mechanical engineering at UofSC also involved in the research. "So, our algorithm and the next step, structure prediction algorithm, will dramatically increase the speed to screening new function materials by creating synthesizable compounds."

These new materials will help researchers in fields such as electric vehicles, green energy, solar energy and cellphone development as they continually search for new materials with optimized functionalities. With the current materials discovery process being so slow, these industries' growth has been limited by the materials available to them.

The next major step for the team is to predict the crystal structure of the generated formulas, which is currently a major challenge. However, the team has already started working on this challenge along with several leading international teams. Once solved, the two steps can be combined to discover many potential materials for energy conversion, storage and other applications.

About University of South Carolina:

The University of South Carolina is a globally recognized, high-impact research university committed to a superior student experience and dedicated to innovation in learning, research and community engagement. Founded in 1801, the university offers more than 350 degree programs and is the state's only top-tier Carnegie Foundation research institution. More than 50,000 students are enrolled at one of 20 locations throughout the state, including the research campus in Columbia. With 56 nationally ranked academic programs including top-ranked programs in international business, the nation's best honors college and distinguished programs in engineering, law, medicine, public health and the arts, the university is helping to build healthier, more educated communities in South Carolina and around the world.

Credit: 
University of South Carolina

UBCO researcher uses computer modelling to predict reef health

image: A UBCO researcher is using years of compiled data to determine how virtual reef communities will respond to threats including cyclones and coral bleaching.

Image: 
Jean-Philippe Maréchal.

A UBC Okanagan researcher has developed a way to predict the future health of the planet's coral reefs.

Working with scientists from Australia's Flinders' University and privately-owned research firm Nova Blue Environment, biology doctoral student Bruno Carturan has been studying the ecosystems of the world's endangered reefs.

"Coral reefs are among the most diverse ecosystems on Earth and they support the livelihoods of more than 500 million people," says Carturan. "But coral reefs are also in peril. About 75 per cent of the world's coral reefs are threatened by habitat loss, climate change and other human-caused disturbances."

Carturan, who studies resilience, biodiversity and complex systems under UBCO Professors Lael Parrott and Jason Pither, says nearly all the world's reefs will be dangerously affected by 2050 if no effective measures are taken.

There is hope, however, as he has determined a way to examine the reefs and explore why some reef ecosystems appear to be more resilient than others. Uncovering why, he says, could help stem the losses.

"In other ecosystems, including forests and wetlands, experiments have shown that diversity is key to resilience," says Carturan. "With more species, comes a greater variety of form and function--what ecologists call traits. And with this, there is a greater likelihood that some particular traits, or combination of traits, help the ecosystem better withstand and bounce back from disturbances."

The importance of diversity for the health and stability of ecosystems has been extensively investigated by ecologists, he explains. While the consensus is that ecosystems with more diversity are more resilient and function better, the hypothesis has rarely been tested experimentally with corals.

Using an experiment to recreate the conditions found in real coral reefs is challenging for several reasons--one being that the required size, timeframe and number of different samples and replicates are just unmanageable.

That's where computer simulation modelling comes in.

"Technically called an 'agent-based model', it can be thought of as a virtual experimental arena that enables us to manipulate species and different types of disturbances, and then examine their different influences on resilience in ways that are just not feasible in real reefs," explains Carturan.

In his simulation arena, individual coral colonies and algae grow, compete with one another, reproduce and die. And they do all this in realistic ways. By using agent-based models--with data collected by many researchers over decades--scientists can manipulate the initial diversity of corals, including their number and identity, and see how the virtual reef communities respond to threats.

"This is crucial because these traits are the building blocks that give rise to ecosystem structure and function. For instance, corals come in a variety of forms--from simple spheres to complex branching--and this influences the variety of fish species these reefs host, and their susceptibility to disturbances such as cyclones and coral bleaching."

By running simulations over and over again, the model can identify combinations that can provide the greatest resilience. This will help ecologists design reef management and restoration strategies using predictions from the model, says collaborating Flinders researcher Professor Corey Bradshaw.

"Sophisticated models like ours will be useful for coral-reef management around the world," Bradshaw adds. "For example, Australia's iconic Great Barrier Reef is in deep trouble from invasive species, climate change-driven mass bleaching and overfishing."

"This high-resolution coral 'video game' allows us to peek into the future to make the best possible decisions and avoid catastrophes."

