Tech

New technology lets quantum bits hold information for 10,000 times longer than previous record

image: Conceptual art of the acceptor-based spin-orbit qubit. A boron atom (yellow) implanted in silicon crystal (blue) bounds a hole. Orbital motion of a hole in silicon is coupled to its spin degree of freedom. This cou-pling is reminiscent of gears where circular motion (blue arrow) and spinning (red arrow) are locked to-gether. Quantum information is encoded to the combined motion and spin of a hole in the spin-orbit qubit.

Image: 
Takashi Kobayashi, Tohoku University

Quantum bits, or qubits, can hold quantum information much longer now thanks to efforts by an international research team. The researchers have increased the retention time, or coherence time, to 10 milliseconds - 10,000 times longer than the previous record - by combining the orbital motion and spinning inside an atom. Such a boost in information retention has major implications for information technology developments since the longer coherence time makes spin-orbit qubits the ideal candidate for building large quantum computers.

They published their results on July 20 in Nature Materials.

"We defined a spin-orbit qubit using a charged particle, which appears as a hole, trapped by an impurity atom in silicon crystal," said lead author Dr. Takashi Kobayashi, research scientist at the University of New South Wales Sydney and assistant professor at Tohoku University. "Orbital motion and spinning of the hole are strongly coupled and locked together. This is reminiscent of a pair of meshing gears where circular motion and spinning are locked together."

Qubits have been encoded with spin or orbital motion of a charged particle, producing different advantages that are highly demanded for building quantum computers. To utilize the advantages of qubits, Kobayashi and the team specifically used an exotic charged particle "hole" in silicon to define a qubit, since orbital motion and spin of holes in silicon are coupled together.

Spin-orbit qubits encoded by holes are particularly sensitive to electric fields, according to Kobayashi, which allows for more rapid control and benefits scaling up quantum computers. However, the qubits are affected by electrical noise, limiting their coherence time.

"In this work, we have engineered sensitivity to the electric field of our spin-orbit qubit by stretching the silicon crystal like a rubber band," Kobayashi said. "This mechanical engineering of the spin-orbit qubit enables us to remarkably extend its coherence time, while still retaining moderate electrical sensitivity to control the spin-orbit qubit."

Think of gears in a watch. Their individual spinning propels the entire mechanism to keep time. It is neither the spin nor orbital motion, but a combination of them that takes the information forward.

"These results open a pathway to develop new artificial quantum systems and to improve the functionality and scalability of spin-based quantum technologies," Kobayashi said.

Credit: 
Tohoku University

Scientists propose nano-confinement strategy to form sub-nanometer reactors

image: TEM image of a triple-atom active center and the schematic illustration of a sub-nanometer reactor hosting it for catalyzing NRR

Image: 
LIANG Ji

Single-atom catalysts (SACs) are promising in electrocatalysis processes due to their maximum utilization of active species.

However, manipulation of these atomic-scale active sites to satisfy specific reactions is still an essential bottleneck due to their isolation features.

Prof. LIU Jian from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and his collaborators proposed a nano-confinement strategy to host multiple Fe and Cu single atoms inside the extremely narrow yet regular surface cavities of graphitic carbon nitride to form "sub-nanometer reactors".

The study was published in Advanced Materials on Sept. 2.

"These Fe and Cu atoms, highly confined in the sub-nanometer reactors, not only provide stronger interaction with the reactants but also, more importantly, lead to significant synergetic effect due to their unique microenvironments in this extremely narrow space, which is highly favorable for catalysis, especially the tandem processes such as the nitrogen reduction reaction," said Prof. LIANG Ji from Tianjin University, a co-author of the study.

"This is the first time that we successfully and conceptually push the nanoreactors towards a much smaller dimension to form sub-nanometer reactors, which brings distinctively different properties from the conventional nanoreactors," added by Prof. LIU.

"First principle simulation reveals that this synergistic effect originates from the unique Fe-Cu coordination, which effectively modifies N2 absorption, improves electron transfer, and offers extra redox couples for nitrogen reduction reaction," said Prof. SUN Chenghua from Swinburne University of Technology, another co-author of the study.

The researchers found that this significant synergy caused by the multiple confined atoms led to significant performance enhancement for the model electrocatalytic process, the nitrogen reduction reaction (NRR).

Improvements in terms of high ammonia yield and efficiency that are much higher in comparison with the mono-metal counterparts have been achieved.

This concept of constructing sub-nanometer reactors not only provides a new strategy of manipulating catalysts active centers at the subnanometer scale, but also sheds light on the design of novel catalysts with a precision spatial location at the sub-nanometer scale for a wide spectrum of catalytic reactions as well.

