Tech

New-generation CO2 gas separation system using gate-type adsorbents

image: Scientists in Japan designed a gate-type adsorbent tower system that captures and separates mixed gases, CO2, to enable lowering greenhouse gas emissions from industrial sources.

Image: 
Shotaro Hiraide Ph.D., Department of Chemical Engineering, Kyoto University

The Paris Agreement of 2015 set a goal of reducing CO2 emissions, a greenhouse gas that causes global warming to levels less than 2°C more than before the Industrial Revolution. In order to achieve this goal, it is necessary to reduce industrial energy consumption, half of which is used in separation processes for purifying, distilling and drying chemicals. It takes a lot of energy and is costly to separate a mixture of molecules. In other words, the development of a highly efficient and energy-saving separation technology is one of the most important challenges facing the world today, of which CO2 separation and capture is a high priority for lowering greenhouse gases.

The adsorption separation method for separating a mixture of molecules makes use of the property that specific molecules are adsorbed in a porous material. This is how water purifier filters and deodorizing charcoal in refrigerators work. When a gas mixture is poured from one end of an adsorption tower filled with a porous material (adsorbent), molecules that strongly interact with the adsorbent are captured into the pores. Some molecules with a weak interaction with the adsorbent are also adsorbed in the pores, but most pass through and flow out of the adsorption tower. The molecules taken into the pores are recovered or desorbed by heating or depressurizing the content of the adsorption tower. In order to selectively adsorb molecules into an adsorbent, there is a need for a stronger interaction, but the energy required for desorption increases accordingly. The key to greatly improving the adsorption separation efficiency is to find adsorbents with certain contradictory properties that can selectively adsorb large amounts of molecules and easily desorb them.

The pressure vacuum swing adsorption (PVSA) and temperature swing adsorption (TSA) processes, which are both gas separation methods using porous materials, can be more energy efficient than distillation, which requires selective boiling and condensation. However, PVSA and TSA aren't without their limitations. It is difficult to achieve high-throughput separation with these techniques because pressure loss is caused due to necessary system enlargement as well as the crushing of adsorbents at the bottom of the adsorption column. Previous efforts to resolve these issues have caused other problems such as heat generated by adsorption, which results in a decrease of adsorption capacity, so there is a need to find a novel adsorption material that exhibits a large loading capacity, high selectivity and minimal heat of adsorption, which are actually conflicting characteristics with known materials.

Therefore, the focus of this research was on "gate-type adsorbents". The greatest feature of this material is that it has a flexible structure. The researchers worked with ELM-11, a flexible metal-organic framework (MOF), which is a porous material with "gate-opening" and "gate-closing" properties exhibited at specific gas pressures. ELM-11's pores are closed and does not adsorb CO2 when the concentration of CO2 contained in the gas mixture is low, but rapidly expands when the CO2 concentration exceeds a certain threshold value, and opens the pores to capture CO2 molecules. Since the opening and closing behavior of the pores is like a gate, it is called a gate type adsorbent. ELM-11 deforms its structure to encapsulate CO2 molecules, and thus exhibits high CO2 selectivity. Furthermore, ELM-11 contracts its structure and releases all the adsorbed CO2 molecules when the CO2 concentration in the gas mixture falls below a threshold value. In other words, ELM-11 has properties that are highly suitable for CO2 adsorption and separation. It selectively adsorbs CO2 and easily desorbs CO2.

For the real world application of the adsorption separation of CO2 contained in exhaust gas, a large amount of gas must be processed at high speed. The problem is the generation of heat associated with CO2 adsorption. In traditional "hard" adsorbents, the heat of adsorption raises the temperature, resulting in reduced CO2 adsorption and reduced CO2 selectivity. ELM-11, which has a flexible structure, expands when it takes in CO2 molecules. The research group focused on the possibility that the expansion of ELM-11 may generate cold heat and effectively suppress the temperature rise due to CO2 adsorption.

First, they conducted a gas adsorption experiment on ELM-11 and conducted a variety of computational studies to quantify the CO2 separation capacity of ELM-11. They compared performance data with HKUST-1, a conventional adsorbent which is considered to be the most promising for separating CH4and CO2 gas mixtures. The data showed that ELM-11 has a CO2 selectivity 9.7 times that of HKUST-1. The CO2 recovery amount per adsorbent weight is 2.1 times that of HKUST-1, which has no intrinsic thermal management capability. ELM-11 proved to be extremely suitable for high-speed adsorption separation systems.

The researchers designed a high-speed adsorption separation system consisting of two-stage adsorption towers, one packed with HKUST-1. When the CO2 concentration contained in the gas mixture exceeds a certain threshold value, ELM-11 expands rapidly and opens pores, adsorbing CO2 molecules. This means that when the CO2 concentration in the gas falls to the threshold due to CO2 adsorption on ELM-11, the remaining CO2 is not adsorbed at all and flows out with CH4, which means that high-purity CH4 gas is not obtained. Therefore, to prevent this problem the researchers installed a small adsorption column filled with HKUST-1 that has excellent adsorption characteristics for low-concentration CO2 gas, in the latter stage of the adsorption column filled with ELM-11. They conducted a breakthrough measurement for a mixed gas of CH4 and CO2 using a small two-stage adsorption column, and was able to confirm that high-purity CH4 gas was obtained.

The two-stage adsorption tower system enables the reduction of the total tower volume, reduces the amount of adsorbent used, and reduces energy consumed. At first glance, the system is based on a simple idea, but it was possible to reduce the system size significantly in this way by designing the first-stage adsorption tower so that the characteristics of ELM-11 can be fully exhibited. The hybridization system utilizing the characteristics of ELM-11 and HKUST-1 worked extremely effectively.

The researchers needed to clarify three issues to see if ELM-11 possessed the necessary qualities needed for a real-life high-throughput separation process. First, it was necessary that the host framework response for the gate-opening needed to be very fast. Secondly, the separation properties must work for non-isothermal conditions, which has not been previously reported to the knowledge of the researchers. Thirdly, the "slipping-off" phenomenon caused by a decrease in the partial gas pressure below the gate-opening pressure, which makes the flexible MOF unable to adsorb molecules needed to be addressed. ELM-11 showed that the researchers are able to overcome these three issues, the "slipping-off" problem can be managed with the two-stage adsorption tower.

