Tech

Computer scientists develop tool to make the Internet of Things safer

Computer scientists at the University of California, San Diego, have developed a tool that allows hardware designers and system builders to test security- a first for the field. One of the tool's potential uses is described in the May-June issue of IEEE Micro magazine.

"The stakes in hardware security are high", said Ryan Kastner, a professor of computer science at the Jacobs School of Engineering at UC San Diego.

Here come the 'brobots'

WASHINGTON D.C. June 2, 2014 -- A team of researchers at the University of Twente (Netherlands) and German University in Cairo (Egypt) has developed sperm-inspired microrobots, which can be controlled by oscillating weak magnetic fields.

Fishing boats are powerful seabird magnets

It's no surprise that seabirds are attracted to fishing boats, and especially to the abundance of discards that find their way back into the ocean. But researchers reporting in the Cell Press journal Current Biology on June 2 now find that those boats influence bird behavior over much longer distances than scientists had expected.

Specifically, each boat creates a "halo of influence" across an area measuring about 22 kilometers. That's 13.6 miles—a distance a little longer than a half marathon.

New launchers for analyzing resistance to impacts and improving armor plating

At these specialized facilities, which are linked to the UC3M-Airbus Group Joint Center, scientists are studying how structural elements react to applied loads at both low and high speeds. Phenomena of this sort can occur during maintenance operations (a tool falling in an aircraft) or while the elements are functioning. In the case of an airplane, for example, it can happen when a pebble hits an airplane during takeoff, or when a slab of ice comes off of a propeller or the leading edge of a wing and hits the fuselage.

Breakthrough in energy storage: Electrical cables that can store energy

They did it- this by adding a very thin plastic sheet around the whiskers and wrapping it around using a metal sheath (the second electrode) after generating nanowhiskers on it (the second electrode and outer covering). The layers were then glued together with a special gel. Because, of the insulationthe nanowhisker layer is insulating, the inner copper wire retains its ability to channel electricity, the layers around the wire independently store powerful energy.

Wallow Fire study suggests there may be multiple paths to fuel reduction in the WUI

Conservative fuel treatments designed to reduce fire severity while still providing forest cover and wildlife habitat worked equally as well as more intensive treatments in allowing for the protection of homes during the 2011 Wallow Fire, a study published in the journal Forest Ecology and Management has found. The distance into the treated area where fire severity was reduced varied, however, between these different thinning approaches where fuels were reduced.

New printable robots could self-assemble when heated

Printable robots — those that can be assembled from parts produced by 3-D printers — have long been a topic of research in the lab of Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.

At this year's IEEE International Conference on Robotics and Automation, Rus' group and its collaborators introduce a new wrinkle on the idea: bakable robots.

In two new papers, the researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.

Novel NIST laser system mimics sunlight to test solar cell efficiency

Researchers at the National Institute of Standards and Technology (NIST) have developed a laser-based instrument that generates artificial sunlight to help test solar cell properties and find ways to boost their efficiency.

The novel NIST system simulates sunlight well across a broad spectrum of visible to infrared light. More flexible than conventional solar simulators such as xenon arc-lamps or light-emitting diodes, the laser instrument can be focused down to a small beam spot—with resolution approaching the theoretical limit—and shaped to match any desired spectral profile.

Rush a light wave and you'll break its data, say NIST scientists

Quantum information can't break the cosmic speed limit, according to researchers* from the National Institute of Standards and Technology (NIST) and the University of Maryland's Joint Quantum Institute. The scientists have shown how attempts to "push" part of a light beam past the speed of light results in the loss of the quantum data the light carries. The results could clarify how noise might limit the transfer of information in quantum computers.

Glow-in-the-dark tool lets scientists find diseased bats

Scientists working to understand the devastating bat disease known as white-nose syndrome (WNS) now have a new, non-lethal tool to identify bats with WNS lesions —ultraviolet, or UV, light.

If long-wave UV light is directed at the wings of bats with white-nose syndrome, it produces a distinctive orange-yellow fluorescence. This orange-yellow glow corresponds directly with microscopic skin lesions that are the current "gold standard" for diagnosing white-nose syndrome in bats.

Solar panel manufacturing is greener in Europe than China, study says

Solar panels made in China have a higher overall carbon footprint and are likely to use substantially more energy during manufacturing than those made in Europe, said a new study from Northwestern University and the U.S. Department of Energy's Argonne National Laboratory. The report compared energy and greenhouse gas emissions that go into the manufacturing process of solar panels in Europe and China.

JCAP stabilizes common semiconductors for solar fuels generation

Researchers around the world are trying to develop solar-driven generators that can split water, yielding hydrogen gas that could be used as clean fuel. Such a device requires efficient light-absorbing materials that attract and hold sunlight to drive the chemical reactions involved in water splitting. Semiconductors like silicon and gallium arsenide are excellent light absorbers—as is clear from their widespread use in solar panels. However, these materials rust when submerged in the type of water solutions found in such systems.

Caught by a hair

Crime fighters could have a new tool at their disposal following promising research by Queen's professor Diane Beauchemin.

Dr. Beauchemin (Chemistry) and student Lily Huang (MSc'15) have developed a cutting-edge technique to identify human hair. Their test is quicker than DNA analysis techniques currently used by law enforcement. Early sample testing at Queen's produced a 100 per cent success rate.

Think fast, robot

One of the reasons we don't yet have self-driving cars and mini-helicopters delivering online purchases is that autonomous vehicles tend not to perform well under pressure. A system that can flawlessly parallel park at 5 mph may have trouble avoiding obstacles at 35 mph.

Diesel bus alternative

Electric school buses that feed the power grid could save school districts millions of dollars — and reduce children's exposure to diesel fumes — based on recent research by the University of Delaware's College of Earth, Ocean, and Environment (CEOE).

A new study examines the cost-effectiveness of electric school buses that discharge their batteries into the electrical grid when not in use and get paid for the service. The technology, called vehicle-to-grid (V2G), was pioneered at UD and is being tested with electric cars in a pilot project.