Credit: 
Chinese Academy of Sciences Headquarters

NASA's Aqua Satellite finds wind shear not letting up on Omar  

image: On Sept. 4 at 2:05 a.m. EDT (0605 UTC), the MODIS instrument that flies aboard NASA's Aqua satellite gathered infrared data on Omar that confirmed wind shear was adversely affecting the storm. Persistent north-northwesterly vertical wind shear showed strongest storms (yellow) pushed southeast of the center where cloud top temperatures are as cold as minus 50 degrees Fahrenheit (minus 45.5 Celsius).

Image: 
NASA/NRL

Tropical Depression Omar is one stubborn storm. Since it developed early in the week, it was being affected by wind shear. That wind shear has not let up by the week's end, and NASA satellite imagery showed the bulk of storms were being pushed to the southeast of the center.

NASA's Aqua Satellite Reveals Effects of Wind Shear 

NASA's Aqua satellite uses infrared light to analyze the strength of storms by providing temperature information about the system's clouds. The strongest thunderstorms that reach high into the atmosphere have the coldest cloud top temperatures.

On Sept. 4 at 2:05 a.m. EDT (0605 UTC), the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua satellite gathered infrared data on Omar that confirmed wind shear was still adversely affecting the storm. The center of circulation appears to be a swirl of clouds devoid of precipitation. In addition, satellite data reveals that some dry air is also being drawn into the circulation, which is further inhibiting the development of thunderstorms.

The only precipitation was in an area of fragmented storms pushed to the southeast of the center, as a result of strong north-northwesterly vertical wind shear. Those storms had cloud top temperatures as cold as minus 50 degrees Fahrenheit (minus 45.5 Celsius). Satellite imagery also shows the low-level circulation center became exposed.

Wind Shear Affecting Omar

The shape of a tropical cyclone provides forecasters with an idea of its organization and strength. When outside winds batter a storm, it can change the storm's shape and push much of the associated clouds and rain to one side of it. That is what wind shear does.

In general, wind shear is a measure of how the speed and direction of winds change with altitude. Tropical cyclones are like rotating cylinders of winds. Each level needs to be stacked on top each other vertically in order for the storm to maintain strength or intensify. Wind shear occurs when winds at different levels of the atmosphere push against the rotating cylinder of winds, weakening the rotation by pushing it apart at different levels.

Omar's Status on Friday, September 4, 2020

At 5 a.m. EDT (0900 UTC) on Sept. 4, the center of Tropical Depression Omar was located near latitude 35.3 degrees north and longitude 58.5 degrees west. That is about 415 miles (670 km) east-northeast of Bermuda. The depression is moving toward the east near 7 mph (11 km/h) and a turn toward the northeast with an increase in forward speed is expected over the next couple of days. Maximum sustained winds are near 30 mph (45 km/h) with higher gusts.

Forecast for Omar

The National Hurricane Center noted if the lack of convection continues, Omar will be declared a remnant low-pressure system later today, Sept. 4. The cyclone is expected to become absorbed by a frontal trough (elongated area of low pressure) within a couple of days.

Credit: 
NASA/Goddard Space Flight Center

Ocean carbon uptake widely underestimated

The world's oceans soak up more carbon than most scientific models suggest, according to new research.

Previous estimates of the movement of carbon (known as "flux") between the atmosphere and oceans have not accounted for temperature differences at the water's surface and a few metres below.

The new study, led by the University of Exeter, includes this - and finds significantly higher net flux of carbon into the oceans.

It calculates CO2 fluxes from 1992 to 2018, finding up to twice as much net flux in certain times and locations, compared to uncorrected models.

"Half of the carbon dioxide we emit doesn't stay in the atmosphere but is taken up by the oceans and land vegetation 'sinks'," said Professor Andrew Watson, of Exeter's Global Systems Institute.

"Researchers have assembled a large database of near-surface carbon dioxide measurements - the "Surface Ocean Carbon Atlas" (http://www.socat.info) - that can be used to calculate the flux of CO2 from the atmosphere into the ocean.

"Previous studies that have done this have, however, ignored small temperature differences between the surface of the ocean and the depth of a few metres where the measurements are made.

"Those differences are important because carbon dioxide solubility depends very strongly on temperature.

"We used satellite data to correct for these temperature differences, and when we do that it makes a big difference - we get a substantially larger flux going into the ocean.

"The difference in ocean uptake we calculate amounts to about 10 per cent of global fossil fuel emissions."

Dr Jamie Shutler, of the Centre for Geography and Environmental Science on Exeter's Penryn Campus in Cornwall, added: "Our revised estimate agrees much better than previously with an independent method of calculating how much carbon dioxide is being taken up by the ocean.

"That method makes use of a global ocean survey by research ships over decades, to calculate how the inventory of carbon in the ocean has increased.

"These two 'big data' estimates of the ocean sink for CO2 now agree pretty well, which gives us added confidence in them."