In addition, this system can be applied to the exhaust gas treatment of CO2 emission sources such as thermal power plants. In order to put this high-speed adsorption/separation system that uses a gate-type adsorbent into practical use, the hinderance of gate-opening due to the pelletization of flexible MOFs, and the pressure drop due to the volume expansion of pellets need to be addressed. The team have already started tackling these issues.

The accomplishments of this present research has opened the doors to a new era in gas separation. Corresponding author Hideki Tanaka of Shinshu University states that, "the study took 3 years to publish, which we are very grateful for because the multiple feedback from reviewers was very insightful and the subsequent re-writes made the study more innovative and better, which eventually led to the paper being published in Nature Communications. I'm very happy that the hard work of first author Shotaro Hiraide of Kyoto University was finally rewarded."

Credit: 
Shinshu University

Updating Turing's model of pattern formation

In 1952, Alan Turing published a study which described mathematically how systems composed of many living organisms can form rich and diverse arrays of orderly patterns. He proposed that this 'self-organisation' arises from instabilities in un-patterned systems, which can form as different species jostle for space and resources. So far, however, researchers have struggled to reproduce Turing patterns in laboratory conditions, raising serious doubts about its applicability. In a new study published in EPJ B, researchers led by Malbor Asllani at the University of Limerick, Ireland, have revisited Turing's theory to prove mathematically how instabilities can occur through simple reactions, and in widely varied environmental conditions.

The team's results could help biologists to better understand the origins of many ordered structures in nature, from spots and stripes on animal coats, to clusters of vegetation in arid environments. In Turing's original model, he introduced two diffusing chemical species to different points on a closed ring of cells. As they diffused across adjacent cells, these species 'competed' with each other as they interacted; eventually organising to form patterns. This pattern formation depended on the fact that the symmetry during this process could be broken to different degrees, depending on the ratio between the diffusion speeds of each species; a mechanism now named the 'Turing instability.' However, a significant drawback of Turing's mechanism was that it relied on the unrealistic assumption that many chemicals diffuse at different paces.

Through their calculations, Asllani's team showed that in sufficiently large rings of cells, where diffusion asymmetry causes both species to travel in the same direction, the instabilities which generate ordered patterns will always arise - even when competing chemicals diffuse at the same rate. Once formed, the patterns will either remain stationary, or propagate steadily around the ring as waves. The team's result addresses one of Turing's key concerns about his own theory, and is an important step forward in our understanding of the innate drive for living systems to organise themselves.

Credit: 
Springer

Researchers find link between Atlantic hurricanes and weather system in East Asia

image: Climate researchers led by the University of Iowa have found a link between hurricanes that form in the Atlantic Ocean - and threaten the United States - and a weather system in East Asia. The scientists report a subtropical jet stream in East Asia can influence whether Atlantic tropical cyclones form.

Image: 
Gabriele Villarini, University of Iowa

With a new Atlantic hurricane season in full swing, scientists may have found a new influence on how tropical cyclones develop.

Researchers led by the University of Iowa have identified a connection between a climate system in East Asia and the frequency of tropical storms that develop in the Atlantic Ocean--which can strengthen into hurricanes that threaten the United States.

In a new study, the researchers say the East Asian Subtropical Jet Stream (EASJ) an upper-level river of wind that originates in East Asia and moves west to east across the globe, carries with it an atmospheric phenomenon called a Rossby wave.

Rossby waves occur naturally within the Earth's oceans and atmosphere, forming because of the planet's rotation. The researchers say Rossby waves hitch a ride on the EASJ to the North Atlantic when tropical cyclones in the Atlantic are most likely to form. The waves affect wind shear, a key element in the formation of tropical storms.

"When the EASJ is stronger, it can enhance this pattern, which leads to stronger teleconnections and stronger wind shear in the North Atlantic," explains says Wei Zhang, a climate scientist at IIHR-Hydroscience & Engineering at Iowa. "That can suppress Atlantic tropical cyclone formation."

The scientists observed nearly 40 years of Atlantic tropical cyclones during prime formation season, from August to November, and their connection during the same time period with EASJ activity between July to October.

"What we found was there is a signal (Rossby waves) in terms of wind shear and that this signal is coming from the west, being Asia, over the Atlantic, via the East Asian Subtropical Jet Stream," says Zhang, who is corresponding author on the study, published online in the journal Geophysical Research Letters. "These jets act as a conduit for the signal originating in Asia, so it can propagate over the Atlantic."

The researchers analyzed various data sets, as well as the database from the National Hurricane Center between 1980 and 2018, to seek patterns associated between tropical cyclones generated in the Atlantic and the EASJ. They determined based on that information that a stronger EASJ is associated with fewer Atlantic tropical cyclones.

The study comes as Hurricane Isiaias became the fifth named storm to make landfall in the continental U.S.--and already the second hurricane to swipe land--when it swept across the U.S. East Coast last week.

The researchers previously found a connection between the EASJ and storms affecting the western U.S. After that study, they looked for other associations.

"We said, 'OK let's see whether this subtropical jet can influence other weather systems," says Gabriele Villarini, IIHR's director and a co-author on the study.

"We found a physical mechanism that can provide a basic understanding in the context of tropical cyclone formation," Villarini says. "Then the question becomes, 'OK, now that you know that, what are you going to do with it?'"

He continues: "That's the part that is not there yet, in the sense of how predictable is the East Asian Subtropical Jet, and how far ahead can we predict it for an entire season, so that it can become a useful tool for predicting tropical cyclone formation in the North Atlantic."

The researchers also aim to understand how climate change could affect the EASJ, which may contribute to tropical cyclones' frequency in the North Atlantic.

Credit: 
University of Iowa

Highly sensitive dopamine detector uses 2D materials

image: Schematic of a highly selective dopamine detector using two-dimensional material.

Image: 
Derrick Butler, Penn State

A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine is an important neurotransmitter that can be used to diagnose disorders such as Parkinson's disease, Alzheimer's disease and schizophrenia.

"If you can develop a very sensitive, yet simple-to-use and portable, detector that can identify a wide range of dopamine concentration, for instance in sweat, that could help in non-invasive monitoring of an individual's health," said Aida Ebrahimi, assistant professor of electrical engineering, Penn State, and a corresponding author on a paper published Aug. 7 in Science Advances.