Credit: 
University of British Columbia Okanagan campus

Changing landscapes, changing diets

image: Casts of two key specimens: Paranthropus aethiopicus (left) and P. boisei (right)

Image: 
Zeresenay Alemseged

A new study published this week in the journal Proceedings of the National Academy of Sciences documents dietary shifts in herbivores that lived between 1-3 million years ago in Ethiopia's Lower Omo Valley. The research team, led by Enquye Negash, a postdoctoral researcher in the George Washington University Center for the Advanced Study of Human Paleobiology, examined stable isotopes in the fossilized teeth of herbivores such as antelopes and pigs and found a shift away from C3-derived foods, characteristic of woody vegetation, to C4-derived foods, representative of grasses and sedges. The shift happened at two distinct time periods, approximately 2.7 million years ago and 2 million years ago, when the environment of the Lower Omo Valley was transitioning to open savanna.

The study, “Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia,” served as a comparative framework to an associated hominin diet study, also published this week, of which Negash was a co-author. The associated study, “Isotopic evidence for the timing of the dietary shift towards C4 foods in eastern African Paranthropus,” examined carbon isotope data from the fossilized tooth enamel of Paranthropus boisei, a nonancestral hominin relative. Led by Jonathan Wynn, now a program director in the National Science Foundation’s division of Earth sciences, the research team behind that paper found a profound shift toward the consumption of C4-derived foods approximately 2.37 million years ago, which preceded a morphological shift of P. boisei’s skull and jaw. Given the direct evidence provided by the abundant, well-dated fossilized teeth and their chemical composition, the new findings suggest behavioral dietary changes can precede apparent morphological adaptations to new foods.

FROM THE RESEARCHERS:“Major dietary shifts that are observed in our study reflect the response of the herbivores to major ecological and environmental changes during this time. This allowed us to better understand the environmental context of similar dietary changes in hominins.”

- Enquye Negash

“Although we’re interested in how the diets of our immediate and distant ancestors evolved to produce our modern human diet, it is very important to consider these hominins as a small part of an ecosystem that included other plant and animal species that responded to changing environments in an interconnected way.”

- Jonathan Wynn

MORE INFORMATION:To schedule an interview with Negash, the primary spokesperson for the research group, please contact Timothy Pierce at [email protected].

This work was supported by National Science Foundation (NSF) award 1252157. Wynn was also supported by an NSF Independent Research and Development (IR/D) program.

Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2006982117

Credit: 
George Washington University

New blood, new hope: Transfusions protect the brain from stroke damage

image: Xuefang "Sophie" Ren, research assistant professor in the Department of Neuroscience, led a study that found that blood substitution therapy rescues the brains of mice from ischemic damage.

Image: 
Greg Ellis/West Virginia University

Muscle weakness permeates through one side of your body and your speech slurs. It's a stroke. And you need to be rushed to the emergency room.

Doctors replace your blood with the blood of a healthy person who's never suffered a stroke.

This blood swap lessens damage to your brain, and any neurological deficits from the stroke are nil.

This is not mere wishful thinking. It is a potential breakthrough in stroke therapy based on mice research by West Virginia University neuroscientists.

In the study, led by Xuefang "Sophie" Ren, research assistant professor in the Department of Neuroscience, the team found that blood substitution therapy rescues the brains of mice from ischemic damage. Their article is published in Nature Communications.

"What we were able to demonstrate is that if you remove part of the blood from a subject undergoing stroke, and replace that blood from a subject that's never had a stroke, the outcomes of that stroke are profoundly improved," said Ren, who's also director of the WVU Experimental Stroke Core.

The study is believed to be the first to show that blood replacement therapy leads to improved stroke outcomes in mice, a potential next step for stroke therapy in humans.

Most strokes (ischemic) occur when the blood supply to the brain is interrupted, usually by a blockage of the arteries leading to the brain.

While there is no known single medication for stroke, the only FDA-approved treatment for ischemic strokes is tPA, or tissue plasminogen activator, which dissolves the clot and improves blood flow. However, tPA typically must be administered within three hours of the stroke.

Ren's research indicates that blood transfusions can take place beyond that limited window - up to seven hours - and still have a positive impact. Replacing 20 percent of the blood in a mouse was enough to show a profound reduction in damage to the brain. The average adult holds around one-and-a-half gallons of blood in the body.

The study's co-authors include Heng Hu, postdoctoral fellow and Experimental Stroke Core surgeon, and James Simpkins, director of the Center for Basic & Translational Stroke Research and professor of the Department of Neuroscience.

Out with the old, in with the new

"The idea is to change the immune response that happens after stroke," Simpkins said.

Researchers explained that following a stroke, the makeup of a patient's blood changes, causing disruptions in the brain and how the body responds. Neutrophils, a type of white blood cell that helps lead the immune system's response, play a role in increasing the levels of an enzyme called MMP-9, which can lead to blood-brain barrier leakage and degeneration in brain tissue.

Blood replacement therapy removes inflammatory cells and decreases neutrophils and MMP-9 levels following a stroke, the study concluded.