Credit: 
University of Exeter

Red hot meat: the wrong recipe for heart disease

From MasterChef to MKR, the world's best chefs have taught us how to barbeque, grill and panfry a steak to perfection. But while the experts may be seeking that extra flavour, new research from the University of South Australia suggests high-heat caramelization could be bad for our health.

Conducted in partnership with the Gyeongsang National University the study found that consuming red and processed meat increased a protein compound that may increase the risk of heart disease, stroke, and complications in diabetes.

UniSA researcher Dr Permal Deo says the research provides important dietary insights for people at risk of such degenerative diseases.

"When red meat is seared at high temperatures, such as grilling, roasting or frying, it creates compounds called advanced glycation end products - or AGEs ¬- which when consumed, can accumulate in your body and interfere with normal cell functions," Dr Deo says.

"Consumption of high-AGE foods can increase our total daily AGE intake by 25 per cent, with higher levels contributing to vascular and myocardial stiffening, inflammation and oxidative stress - all signs of degenerative disease."

Published in Nutrients, the study tested the impacts of two diets - one high in red meat and processed grains and the other high in whole grains dairy, nuts and legumes, and white meat using steaming, boiling, stewing and poaching cooking methods.

It found that the diet high in red meat significantly increased AGE levels in blood suggesting it may contribute to disease progression

Largely preventable, cardiovascular disease (CVD) is the number one cause of death globally. In Australia, it represents one in five of all deaths.

Co-researcher UniSA's Professor Peter Clifton says while there are still questions about how dietary AGEs are linked to chronic disease, this research shows that eating red meat will alter AGE levels.

"The message is pretty clear: if we want to reduce heart disease risk, we need to cut back on how much red meat we eat or be more considered about how we cook it.

"Frying, grilling and searing may be the preferred cooking methods of top chefs, but this might not be the best choice for people looking to cut their risk of disease.

"If you want to reduce your risk of excess AGEs, then slow cooked meals could be a better option for long-term health."

Credit: 
University of South Australia

New weight-loss hope for those with highest obesity risk: Underserved, low-income patients

BATON ROUGE, Louisiana - Low-income Louisiana patients enrolled in a tailored obesity intervention program lost much more weight than counterparts receiving usual care. Study results were published this week in The New England Journal of Medicine. This population, who traditionally face the most barriers to weight loss and the highest levels of obesity, found success in a coaching program delivered directly through their primary care clinics.

"It's hard to lose weight for anyone. Adding any obstacle to treatment, especially poverty, makes that task much more difficult. We wanted to remove as many barriers as possible so we brought an effective program to people where they are, in the primary care clinics where they're comfortable, and it works," said Peter Katzmarzyk, Ph.D., Associate Executive Director of Population and Public Health Sciences at Pennington Biomedical Research Center.

Over the past decade, several studies failed to achieve meaningful weight loss among people with obesity through lifestyle modification, or diet and exercise, Dr. Katzmarzyk said. The results from the Promoting Successful Weight Loss in Primary Care in Louisiana (PROPEL) study demonstrate the importance of making the program as convenient for the patient as possible.

The PROPEL study enrolled 803 patients from 18 primary care clinics in rural and urban parts of the state. The two-year program randomly divided the patients into two groups:

452 took part in an "intensive lifestyle intervention." For six months, patients had weekly in-person or phone sessions with a health coach. The coaches demonstrated appropriate portion sizes and identified portion-controlled foods such as fruits, soups and frozen entrees. The coaches also worked with patients on coping with stress and increasing physical activity. The patients were given electronic scales and encouraged to weigh themselves every day. For the remaining 18 months, the patients had monthly in-person or phone sessions.

351 patients received "usual care," routine primary care services and three newsletters per year with articles on the importance of being active, getting enough sleep, household money management, family coping skills, and not smoking.

The lifestyle group lost 5 percent of their body weight, compared to 0.5 percent in the usual care group.

Pennington Biomedical Executive Director John Kirwan, Ph.D., said the study has important health implications in the effort to slow the global obesity epidemic.

"The significance of this study cannot be overstated. Obesity has been linked to at least 13 deadly cancers and lies at the root of type 2 diabetes and heart disease and stroke. People with obesity who contract COVID-19 are at much greater risk for serious illness or death," Dr. Kirwan said. "A weight loss of 3 percent to 5 percent can generate significant health benefits."

Credit: 
Pennington Biomedical Research Center

More power to you: A novel betavoltaic technology with dyes for better energy production

image: Prof Su-Il In, head of the Green and Renewable Energy for Endless Nature (GREEN) Lab at DGIST

Image: 
dgist

Electronic devices are becoming smaller, more connected, and more powerful; and they still have one thing in common: they need energy to function. Even miniature implantable medical devices and remote Internet-of-Things sensors need some amount of power to run, making it a challenge to design equally small, efficient, and durable batteries for them.