Their work shows that by adding a small amount of manganese to a two-dimensional layered material called molybdenum disulfide, they can improve the sensitivity by many orders of magnitude compared to other reported results, while also achieving high specificity. Importantly, their detector is low-cost and flexible, and can detect dopamine in background media including buffer, serum and sweat, and in real-time.

“Regarding our method, electrochemical deposition is a new way of depositing these chemicals that is very simple and scalable,” said Mauricio Terrones, Verne M. Willaman Professor of Physics, Materials Science and Chemistry and the second corresponding author. “The air force is interested in these neurotransmitters that are markers of stress. I envision this as a wearable sensor.”

Humberto Terrones and his group, at RPI, performed the computational investigation that allowed them to explain how addition of manganese results in an improved response to dopamine. The experimental work was performed within the Center for Atomically Thin Multifunctional Coatings (ATOMIC) at Penn State.

"Combining the experimental results with computational studies proved to be very insightful, and I think we all learned much more throughout this project because of that," said Derrick Butler, a co-lead author on the paper and doctoral student at Penn State. "Developing these materials and applying them in a way that could improve the health and well-being of others makes the work especially enjoyable and rewarding."

His co-lead author, doctoral candidate Yu Lei, added, "One challenge is to develop a scalable method to bridge fundamental studies and practical applications. Our method is based on electrodeposition, which has been widely used in industry, thus providing a scalable route to functionalize MoS2 in a scalable way. Also, I believe this multidisciplinary team is the key to find the right way to functionalize MoS2 for ultrasensitive dopamine detection."

In further work, the group hopes to find other material combinations to detect a variety of other biomarkers with the specificity of their current sensor. Creating such a "toolkit" combining experimental investigations with computational methods will lead to new materials with multifunctional capabilities. This might be useful beyond human health, for example, for detecting noxious gases, water contamination or biodefense agents.

"In future, we can envision a combined sensor/actuator that can detect the dopamine and provide therapy at the same time. The sensors can be integrated with miniaturized chips for integration of sensing, actuating, control and data processing," Ebrahimi said.

Credit: 
Penn State

Layer of nanoparticles could improve LED performance and lifetime

Adding a layer of nanoparticles to LED designs could help them produce more light for the same energy, and also increase their lifetime.

This is according to a team from Imperial College London and the Indian Institute of Technology (IIT) Guwahati who have found a new way to boost the amount of light LEDs produce. They report their innovation in the journal Light Science & Applications.

Making light-emitting diode (LED) light sources more efficient and longer-lasting will mean they use less energy, reducing the environmental impact of their electricity use. LEDs are used in a wide range of applications, from traffic lights and backlighting for electronic displays, smartphones, large outdoor screens, and general decorative lighting, to sensing, water purification, and decontamination of infected surfaces.

The team modelled the impact of placing a two-dimensional (single layer) of nanoparticles between the LED chip, which produces the light, and the transparent casing that protects the chip. Although the casing is necessary, it can cause unwanted reflections of the light emitted from the LED chip, meaning not all the light escapes.

They found that adding a layer of finely tuned nanoparticles could reduce these reflections, allowing up to 20 percent more light to be emitted. The reflections also increase the heat inside the device, degrading the LED chip faster, so reducing the reflections could also reduce the heat and increase the lifetime of LED chips.

Co-author Dr Debabrata Sikdar from IIT Guwahati, formerly a European Commission Marie Curie-Sklodowska Fellow at Imperial, commented: "While improvements to the casing have been suggested previously, most make the LED bulkier or more difficult to manufacture, diminishing the economic effect of the improvement.

"We think that our innovation, based on fundamental theory and the detailed, balanced optimization analysis we performed, could be introduced into existing manufacturing processes with little disruption or added bulk."

Co-author Professor Sir John Pendry, from the Department of Physics at Imperial, said: "The simplicity of the proposed scheme and the clear physics underpinning it should make it robust and, hopefully, easily adaptable to the existing LED manufacturing process.

"It is obvious that with larger light extraction efficiency, LEDs will provide greater energy savings as well as longer lifetime of the devices. This will definitely have a global impact on the versatile LED-based applications and their multi-billion-dollar market worldwide."

Co-author Professor Alexei Kornyshev, from the Department of Chemistry at Imperial, commented: "The predicted effect is a result of development of a systematic theory of various photonic effects related to nanoparticle arrays at interfaces, applied and experimentally tested in the context of earlier reported switchable mirror-windows, tuneable-colour mirrors, and optical filters."

The next stage for the research will be manufacturing a prototype LED device with a nanoparticle layer, testing the best configurations predicted by the theory - including the size, shape, material and spacing of the nanoparticles, and how far the layer should be from the LED chip.

The authors believe that the principles used can work along with other existing schemes implemented for enhancing light extraction efficiency of LEDs. The same scheme could also apply to other optical devices where the transmission of light across interfaces is crucial, such as in solar cells.

Credit: 
Imperial College London

Simple approach tested in small group visually evaluates mask effectiveness against viral droplets

Using inexpensive and widely available tools, scientists have developed a simple approach to visually evaluate how effectively different types of masks prevent the spread of droplets that could contain SARS-CoV-2 virus particles, according to a new study. While the authors note their work is still in the early stages, and their method has so far only been tested in a small group of people, these preliminary, proof-of-principle findings suggest that professional-grade N95 masks, surgical or polypropylene masks, and handmade cotton masks may all block much of the spray produced when wearers speak. Bandanas and neck fleeces, however, likely provide little protection, as the researchers observed that more droplets are expelled through these materials - likely because the materials break up larger droplets as they pass through the material, the researchers speculate. Emma Fischer and colleagues suggest that non-experts could easily build and operate this setup to evaluate masks at the community level, such that mask producers could use the method to optimize mask designs, and educational and community outreach organizations could demonstrate proper mask fitting procedures.