"The immune system doesn't recognize much of what's happening when there's a stroke," Simpkins said. "So the neutrophils go to the brain and try to clean up the damage that happens. But there's too much in the brain and those same neutrophils release MMP-9, which then exacerbates the damage.

"What we learn is that stroke is simply not a cerebral vascular event. It's a whole-body event. Both the brain and the body get signals that something's going on in the brain and as the immune system responds to try to help, it actually worsens the outcome. Therefore, by removing the blood and replacing it with the blood of those that have not experienced stroke, we get good outcomes."

Currently, blood-based therapies are emerging as treatments to combat aging and fight neurodegenerative diseases, the researchers noted.

Now, blood replacement therapy is a proven strategy that targets the pathological systemic responses to stroke, Ren said, and could reduce the mortality of stroke patients.

"Blood indeed saves our brains and lives from stroke damage," she said.

According to the Centers for Disease Control and Prevention, more than 795,000 Americans experience a stroke each year and 140,000 die from it.

"In an ideal circumstance, a person having a stroke would show up to Ruby (Memorial) or any hospital," Simpkins said. "They'd go through the proper protocol. We would remove their stroke blood and magically restore it with the right kind of blood that would tamp down this immune response they're experiencing. If it works out, that's good for all of us."

Credit: 
West Virginia University

Three-dimensional quantum Hall effect and global picture of edge states in Weyl semimetals

image: Figures: (a) The physical picture of the edge states; (b) The tilting angle dependence of the Hall conductance; (c) The schematic diagram of the edge states to host the intrinsic Hall conductance; (d) The distribution of the local density of states of the edge states.

Image: 
International Center for Quantum Materials, Peking University

Since Von Klitzing discovered the quantum Hall effect in a two-dimensional electron gas system in 1980, there has been theoretical work discussing how to quantize the Hall conductance in a three-dimensional system. In a three-dimensional system, electrons form Landau levels in the directions perpendicular to the magnetic field, whereas own continuous dispersion along the direction of the magnetic field. Therefore, no matter where the Fermi energy is located, there will always be bulk electrons participating in the transport, resulting in the failure to make the Hall conductance quantized. However, the types of topological materials are gradually enriched in recent years, providing new ideas to realize the three-dimensional quantum Hall effect.

In recent years, the three-dimensional quantum Hall effect in topological semimetals has attracted extensive attention. In 2017, Professor Lu Haizhou's group from Southern University of Science and Technology and Professor Xie Xincheng's group from Peking University proposed a new mechanism to realize the three-dimensional effect in topological semimetals with the combination of the Fermi arcs at opposite surfaces. However, for this new three-dimensional quantum Hall effect, the physical picture of the edge states, how the edge states evolve and form a closed trajectory, and how it is affected by a tilted magnetic field is still missing. Recently, Professor Xie and his collaborators investigate the three-dimensional quantum Hall effect in Weyl semimetals and elucidate a global picture of the edge states. This work has been published in Physical Review Letters [Phys. Rev. Lett. 125, 036602. https://link.aps.org/doi/10.1103/PhysRevLett.125.036602].

Weyl semimetals are three-dimensional topological quantum materials of which bulk energy bands are gapped except for an even number of points in the momentum space, named Weyl nodes. At some surfaces of a Weyl semimetal, there exist topologically protected surface states, so-called Fermi arcs. The Fermi arcs on the top and the bottom surfaces of the Weyl semimetal form a complete two-dimensional electron gas via Weyl nodes. In the presence of a magnetic field, bulk electrons form chiral Landau bands with linear dispersion along the direction of the magnetic field. Through the analysis of the semi-classical equations of motion of electrons and numerical simulations of the transport, they stated that in the bulk or topologically trivial side surfaces, electrons connect the top and the bottom surfaces via chiral Landau states; on the topologically non-trivial side surfaces, electrons connect the top and the bottom surfaces via Fermi-arc surface states, thereby forming a closed trajectory (see Figure.(a)). When the Fermi level is located at the Weyl node, the Hall conductance shows quantized plateaus.

In addition, under a tilted magnetic field, chiral Landau bands will affect the spatial distribution of the edge states, and the resulting edge states will lead to distinctive Hall transport phenomena. A tilted magnetic field contributes to an intrinsic Hall conductance, and such an intrinsic value only depends on the tilting angle of the magnetic field and the properties of the Weyl semimetal. In particular, they also predicted that there is a critical angle of tilted magnetic fields. When the tilting angle of the magnetic field exceeds the critical angle, the Hall conductance will change its sign with an abrupt spatial shift of the edge states. This study uncovers the physical picture of the three-dimensional quantum Hall effect in Weyl semimetals and relates it to the topological properties of Weyl semimetals.

Credit: 
Peking University