One of the alternatives that could potentially be the answer to these problems is the "betavoltaic cell." These cells are a type of power source akin to photovoltaic cells that, instead of producing an electric current by capturing visible or ultraviolet light, creates electricity using a type of radiation (beta decay) generated internally by a radioactive material. The biggest issue with existing betavoltaic cells is their low conversion efficiency. This means that only a very tiny portion of the emitted radiation can be converted into electric energy.

In a recent study published in Chemical Communications and selected as the cover image of its July issue, scientists from Daegu Gyeongbuk Institute of Science and Technology (DGIST) in Korea, led by Prof Su-Il In, explore a new technique to boost the performance of betavoltaic cells. To achieve this, they took a page from a technique previously used in photovoltaic cells: sensitizing dyes. In the proposed betavoltaic cell, the electrons in ruthenium-based dye used are "sensitive" to the beta radiation emitted by the radioactive source material. This means that electrons in the dye are more easily excited into higher energy states, making it easier for them to then jump from the dye to the material on the other pole of the battery, thus completing a circuit.

The performance of their cell was experimentally verified and turned out to be quite promising, as Prof In remarks, "So far, our dye-sensitized betavoltaic cell is the first to apply dye to achieve high radiation-to-current conversion efficiency." The prospect of small, durable, and efficient betavoltaic devices could open up a lot of design space for small set-and-forget electronic devices. Excited about the results, Prof In concludes, "We explore a new horizon in the field of betavoltaic devices, and we predict that even higher efficiencies will be possible through further modifications, creating new opportunities in the field of nuclear batteries."

Credit: 
DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Fatty acid receptor involved in temperature-induced sex reversal of Japanese medaka fish

image: Heat stress activates the PPARα signal in gonadal somatic cells through cortisol in the adrenal gland to differentiate medaka into males.
CRH: corticotropin-releasing hormone, VT: vasotocin, ACTH: corticotropin

Image: 
Professor Takeshi Kitano

A research collaboration based at Kumamoto University (Japan) has found that activation of PPARα, a fatty acid receptor that detects fatty acids in cells and regulates physiological functions, causes masculinization of Japanese rice fish (medaka). The discovery of this molecular mechanism is expected to advance the development of new sex control technologies.

The sex of mammals is determined in their genes, specifically the XX/XY combination of sex chromosomes. On the other hand, the sex-determination of fish, amphibians, and reptiles is greatly affected by ambient temperature. The medaka (Oryzias latipes), however, is a bony fish that uniquely uses the XX/XY sex determination system. The sex-determining gene, DMY, was recently identified on their Y chromosome. Normally, XY individuals with the DMY gene will differentiate into males and XX individuals (without DMY) will differentiate into females. However, if medaka are bred in water with temperatures of 32 to 34°C during their period of sexual differentiation, XX individuals will differentiate into males. In other words, their genetic sex-determination is affected by temperature. Previous research from Kumamoto University demonstrated that cortisol, a high-temperature-induced stress hormone, directly acts on the gonads and causes masculinization of XX medaka (Hayashi et al., 2010; Yamaguchi et al., 2010; Kitano et al., 2012). However, the molecular mechanism of cortisol masculinization was not determined.

In this study, researchers conducted an RNA sequencing analysis to search for genes activated by high temperature or cortisol. Many genes related to the fatty acid receptor "peroxisome proliferator-activated receptor alpha" (PPARα) were detected, and when a PPARα activator was administered to medaka larvae, XX medaka became male. Furthermore, when knockout medaka with inhibited PPARα function were produced, differentiation into males was completely suppressed, even after the administration of cortisol or a PPARα activator. To the researchers' knowledge, this is the first time that PPARα activation has been shown to be so involved with medaka sex-differentiation by cortisol or an activator.

"In fish farming for food production, such as flounder or eel, technology that produces only females is sought after because they grow faster than males," said study leader, Professor Takeshi Kitano. "Here, we have revealed the molecular mechanism that induces differentiation into males and we hope that new sexual control technologies using this mechanism will be developed in the future."

Credit: 
Kumamoto University

A chemist from RUDN developed a green catalyst for pharmaceutical and industrial chemistry

image: Many production facilities (e.g. plastic manufacturers, pharma companies, and others) use nanocatalysts that contain palladium--an expensive component that is not sustainably produced. A chemist from RUDN University found a way to reduce palladium consumption and to make its manufacture more eco-friendly. He developed a catalyst based on a substance that comes from plant waste. Using his invention, manufacturers could cut palladium consumption in half. Moreover, new catalysts can be reused multiple times without any decrease in efficiency.