As nations worldwide have instituted mask mandates to curb the spread of COVID-19, global commercial suppliers have encountered shortages in the face of unprecedented demand. To compensate, many people have turned to homemade masks and mask alternatives, but these do-it-yourself versions have not been tested systematically. To evaluate the effectiveness of 14 different types of masks and other frequently substituted face coverings, Fischer et al. designed a simple approach in which either one male speaker or, in some cases, four speakers wore each mask while standing in a dark enclosure. The speaker would say the phrase "stay healthy, people" five times in the direction of a laser beam, which scattered light from the droplets released during speech. A cell phone camera recorded the droplets and a simple computer algorithm counted them. The setup was intentionally designed to be simple and inexpensive so it could be replicated by non-experts - the hardware it requires, including laser equipment, is commonly available and can be purchased for less than $200. While the researchers acknowledge the need for further testing, Fischer et al.'s findings suggest that N95 masks without valves blocked droplet spread best, but surgical or polypropylene masks and handmade cotton face coverings were also effective. The early findings suggest that bandanas and neck fleeces (like balaclavas), however, likely provide little protection. "Our work was a demonstration of a simple measurement method, not a systematic mask study," writes Martin Fischer, the study's corresponding author, in a Q&A. "More work is required to investigate variations in masks, speakers, and how people wear them. We also want to extend our method to other droplet-generating actions, like coughing and sneezing. Further, we want to explore effects of incorrect placement and moisture saturation."

Credit: 
American Association for the Advancement of Science (AAAS)

Experts urge evaluation of diet at routine check-ups

DALLAS, Aug. 7, 2020 -- The time has come for routine health care visits to include some form of dietary assessment and counseling, according to a new scientific statement from the American Heart Association published today in Circulation: Cardiovascular Quality and Outcomes, an American Heart Association journal. The statement, written by a group of nutrition and cardiovascular disease experts, recommends the adoption of a rapid diet screening tool that can be integrated into electronic health record platforms across all health care settings.

"Dietary patterns and quality are not sufficiently prioritized when addressing modifiable risk factors during regular health care office visits. Given the evidence that diet contributes to disease and mortality, it is a risk factor worth screening for continuously," said Maya Vadiveloo, Ph.D., R.D., chair of the statement writing group and assistant professor of nutrition and health sciences in the College of Health Science at the University of Rhode Island in Kingston, Rhode Island.

Poor diet quality has surpassed all other risk factors for death, accounting for 11 million deaths and about half of cardiovascular disease (CVD) deaths globally, according to the 2017 Global Burden of Disease Study, a comprehensive report on the health impact of diet in 195 countries around the world.

The statement authors reviewed 15 existing screening tools, assessing each to provide insight on the feasibility of incorporating an evidence-based dietary screening tool into routine practice.

The authors list numerous reasons why members of a health care team may not address diet quality during a routine office visit: lack of training and knowledge; lack of time and reimbursement; competing demands during the often short office visit; and that nutrition services aren't integrated into many health care settings.

"However, these barriers can be overcome," said Vadiveloo. "We want a valid, reliable way to assess diet that reflects the best science, and most of the tools assessed take under 10 minutes to use." Three of the tools assessed meet criteria set forth in the statement and may provide a framework to help practices incorporate diet screening into their workflow. The Powell and Greenberg Screening Tool asks two questions about fruit and vegetable consumption and sugary food and juice consumption. The Rapid Eating Assessment for Participants-Shortened assessment and the Mediterranean Diet Adherence Screener ask more than 10 questions and cover major food groups, as well as processed foods and alcohol consumption.

The keys to an effective diet screening tool include:

Using an evidence-based approach;

Assessing the total dietary pattern, not just a single food or nutrient;

Speed;

The ability to give actionable next steps and support to patients; and

The ability to track and monitor dietary change over time.

"There are other tools beyond what was assessed, and additional tools could be developed," said Vadiveloo.

While the statement does not endorse a specific screening tool, it encourages critical conversations among clinicians, individuals with diet/lifestyle expertise and specialists in information technology to adopt rapid diet screening tools for adults in primary care and relevant specialty care and prevention settings.

"An important component in addition to evaluating diet quality is targeting actionable changes - helping patients set achievable dietary goals - and then following up at the next visit," said Alice H. Lichtenstein, D.Sc., vice-chair of the writing group and lead and senior scientist of the Cardiovascular Nutrition Team at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University in Boston.

Areas for future study include testing and validating screener tools in diverse populations, as well as among special clinical populations (pediatrics, geriatrics, etc.), and evaluating the feasibility of implementing these tools in clinical settings.

A healthy diet can improve cardiovascular disease risk and outcomes. What you eat (and how much) can affect other controllable risk factors, such as cholesterol, blood pressure, diabetes and being overweight.

Credit: 
American Heart Association

Renewables in Europe: Land requirements can be reduced at low cost

Transitioning our energy supply from coal, oil and gas to wind and solar power is feasible. However, renewables require more land than conventional forms of energy generation. A new study explores the options to reduce the land requirements of a fully renewable energy supply in Europe and their possible impact on the cost of electricity.

The most affordable option for a fully renewable electricity supply in Europe is based on solar parks and onshore windfarms. However, this solution requires some 97,000 km2 land, or roughly 2% of the total area of the European Union - an area equivalent to the size of Portugal.

Offshore wind and solar energy can reduce land requirements

Wind and solar farms change landscapes and their development is frequently the subject of controversy. This is especially true in the case of onshore windfarms, currently the most important technology behind the European energy transition, as these occupy large areas and are visible from a long distance. Prioritizing the adoption of other electricity generation infrastructures in the future could reduce the space requirements of a fully renewable electricity system. According to the study, three options could be pursued individually or in combination to achieve this goal: Offshore wind power, large solar parks, and roof-top solar systems. Each of these technologies could limit land use to about 48,000 square kilometres - one percent of the area of Europe - or even less.

Additional costs are low

According to the study, offshore wind power is particularly cost-effective and could reduce onshore land requirements by 50 percent at an additional cost of five percent compared to the cheapest option. Replacing onshore wind farms with large solar parks or roof-top solar systems would incur additional costs of up to 20 percent. "We have to decide, as a society, how much we value open land," explains the study's author Tim Tröndle. The well-planned expansion of offshore wind power and solar energy offers opportunities to effectively reduce onshore land requirements at a low additional cost.

Credit: 
Research Institute for Sustainability (RIFS) – Helmholtz Centre Potsdam

Alport syndrome: Research highlights link between genotype and treatment effectiveness

image: Genotype-phenotype correlation for renal survival in Alport syndrome

Image: 
Kobe University

A large-scale analysis of the clinical characteristics of Alport syndrome in Japanese patients has revealed that the effectiveness of existing treatment with ACE inhibitors and/or angiotensin receptor blockers (RAS inhibitors) (*1) varies depending on the type of mutation in the syndrome's causal gene (COL4A5). RAS inhibitors are widely administered to patients with chronic kidney diseases as they are known to preserve kidney functions, and they are also effective against Alport Syndrome. In addition to providing proof of the effectiveness of RAS inhibitor treatment in Japanese patients with Alport syndrome, the researchers revealed for the first time in the world that the degree of effectiveness depends on the genotype.

The research group included Assistant Professor YAMAMURA Tomohiko, Professor IIJIMA Kazumoto and Professor NOZU Kandai et al. of the Department of Pediatrics, Kobe University Graduate School of Medicine.

These results were published online in the journal 'Kidney International' on July 23, 2020.

Main Points

Alport syndrome is a hereditary disorder characterized by nephritis, hearing loss and eye abnormalities (such as anterior lenticonus or cataracts).

X-linked (*2) Alport syndrome is the most common form and men in particular exhibit severe symptoms. Those who have a severe mutation (such as a nonsense mutation (*3)) in Alport syndrome's casual gene COL4A5 are known to develop end-stage kidney disease (ESKD) in their early twenties.

One promising treatment involves using ACE inhibitors and/or angiotensin receptor blockers (RAS inhibitors) to preserve kidney functions. So far, studies conducted outside Japan have shown these treatments to be effective for lowering urinary protein levels and suppressing the progression of kidney function deterioration.

This research team conducted a large scale survey of Japanese male patients with Alport syndrome. They compared the median results of a group of patients who were prescribed RAS inhibitors with a group of patients who didn't take the drug. They found that the age at which patients taking RAS inhibitors progressed to ESKD was delayed by over 20 years, demonstrating the effectiveness of this treatment.

The team also compared the effectiveness of the treatment for those with minor mutations (such as missense mutations (*4)) and those with severe mutations in the casual gene. Although RAS inhibitors were effective in treating those with severe mutations, they were comparatively more effective in those with minor mutations.

For the first time in the world, this research demonstrated that the effectiveness of RAS inhibitors differs depending on the genotype of Alport syndrome.

Research Background

Alport syndrome (AS) is the second most commonly occurring hereditary kidney disease after autosomal dominant polycystic kidney disease (ADPKD). There is one case of Alport syndrome in every 5,000 to 10,000 people. It is characterized by hearing loss, eye abnormalities and kidney disease, often progressing to end stage kidney disease (ESKD). Alport syndrome is divided into three groups according to how it is inherited; X-linked AS, autosomal recessive AS and autosomal dominant AS with approximately 80% of cases being X-linked Alport syndrome (XLAS).

XLAS develops due to pathological mutations in the COL4A5 gene that encodes the type IV collagen α5 chain. In particular, male patients with XLAS are likely to have severe symptoms and around 90% of them experience ESKD by the age of 40. This requires them to undergo renal replacement therapies such as dialysis and kidney transplants. However, there is still no specialized treatment for Alport syndrome itself.

Men with severe types of Alport syndrome (such as those caused by nonsense mutations in the COL4A5 gene) develop ESKD over ten years earlier than those with milder forms (such as those caused by missense mutations). A possible treatment for Alport syndrome involves using ACE inhibitors and/or angiotensin receptor blockers (RAS inhibitors) to preserve kidney functions. So far, studies conducted outside Japan have shown these treatments to be effective for lowering urinary protein levels and suppressing the progression of kidney function deterioration.

Research Findings

Up until now, this research team has established a comprehensive genetic diagnosis system for Alport syndrome, which has enabled them to conduct genetic diagnoses of Japanese patients. This time, the researchers conducted a retrospective investigation into the clinical characteristics of the disorder in 430 male patients with XLAS. From these results and by drawing on the findings of other research, they revealed the following:

1. It was possible to analyze the clinical data of 422 of these patients, and the results showed that the median age for progression to ESKD was 35.

2. There was a very strong correlational relationship between genotype and the median age for progression to ESKD. The median age was 18 for those with nonsense mutations (Figure 1: black survival curve), whereas it was 40 in those with missense mutations (Figure 1: yellow survival curve). This is a difference of 22 years (Figure 1).

3. The data also revealed a connection between the symptom of hearing loss and the median age at which ESKD developed. The median age in patients with hearing loss was 28, in those without hearing loss it was 55. This showed that renal symptoms were more severe in cases with hearing loss.

4. Clinical data from 207 patients that showed whether or not they were prescribed RAS inhibitors was also analyzed. The results revealed that those who didn't receive RAS inhibitor treatment developed ESKD by a median age of 28, whereas over half of those prescribed with RAS inhibitors did not develop ESKD before the age of 50. In other words, it was shown that this drug could delay the onset of ESKD by over 20 years (Figure 2).

5. Subsequently, the researchers evaluated the effectiveness of RAS inhibitors depending on whether the patient had a severe mutation or a minor mutation. In patients with minor mutations, those who were not administered RAS inhibitors developed ESKD at a median age of 33 (Figure 3: red survival curve), whereas over half of those who received treatment with the drug did not develop ESKD before a median age of 50 (Figure 3: blue survival curve).

On the other hand, in patients with severe mutations, the group who weren't prescribed RAS inhibitors progressed to ESKD by a median of 16 years of age (Figure 3: black survival curve), whereas those receiving RAS inhibitor treatment developed ESKD at a median age of 28 (Figure 3: green survival curve). Therefore, the drug was effective in treating Alport syndrome caused by severe mutations as it delayed the onset of ESKD in patients by a median of 12 years. However the treatment was shown to be less effective than in patients with minor mutations (Figure 3).

Credit: 
Kobe University

Adding another dimension to a cell culture model for pulmonary arterial hypertension

image: Pulmonary arterial smooth muscle cells derived from patients with pulmonary arterial hypertension were cultured in 3D to generate an in vitro model of the pulmonary arterial wall. This fluorescence staining image of cell nuclei shows multiple layers of cells, demonstrating the successful generation of tissues with a thickness comparable to that seen in the human body.