Image: 
RUDN University

Many production facilities (e.g. plastic manufacturers, pharma companies, and others) use nanocatalysts that contain palladium--an expensive component that is not sustainably produced. A chemist from RUDN University found a way to reduce palladium consumption and to make its manufacture more eco-friendly. He developed a catalyst based on a substance that comes from plant waste. Using his invention, manufacturers could cut palladium consumption in half. Moreover, new catalysts can be reused multiple times without any decrease in efficiency. The results of the study were published in the journal Molecular Catalysis.

Cross-coupling is a type of reaction that involves combining carbon atoms from different organic molecules. Cross-coupling reactions are most widely spread ones in industrial chemistry. They are used to synthesize plastics, medicinal drugs, and other compounds and account for 17% of all reactions in medical chemistry only. The main component of cross-coupling is palladium nanoparticles. Palladium is one of the rarest elements on Earth, which makes it a very expensive catalyst. Moreover, it is mainly produced at mining facilities that pose a considerable threat to the environment. A chemist from RUDN University suggested solving all these issues with one new approach.

The consumption of palladium in cross-coupling reactions increases because the particles of palladium-containing catalysts tend to bind together. There are two ways to stop this. One could modify the chemical properties of the particles to weaken the reaction between their surfaces when they come in contact. Alternatively, the metal could be held in place physically with a framework or a grid. The chemist from RUDN University chose the second method and locked metal particles in their respective places using a multilayer shell with a magnetic core.

The core of the new nanocatalyst consists of iron oxide with high magnetic properties. The coating is made of a catechol-based polymer. Catechol is a substance that is found in plant cell walls and is produced from plant waste. Both these layers are ancillary and have no catalytic activity. The catalytic properties of the compound come from palladium nanoparticles that are incorporated into the second layer. The polymer fixes the particles in place and prevents them from binding together.

The new catalyst structure requires twice as little palladium as the old one: 1.5% of the total nanoparticle weight as opposed to 3-6%. Moreover, after a couple of production cycles, the core of the nanocomposite material can be cleaned up and reused. This method is not only good for the environment but also economically feasible, as it will make the production of medicinal drugs, plastics, and other products cheaper.

"Today chemists are especially interested in green catalysts. Our nanocatalysts contain a product of plant waste recycling and at the same time efficiently work in cross-coupling reactions. Therefore, not only are they able to reduce palladium consumption and make the production process cheaper, but also are beneficial for the environment. Moreover, we managed to showcase the universal nature of polymers based on plant catechols. The same approach can be used when working with other metals including platinum, silver, or gold, or with catalysts of other organic reactions," said Rafael Luque, PhD, Head of the Molecular Design and Synthesis of Innovative Compounds for Medicine Science Center at RUDN University.

Credit: 
RUDN University

Images of captive torment in art

image: Anon., Figures kissing, 1942-45, wood, approximate height = 40?cm. Courtesy of Barmera Visitor Information Centre, South Australia.

Image: 
Courtesy of Barmera Visitor Information Centre, South Australia.

Between the arrival of pearl divers and war brides - long after Japanese performers toured Australia 150 years ago - an untold chapter of World War Two history has emerged in a new study of wartime art made by almost 5000 prisoners of war in Australia and New Zealand.

Focusing on internment camps set up across Australia and NZ, Canterbury University and Flinders University art historians Richard Bullen and Tets Kimura examine some exquisite Japanese artworks produced during the extended period of war incarceration.

It gives a fascinating insight into the lives of these ethnic and part-Japanese PoWs and civilians, at a time of enforced detention at remote locations such as Cowra and Hay (NSW), Tatura in Victoria, Loveday and Woolenook camp (SA) and Featherston, Pahiatua and Somes Island in New Zealand.

"Australasian Japanese internment camps remain largely unheard of, and the art made by the internees has received no attention until the current research," they say in the new paper. "Although there were some very crudely made items made by the Japanese held in Australasia, many of the works are of surprising quality and suggest a level of artistic confidence and training."

Including the Cowra breakout and a standoff at the Featherston facility, the record of camp life focuses more on a narrative of violence, misunderstanding, racism, than the social history and isolating and traumatic experience of internment.

In the largely all-male camp environment, many of the works depict alluring female figures, with the cultural symbols of kimono, geisha and umbrella depicted in various ways.The paper outlines the stories of several such artworks, including the attached:

Credit: 
Flinders University

SUTD develops intelligent model simulator that maps complex phenomena of memristor memory

image: Snapshot depicts the temperature profile of the memristor memory model.

Image: 
SUTD

Memristor memory technology is set to revolutionise computers the world over as it is touted as one of the most promising candidates used for next-generation edge computing. This technology is attracting a lot of attention for replacing flash due to its implementations in high-efficient in-memory computing, machine learning and neuromorphic computation. Realising a model to predict the phenomena of memristor memory technology accurately is essential as this will allow engineers to design systems with more efficient behaviors for making a cheaper, faster memory.