Image: 
© 2020 Mitsunobu R. Kano

Pulmonary arterial hypertension (PAH) is a rare--albeit deadly--disease that affects the arteries of the lung. In PAH, abnormal growth of cells of the vascular media--or the elastic wall--of the pulmonary arteries, called pulmonary arterial smooth muscle cells (PASMCs), results in thickening of the walls. This leads to the narrowing and/or obstruction of small pulmonary arteries, thus causing increased pulmonary vascular resistance and arterial pressure--ultimately leading to right heart failure. Over the years, various drugs have been approved for PAH treatment, but the survival of PAH patients three years after diagnosis still remains at approximately 60%, which is not ideal.

In a recent study published in Frontiers in Bioengineering and Biotechnology, researchers in Japan, including Professor Mitsunobu R. Kano and Dr Aiko Ogawa, found a new way to tackle PAH. They reasoned that to find a solution for PAH, a detailed understanding of the processes involved in this disease is crucial. To this end, using three-dimensional (3D) cell culture technology, they established a new model for PAH "in vitro" (in the laboratory). In this model, they successfully recapitulated the process central to the pathogenesis and progression of PAH. Dr Ogawa of the National Hospital Organization Okayama Medical Center, who led the study, explains, "Given the importance of vascular medial thickening in the pathogenesis of PAH, novel therapeutics targeting this process might be beneficial in improving disease outcomes in PAH patients." Prof Mitsunobu R. Kano of Okayama University, who co-supervised the study, adds, "The lack of in vitro models that recapitulate vascular medial thickening led us to establish a new model to study this disease."

The isolation and analysis of PASMCs from patients with PAH have provided important insights into PAH pathobiology. But, PASMCs are usually cultured on regular plastic dishes--that is, in two dimensions only. This precludes the modeling of vascular medial thickening, an inherently three-dimensional (or 3D) process. Therefore, the scientists decided to take this method a step--rather a dimension--further. By applying a "3D cell culture" technique to the PASMCs, they succeeded in generating an in vitro model of the pulmonary arterial wall with a thickness comparable to that seen within the human body.

Over the last couple of decades, a key insight that has emerged regarding PAH pathobiology is that a soluble factor called platelet-derived growth factor (PDGF) induces the excessive proliferation of PASMCs. With the new in vitro 3D model of the pulmonary arterial wall in hand, the team wondered: Could the process of vascular medial thickening be modeled, if PDGF was applied to the new model? When the scientists tested this theory experimentally, they indeed found it to be true. "We found that PDGF induced the proliferation of PASMCs and increased the thickness of the 3D tissues," says Prof Kano.

The scientists didn't stop here: to see whether the model can be used to assess the ability of particular compounds to suppress vascular medial thickening, they went on to test the effects of various clinically used PAH drugs. They observed that treating the model with these drugs led to changes in the thickness of 3D tissues, which were similar to the effects of the drugs on PASMC proliferation in the tissues. Therefore, the scientists realized that their model could not only provide an important tool in studying PAH but also help to test potential drug candidates for PAH treatment in the future.

Although there is still a long road ahead, the scientists are optimistic about their findings. Dr Ogawa concludes, "We plan to use our new model to enhance our understanding of PAH. We also hope that this novel model can accelerate the research on PAH pathogenesis and pave the way for novel treatment strategies."

Credit: 
Okayama University

Smartwatch tracks medication levels to personalize treatments

image: Smartwatch to track medication levels

Image: 
Jialun Zhu, Shuyu Lin, and Yichao Zhao (I²BL/UCLA)

Engineers at the UCLA Samueli School of Engineering and their colleagues at Stanford School of Medicine have demonstrated that drug levels inside the body can be tracked in real time using a custom smartwatch that analyzes the chemicals found in sweat. This wearable technology could be incorporated into a more personalized approach to medicine -- where an ideal drug and dosages can be tailored to an individual.

A study detailing the research was published in Proceedings of the National Academy of Sciences.

In general, medications are prescribed with a 'one-size-fits-all' approach -- drugs are designed and prescribed based on statistical averages of their effectiveness. There are guidelines for factors such as patients' weight and age. But in addition to these basic differentiators, our body chemistry constantly changes -- depending on what we eat and how much we've exercised. And on top of these dynamic factors, every individual's genetic makeup is unique and hence responses to medications can vary. This affects how fast drugs are absorbed, take effect and get eliminated from an individual.

According to the researchers, current efforts to personalize the drug dosage rely heavily on repeated blood draws at the hospital. The samples are then sent out to be analyzed in central labs. These solutions are inconvenient, time-consuming, invasive and expensive. That is why they are only performed on a small subset of patients and on rare occasions.

"We wanted to create a wearable technology that can track the profile of medication inside the body continuously and non-invasively," said study leader Sam Emaminejad, an assistant professor of electrical and computer engineering at UCLA. "This way, we can tailor the optimal dosage and timing of the intake for each individual. And using this personalization approach, we can improve the efficacy of the therapeutic treatments."

Because of their small molecular sizes, many different kinds of drugs end up in sweat, where their concentrations closely reflect the drugs' circulating levels. That's why the researchers created a smartwatch, equipped with a sensor that analyzes the sampled tiny droplets of sweat.

The team's experiment tracked the effect of acetaminophen, a common over-the-counter pain medication, on individuals over the period of a few hours. First, the researchers stimulated sweat glands on the wrist by applying a small electric current, the same technique that Emaminejad's research group demonstrated in previous wearable technologies.

This allowed the researchers to detect changes in body chemistry, without needing subjects to work up a sweat by exercising. As different drugs each have their own unique electrochemical signature, the sensor can be designed to look for the level of a particular medication at any given time.

"This technology is a game-changer and a significant step forward for realizing personalized medicine," said study co-author Ronald W. Davis, a professor of biochemistry and genetics at Stanford Medical School. "Emerging pharmacogenomic solutions, which allow us to select drugs based on the genetic makeup of individuals, have already shown to be useful in improving the efficacy of treatments. So, in combination with our wearable solution, which helps us to optimize the drug dosages for each individual, we can now truly personalize our approaches to pharmacotherapy."

What makes this study significant is the ability to accurately detect a drug's unique electrochemical signal, against the backdrop of signals from many other molecules that may be circulating in the body and in higher concentrations than the drug, said the study's lead author Shuyu Lin, a UCLA doctoral student and member of Emaminejad's Interconnected and Integrated Bioelectronics Lab (I²BL). Emaminejad added that the technology could be adapted to monitor medication adherence and drug abuse.

"This could be particularly important for individuals with mental health issues, where doctors prescribe them prolonged pharmacotherapy treatments," he said. " The patients could benefit from such easy-to-use, noninvasive monitoring tools, while doctors could see how the medication is doing in the patient."

Credit: 
University of California - Los Angeles

Children's pester power a future target for interventions

audio: Lead investigator Taren Swindle, PhD, discusses a new study that highlights how children’s pester power may influence food consumption and habits at home.

Image: 
Journal of Nutrition Education and Behavior

Philadelphia, August 6, 2020 - Children's pester power may contribute to improvements in their family's food environments. A new study in the Journal of Nutrition Education and Behavior, published by Elsevier, highlights the potential for children to influence food consumption and habits at home.

Researchers from the University of Arkansas for Medical Sciences and Louisiana Tech University studied classrooms that delivered weekly Together, We Inspire Healthy Eating (WISE) lessons at seven Head Start sites across two states in the southern United States. The study demonstrated that children's pester power explained a significant portion of the variance in the residual change of children's dietary intake and parenting practices after one school year of exposure to the WISE intervention.

"The more pester power that parents were exposed to from their children, the greater we saw changes in the desired direction for intake of fruits and vegetables and also supportive parenting practices," said lead study author Taren Swindle, PhD, Department of Family and Preventive Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA. "It means that children's influence on their homes may be an underdeveloped potential target for future interventions."

The pester power of children is well documented in marketing and advertising research and is increasingly being considered in regard to the nutritional habits and obesogenic environments of children. Future studies can provide insight into which components of educational programs specifically predict successful pester power.

"I like to think of this as hypothesis-generating work. It suggests a really promising area for future exploration," Prof. Swindle said.

Credit: 
Elsevier

Arecibo Observatory returns from tropical storm Isaias lockdown to track asteroid for NASA

image: Radar range-Doppler image of 2020 NK1 reveals an elongated asteroid approximately 1 km (0.6 mi) along the longest axis. The image resolution in the vertical dimension is 100 ft (30 m) per pixel. It looks a lot like a bowling pin.

Image: 
Arecibo Observatory

The Earth has one less asteroid to worry about thanks to the research of an international team of scientists at the Arecibo Observatory in Puerto Rico.

Asteroid 2020 NK1 was spotted in early July by the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey team at the University of Hawaii. Little was known about the asteroid, making it difficult to predict exactly where the asteroid would travel in the future. It was estimated to be 1,600 feet in diameter, about the length of five football fields. Before the Arecibo observations, 2020 NK1 was calculated to be one of the biggest threats out of all known asteroids on NASA's list of potential impactors, with about one chance in 70,000 of impacting the Earth between 2086 and 2101.

Arecibo's Planetary Radar Group made it a priority to observe 2020 NK1 when it came within range - within 5 million miles - of the facility's powerful instruments. In this case, the time period was brief, July 30-31, just about the same time Tropical Storm Isaias was expected to slam into the island.

The observatory shut down to prepare for the storm, and as soon as it passed the team jumped into action to detect and study the asteroid. Even as parts of the island lost power and damage was assessed, the Arecibo team was able to determine the asteroid's shape, orbit and motion.

"Fortunately, the storm passed quickly without damage to the telescope or the radar system, and the maintenance and electronics teams were able to activate the telescope from hurricane lockdown in time for the observations," says Sean Marshall, an observatory scientist who led the team during the radar observations.

The team of scientists and telescope operators was able to observe the asteroid for two and half hours, collecting precise measurements of the asteroid's speed and distance from Earth as well as high-resolution images of the asteroid. "These measurements greatly improve our knowledge of 2020 NK1's orbit and allow for predictions of its future whereabouts for decades to come," says Patrick Taylor, a Texas scientist at the Lunar and Planetary Institute, part of Universities Space Research Association, who participated in the observation remotely.

The observations showed the asteroid is not expected to get close enough to Earth to pose a danger in the future, with its closest approach coming in 2043 when it will pass about 2.25 million miles from Earth - or more than 9 times farther away than the Moon, the team concluded

The obtained radar images reveal an elongated shape and a diameter along its longest axis of approximately .6 mile.

"This event was a great example of the important role that the Arecibo radar system plays in planetary science and planetary defense. It shows that we have very quick response times and high-precision range, motion, and-size measurement capabilities, in spite of storms, the COVID-19 pandemic and earthquakes with which Puerto Rico has dealt with this year," says Anne Virkki, the head of the Planetary Radar group at the Arecibo Observatory.

2020 NK1 is one of many Potentially Hazardous Objects (PHO) that NASA tracks. Asteroids are considered PHOs if they are bigger than 500 feet in diameter and come within 5 million miles of the Earth's orbit. No known PHOs pose an immediate danger to the Earth, but observations like those conducted at the Arecibo Observatory are used to determine their future trajectories and risk.

Arecibo runs a program supported by a NASA grant to observe and characterize near-Earth objects that pose a potential hazard to Earth or that could be candidates for future space missions.

The observatory is home to the most powerful and most sensitive planetary radar system in the world, which means it is also a unique tool available to analyze NEOs, such as asteroids and comets. The knowledge gained from radar observations helps NASA's Planetary Defense Coordination Office determine which objects pose significant risks, and when and what to do to mitigate them. NASA officials can also use the information to determine which objects are the most viable for science missions - landing on an asteroid is not equally easy for all of them.

Credit: 
University of Central Florida

Training neural circuits early in development improves response, study finds

CHAMPAIGN, Ill. -- When it comes to training neural circuits for tissue engineering or biomedical applications, a new study suggests a key parameter: Train them young.

Techniques for training engineered neural circuits usually involve training them after the cells have fully matured. Using light-sensitive neurons derived from mouse stem cells, researchers at the University of Illinois, Urbana-Champaign found that training them throughout early cell development and network formation led to lasting improvements in the connections, responsivity and gene expression of the resulting neural network. They published their results in the journal Scientific Reports.

"It's like an old dog learning new tricks versus a young puppy," said graduate student Gelson Pagan-Diaz, the first author of the study. "When we're training a network, if we stimulate it when it's still like a puppy, we can get a better response to the training than if it were already mature."