Currently, a wide range of experimental and modeling studies have been reported to understand the transport process, which occurs when a current passes through the device. Several important characteristics, such as applied voltage, electric field, material constants and so on, are applied in the model simulators for predicting this process. Transport process can be analysed by various models with the help of simulation tools and advanced observation technologies.

A Singapore-led collaboration has successfully created a simulator using both electronic and thermal components to make a "transport pattern". The team then used this hybrid platform to map a long-standing challenge in memory technology: the transport process under many conditions.

Corresponding author, Assistant Professor Desmond Loke from SUTD, said, "What we have done is take two different components of a model, memristor model, which show different behaviour from each other. When these are put them together, one can create a transport pattern that is up to 700 times more accurate than traditional models".

Due to Joule heating, the potential temperature of the device increases and yield variations in electronic properties, such as mobility of electrons and depth of traps. These variations influence the analysis and prediction of transport behaviour of memristor memory. By considering the models of transport behaviours and assumptions related to the electron mobility and trap depth, the transport behaviours of memristor memory cells can be precisely predicted. Furthermore, the rich transport and switching behaviours can be fully accounted for by describing device characteristics obtained by an entirely new set of general current-limiting parameters.

Credit: 
Singapore University of Technology and Design

Japan's geologic history in question after discovery of metamorphic rock microdiamonds

image: a: Geological zone in western Japan. The blue-green part is the Sanbagawa belt that crosses mainland Japan. The Nishisonogi metamorphic rock was thought to belong to the same geological formation as the Sanbagawa belt.
b: Enlarged map of Saikai city.
c: An enlarged view of the Yukinoura district of Saikai City. The star indicates where microdiamonds were found.

Image: 
Professor Tadao Nishiyama

A collaboration of researchers based in Kumamoto University, Japan have discovered microdiamonds in the Nishisonogi metamorphic rock formation in Nagasaki Prefecture, Japan. Microdiamonds in metamorphic rocks are important minerals because they form in continental collision zones and show that the crust has penetrated deeper than 120 km below the surface. This is the second area in the world, after the Italian Alps, that shows microdiamonds can form in metamorphic rock through subduction of oceanic plates.

In recent years, microdiamonds have received a great deal of attention because they have been discovered in metamorphic rocks around the world and it has become clear that they are formed in collisions between continents. It was thought that Japan would not produce such microdiamonds because it is not a continental collision zone, but an oceanic plate subduction zone. However, the first microdiamonds from metamorphic rocks in Japan were found in the Nishisonogi metamorphic rock formation in the west coast of Nagasaki Prefecture.

The area where the microdiamonds were discovered is an approximately 100-million-year-old Cretaceous metamorphic rock formation. On the west coast of Saikai City in Nagasaki Prefecture, blocks of pelitic and basic schist are scattered amongst serpentinite that was created from mantle material. Such rocks are called a serpentinite mélange and indicate that they have risen from deep in the subduction zone. Researchers found microdiamonds here, in the serpentinite mélange. Their formation conditions have been estimated to be a temperature of about 450 °C and a pressure of about 2.8 GPa, which makes them the coldest diamonds ever formed. It has been thought that the Nishisonogi metamorphic rock was formed under a pressure of about 1 GPa, but it is now clear that they were ultrahigh-pressure metamorphic rocks that rose after subducting to 120 km--a very unexpected discovery.

"The discovery of microdiamonds from Japan's first metamorphic rocks will rewrite Japan's geological history," said Professor Tadao Nishiyama, the leader of this study. "Until now, the Nagasaki metamorphic rocks were said to belong to a low-temperature, high-pressure-type metamorphic rock belt, the "Sanbagawa Belt," which crosses the Japanese mainland. It has become clear, however, that they are independently-formed ultrahigh-pressure metamorphic rocks. I expect that there will be many discussions about what kind of plate movement created this formation."

Credit: 
Kumamoto University

New model explains when the brain becomes aware of information

When we watch a movie or hear an orchestra playing, it seems that we perceive images and sounds as a continuous stream of information. But a new study suggests that the brain makes information conscious only at certain moments of time, which are preceded by intervals of unconscious processing that can last up to half a second.

The model, detailed in Trends in Cognitive Sciences, resolves longstanding debates about how consciousness arises and offers a new picture of how the brain becomes aware of information.

Experiencing reality

The question of when consciousness arises has puzzled philosophers, psychologists, and neuroscientists for centuries. One hypothesis proposes that consciousness is a continuous stream of percepts. "When we're riding a bike, we feel that we're moving at each moment of time," says Michael Herzog, head of the Psychophysics Laboratory at EPFL School of Life Sciences, who led the new study. However, he says, this theory has serious limitations. For example, studies have shown that if a red dot appears on a screen for a fraction of a second, followed by a green dot at the same location for another brief moment of time, a person will perceive only a single yellow dot. If the hypothesis of continuous consciousness were true, one would perceive first the red dot and then the green dot, Herzog says. "But this is not true, you merge the dots and you see a yellow dot,," he says.