Improved neural training has many applications in bioengineering and regenerative medicine. For example, the Illinois team hopes to use trained neural circuits to control the movement and behavior of miniature bio-hybrid machines. The types of improvements yielded by early training could give the machines and circuits more functionality and give the researchers more precise control over those functions.

"As we advance the field of building machines with living cells, being able to stimulate and program neuronal cells and networks with light early in their development could be an important tool in our engineering repository," said study leader Rashid Bashir, a professor of bioengineering and dean of the Grainger College of Engineering at Illinois. "Furthermore, this work could have implications for developmental biology, regenerative medicine and brain research."

To train the neurons, the researchers used timed pulses of light to stimulate the cells. The researchers began the training regimen when the cells were early in their development - clusters of stem cells, called embryoid bodies, primed to become motor neurons. They continued the training as the cells differentiated, becoming fully mature neurons, and further continued it after transferring the cells to plates to connect and form neural circuits.

They then compared the early trained circuits with those cultured first and trained later - the usual method.

The researchers saw a number of differences between the groups, Pagan-Diaz said. In the neurons trained during development, they saw more extensions indicating connections between cells, an increase in neurotransmitter packages sent between cells, and more structured nerve firing, indicating greater network stability. The effects of the early training were long-lasting, whereas cells trained later tended to have transient responses.

"You can think of the neurons being like athletes in training," Pagan-Diaz said. "The light stimulation was like a regular workout for the neurons - they were stronger and more athletic, and did their jobs better."

To determine the underlying basis for these changes, the researchers analyzed the neurons' genetic activity. They saw an increase in gene expression for genes related to network maturity and neural function, indicating that the early training could have permanently altered genetic pathways as the cells developed, Bashir said.

The researchers are continuing to explore what kinds of activities could be enhanced or programmed by early neuron training in the embryoid body phase. Embryoid bodies could be useful building-block components for biological machines, Pagan-Diaz said, and also hold promise for regenerative medicine.

"Previous studies have shown that embryoid bodies with motor neurons implanted into mice that had been injured could improve the regeneration of tissue," Pagan-Diaz said. "If we can improve or enhance the functionality of these embryoid bodies prior to putting them into an injured model, then theoretically we could enhance the recovery beyond what has been seen with injecting them and then stimulating them later."

Credit: 
University of Illinois at Urbana-Champaign, News Bureau

New science behind algae-based flip-flops

image: Commerical-quality biodegradable flip-flops.

Image: 
Photo courtesy of Stephen Mayfield, UC San Diego.

As the world's most popular shoe, flip-flops account for a troubling percentage of plastic waste that ends up in landfills, on seashores and in our oceans. Scientists at the University of California San Diego have spent years working to resolve this problem, and now they have taken a step farther toward accomplishing this mission.

Sticking with their chemistry, the team of researchers formulated polyurethane foams, made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. The results of their study are published in Bioresource Technology Reports and describe the team's successful development of these sustainable, consumer-ready and biodegradable materials.

The research was a collaboration between UC San Diego and startup company Algenesis Materials--a materials science and technology company. The project was co-led by graduate student Natasha Gunawan from the labs of professors Michael Burkart (Division of Physical Sciences) and Stephen Mayfield (Division of Biological Sciences), and by Marissa Tessman from Algenesis. It is the latest in a series of recent research publications that collectively, according to Burkart, offer a complete solution to the plastics problem--at least for polyurethanes.

"The paper shows that we have commercial-quality foams that biodegrade in the natural environment," said Mayfield. "After hundreds of formulations, we finally achieved one that met commercial specifications. These foams are 52 percent biocontent--eventually we'll get to 100 percent."

In addition to devising the right formulation for the commercial-quality foams, the researchers worked with Algenesis to not only make the shoes, but to degrade them as well. Mayfield noted that scientists have shown that commercial products like polyesters, bioplastics (PLA) and fossil-fuel plastics (PET) can biodegrade, but only in the context of lab tests or industrial composting.

"We redeveloped polyurethanes with bio-based monomers from scratch to meet the high material specifications for shoes, while keeping the chemistry suitable, in theory, so the shoes would be able to biodegrade," Mayfield explained.

Putting their customized foams to the test by immersing them in traditional compost and soil, the team discovered the materials degraded after just 16 weeks. During the decomposition period, to account for any toxicity, the scientists, led by UC San Diego's Skip Pomeroy, measured every molecule shed from the biodegradable materials. They also identified the organisms that degraded the foams.

"We took the enzymes from the organisms degrading the foams and showed that we could use them to depolymerize these polyurethane products, and then identified the intermediate steps that take place in the process," said Mayfield, adding, "We then showed that we could isolate the depolymerized products and use those to synthesize new polyurethane monomers, completing a 'bioloop.'"

This full recyclability of commercial products is the next step in the scientist's ongoing mission to address the current production and waste management problems we face with plastics --which if not addressed, will result in 13 billion tons of plastic in landfills or the natural environment by 2050. According to Pomeroy, this environmentally unfriendly practice began about 60 years ago with the development of plastics.

"If you could turn back the clock and re-envision how you could make the petroleum polymer industry, would you do it the same today that we did it years ago? There's a bunch of plastic floating in every ocean on this planet that suggests we shouldn't have done it that way," noted Pomeroy.

While commercially on track for production, doing so economically is a matter of scale that the scientists are working out with their manufacturing partners.

"People are coming around on plastic ocean pollution and starting to demand products that can address what has become an environmental disaster," said Tom Cooke, president of Algenesis. "We happen to be at the right place at the right time."

The team's efforts are also manifested in the establishment of the Center for Renewable Materials at UC San Diego. Begun by Burkart, Mayfield, Pomeroy and their co-founders Brian Palenik (Scripps Institution of Oceanography) and Larissa Podust (Skaggs School of Pharmacy and Pharmaceutical Sciences), the center focuses on three major goals: the development of renewable and sustainable monomers made from algae and other biological sources; their formulation into polymers for diverse applications, the creation of synthetic biology platforms for the production of monomers and crosslinking components; and the development and understanding of biodegradation of renewable polymers.

"The life of material should be proportional to the life of the product," said Mayfield. "We don't need material that sits around for 500 years on a product that you will only use for a year or two."

Credit: 
University of California - San Diego