Another hypothesis suggests that consciousness happens only at discrete time-points, like a camera taking snapshots. But this idea has also drawn criticism: if our brain would process information every half a second, it would impossible to do even simple tasks such as riding a bike, Herzog says.

By analyzing data from previous studies that aimed to test whether or not consciousness is continuous, Herzog and his team came up with a new model, according to which the brain processes and integrates information almost continuously during intervals of unconsciousness that last up to 500 milliseconds. During this time, the brain processes the different elements of a scene and analyzes them across many different regions. Some brain areas examine the colors, others the shape and position of objects. These brain regions will then share that information and combine the different features--and when unconscious processing is complete, the conscious experience of all that is in front of us pops out.

"Up to now, some people have believed that when we look at the world, we look at just a series images. But now we say, what the brain analyzes as a basic unit of perception is not an image, it's an entire scene that includes features such as motion," Herzog says. It's as if the brain stores short movies during the periods of unconscious processing and then calls up the information during the conscious moments, he adds.

Herzog says it's unclear how multiple units of perception are stitched together in the brain, for example when we listen to a symphony. He also acknowledges that the new model is somewhat counterintuitive because it is at odds with the feeling that the world is continuously unfolding in front of our eyes. However, he adds, the model provides useful insights about how people experience reality. "We need to change our view on perception," he says.

The new model could also open up avenues to manipulate the way the brain perceives information. During intervals of unconscious processing, when details about the surrounding world are stored in the brain, it's possible to change those details using techniques that control brain activity with magnetic pulses, Herzog says.

Next, his team plans to find out what starts and terminates the unconscious processing intervals, and whether stress or other environmental factors can influence the durations of such intervals.

Credit: 
Ecole Polytechnique Fédérale de Lausanne

NASA's Terra Satellite provides clear picture of wind shear battering Omar

image: NASA's Terra satellite provided a visible image to forecasters of Omar struggling against wind shear on Sept. 2 in the North Atlantic Ocean.

Image: 
Image Courtesy: NASA Worldview, Earth Observing System Data and Information System (EOSDIS).

NASA's Terra satellite provided a visible image that showed Tropical Storm Omar had weakened to a depression as it continued to be battered by strong upper level winds.

NASA Satellite View

The Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite captured a visible image of Tropical Storm Omar on Sept. 2 at 1:30 p.m. EDT that showed outside winds pushing the bulk of clouds and storms east of the center. Using visible imagery, like this image from Terra, in addition to microwave and infrared satellite imagery, forecasters downgraded Omar from a tropical storm to a depression.

Satellite imagery was created using NASA's Worldview product at NASA's Goddard Space Flight Center in Greenbelt, Md.

In the next National Hurricane Center (NHC) advisory at 5 p.m. EDT, Omar was downgraded to a depression. This image and other imagery "showed the system remains sheared with a bursting pattern on satellite, occasionally exposing the center, and a large area of curved bands in the southeastern quadrant of the circulation," said Eric Blake, Senior Hurricane Specialist at NOAA's National Hurricane Center in Miami, Fla.

About Wind Shear

In general, wind shear is a measure of how the speed and direction of winds change with altitude. Tropical cyclones are like rotating cylinders of winds. Each level needs to be stacked on top each other vertically in order for the storm to maintain strength or intensify. Wind shear occurs when winds at different levels of the atmosphere push against the rotating cylinder of winds, weakening the rotation by pushing it apart at different levels. In the case of Omar, strong outside winds from the north-northwest were pushing clouds to the south-southeast of the center of circulation.

Omar on Sept. 3

Despite the strong wind shear, Omar continued to hold onto depression status on Sept. 3. At 5 a.m. EDT (0900 UTC), the center of Tropical Depression Omar was located near latitude 36.3 degrees north and longitude 62.4 degrees west. That is about 310 miles (495 km) north-northeast of Bermuda.

Omar is moving toward the east near 14 mph (22 kph), and this general motion is expected to continue through tonight, accompanied by a decrease in forward speed.  A turn toward the east-northeast and northeast is expected Friday and Friday night. Maximum sustained winds are near 35 mph (55 kph) with higher gusts. The estimated minimum central pressure is 1005 millibars.

NHC Hurricane Specialist Robbie Berg noted, "Amazingly, 50 knots of north-northwesterly shear has not been enough to prevent deep convection from developing, likely because Omar remains in an unstable thermodynamic environment and over [warm] sea surface temperatures of 27-28 degrees Celsius [80.6 to 82.4 degrees Fahrenheit]." Tropical cyclones require sea surface temperatures as warm as 26.6C (80F) to maintain strength. Warmer sea surface temperatures can help intensify a storm.

NHC forecasters expect dissipation by Sunday, Sept. 6 since all global computer forecast models indicate that the remnant low's circulation should open up into a trough [elongated area of low pressure] by then.

About NASA's Worldview and Terra Satellite

NASA's Earth Observing System Data and Information System (EOSDIS) Worldview application provides the capability to interactively browse over 700 global, full-resolution satellite imagery layers and then download the underlying data. Many of the available imagery layers are updated within three hours of observation, essentially showing the entire Earth as it looks "right now."

NASA's Terra satellite is one in a fleet of NASA satellites that provide data for hurricane research.

Tropical cyclones/hurricanes are the most powerful weather events on Earth. NASA's expertise in space and scientific exploration contributes to essential services provided to the American people by other federal agencies, such as hurricane weather forecasting.

For updated forecasts, visit: http://www.nhc.noaa.gov

Credit: 
NASA/Goddard Space Flight Center

Attacking tumors from the inside

image: From left: Drs. Ralph Mason, Li Liu, and Yihang Guo, and researcher Jeni Gerberich used a new tool called multispectral optoacoustic tomography to examine non-small cell lung cancer tumors growing in mice. The study showed two experimental drugs can normalize the tumor microenvironment, helping to suppress a tumor's growth and spread.

Image: 
UT Southwestern Medical Center

DALLAS - Sept. 3, 2020 - A new technology that allows researchers to peer inside malignant tumors shows that two experimental drugs can normalize aberrant blood vessels, oxygenation, and other aspects of the tumor microenvironment in non-small cell lung cancer (NSCLC), helping to suppress the tumor's growth and spread, UT Southwestern researchers report.

The findings, published online in Cancer Research, highlight the use of this novel visualization tool as well as the promise of these drugs for NSCLC, a disease that remains one of the leading causes of cancer-related deaths in the U.S. despite decades of research.

NSCLC is the most common form of lung cancer, comprising about 85-90 percent of the nearly 230,000 cases of lung cancer diagnosed each year in the U.S. However, despite state-of-the-art treatments for this disease, including targeted therapies and immunotherapies, the five-year survival rate for lung cancer remains at only 10-20 percent - far lower than for many other cancers including breast (90 percent) and prostate (99 percent.)

The experimental drugs cyclopamine tartrate (CycT) and heme-sequestering peptide 2 (HSP2) have shown promise in inhibiting cancer growth and progression in mice bearing human NSCLC tumors. Although it's known that both of the drugs target heme, the molecule that carries oxygen in red blood cells - CycT inhibits heme synthesis and HSP2 inhibits heme uptake into cells - how these therapies work to suppress NSCLC was unknown.

To answer that question, Li Liu, Ph.D., assistant professor of radiology at UTSW, and her colleagues used a new tool called multispectral optoacoustic tomography (MSOT) to examine the inside of human NSCLC tumors growing in mice. (The imaging technology uses light pulses to generate ultrasound waves.) They looked specifically at tumor blood vessels and how well they carried oxygen to the cells within, comparing tumors in animals that received injections of either CycT, HSP2, or saline every three days.

After three weeks, tests showed that either drug significantly suppressed the growth of the tumors compared with mice that received just saline, supporting previous studies. But Liu, a member of the Harold C. Simmons Comprehensive Cancer Center, and her colleagues showed that while untreated tumors consumed copious amounts of oxygen, lowering this blood gas in the tumor microenvironment, tumors in mice treated with CycT or HSP2 consumed significantly less. Similarly, these animals generated less ATP, a molecule that cells use for energy that requires heme for its formation.

Using MSOT, they found that treatment with either drug reduced the abnormally large amount of blood vessel formation in these tumors and increased blood oxygen saturation and tumor oxygenation, bringing both of these measures closer to that of healthy tissue. The treatments also reduced the amount of total hemoglobin, a measure that reflects the amount of blood circulating through tumor tissue.

Further experiments showed that cells isolated from the tumors of mice treated with CycT and HSP2 had reduced amounts of molecular markers for low oxygen and molecules associated with blood vessel formation.

Together, Liu says, these findings suggest that these two heme-targeting medications can attack NSCLC tumors from multiple angles: inhibiting the production of ATP and the oxygen consumption they need to live and grow, reducing blood circulation and oxygen levels to that of healthy tissue, and decreasing the tumors' ability to create new blood vessels. This study also shows the utility of MSOT as a noninvasive tool to survey tumors and track how well drugs such as CycT and HSP2 are working in real time.

"The more we learn about these deadly tumors and potential new treatments," says Liu, "the more hope we can offer patients, who currently have few effective options for therapy."

Credit: 
UT Southwestern Medical Center