Tech

Genetic study paves way for new neuropathic pain treatments

image: Members of the UGR research group who developed the project. From left to right, Dr. Gloria Perazzoli, Dr. Francisco R. Nieto López, Inmaculada Bravo Caparrós and Dr. Enrique J. Cobos del Moral.

Image: 
UGR

A pioneering international study, carried out by the University of Granada, Harvard University, the University of California, Los Angeles (UCLA), the University of Florida, Laval University and the Jackson Laboratory has conducted an in-depth analysis of the molecular differences between the most common symptoms associated with neuropathic pain. The project may pave the way for the development of more effective painkillers for the treatment of this debilitating chronic condition, which afflicts approximately 500 million people throughout the world.

When an injury is incurred in the nervous system, this can give rise to a very specific condition known as neuropathic pain. The research study, conducted on mice, has examined the profile of the genetic changes that occur following these nerve injuries and aims to broaden our understanding of the mechanisms responsible for causing neuropathic pain.

When an individual suffers from this chronic condition, sensory stimuli such as temperature (especially cold sensations) and tactile sensations, which under normal circumstances do not generally cause pain, are interpreted by the nervous system as acutely painful. This abnormal response to stimuli is called allodynia.

Not all patients experience these painful symptoms with the same level of intensity, and some react more adversely than others to cold temperatures (cold allodynia) as opposed to tactile sensations (tactile allodynia), and vice versa.

This pioneering new study demonstrates that the causes of cold allodynia are exclusively neuronal in nature and that it is a direct response to the nerve injury, while tactile allodynia is the result of complex interactions between the immune system and the nervous system. Consequently, the diverse manifestations of neuropathic pain have different cellular origins and therefore patients suffering from cold or tactile allodynia may be in need of different therapeutic strategies to treat their specific conditions.

According to Dr. Enrique J. Cobos del Moral, a Senior Lecturer at the Department of Pharmacology of the UGR and one of the main researchers behind the project, "taking an in-depth look at the molecular differences between the most common symptoms associated with neuropathic pain could lead to the development of more effective painkillers to alleviate this type of pain, designed to treat the specific symptoms experienced by each patient".

This highly innovative research work, recently published in the prestigious journal Cell Reports, has been made possible thanks to the UGR Junior Doctoral Programme for New Lines of Research, supported by the Vice-Rectorate for Research and Knowledge Transfer of the UGR.

Credit: 
University of Granada

Kinase inhibitor larotrectinib shows durable anti-tumor abilities in patients of all ages with 17 un

image: This is David Hong, M.D.

Image: 
MD Anderson Cancer Center

Three simultaneous safety and efficacy studies of the drug larotrectinib reported an overall response rate of 75 percent for patients ages four months to 76 years with 17 different cancer diagnoses. All patients had tumors with tropomyosin receptor kinase (TRK) fusions, gene mutations that switch on TRK genes, allowing cancer growth. The studies indicate larotrectinib as a potentially powerful new treatment approach for the approximately 5,000 patients with these forms of cancer.

Findings from the multi-center investigation were published in the Feb. 21 online issue of the New England Journal of Medicine (NEJM). Co-principal investigators were David Hong, M.D., professor of Investigational Cancer Therapeutics at The University of Texas MD Anderson Cancer Center, and David Hyman, M.D., chief of Early Drug Development at Memorial Sloan Kettering Cancer Center.

"In this series of studies, larotrectinib had rapid, potent and durable anti-tumor activity in children and adults who had solid tumors with TRK fusions without regard to patient age, tumor tissue and fusion status," said Hong. "Our data not only validated TRK fusions as therapeutic targets, but also showed the potential for larotrectinib as a therapeutic agent for TRK-fusion-positive cancers."

The three protocols included a Phase I study of adults, a Phase I-II study of children, and a Phase II study with adolescents and adults. The investigators followed 55 patients who demonstrated minimal low-grade adverse effects.

Eligible patients had previously been diagnosed with locally advanced or metastatic solid tumors, received standard-of-care therapy and had functioning major organs. The study encompassed 17 unique cancer diagnoses including infantile fibrosarcoma (seven patients); mammary analogue secretory carcinoma of the salivary gland (12 patients); thyroid, colon, lung and gastrointestinal stromal tumors (20 patients); and 16 patients with other cancers.

"TRK fusions defined a unique molecular subgroup of advanced solid tumors in children and adults in whom larotrectinib was highly active," said Hong. "Study results suggest that long-term administration of larotrectinib is feasible for patients with TRK-fusion-positive cancers. However, screening strategies that include assays with the ability to detect TRK fusions will need to be developed to better identify patients who may benefit from this therapy."

Hong added that while clinically meaningful durability of response was observed in study patients, continued follow up could provide further confirmation of the drug's benefit.

Credit: 
University of Texas M. D. Anderson Cancer Center

World's first solar fuels reactor for night passes test

image: CONTISOL was tested at Cologne, Germany using simulated 'suns', rather than an actual solar field, and the storage and heat exchanger was also simulated, because the reactor itself is the innovation being tested

Image: 
DLR

International solar thermal energy researchers have successfully tested CONTISOL, a solar reactor that runs on air, able to make any solar fuel like hydrogen and to run day or night - because it uses concentrated solar power (CSP) which can include thermal energy storage.

The promise of solar fuels is that we could have zero carbon fuels like hydrogen without the climate-damaging carbon emissions it takes to make hydrogen from natural gas today, so perfecting solar reactors is key to a 100% clean energy future.

Instead of burning a fossil fuel for the heat needed to drive the thermal chemistry process, for chemical reactions like splitting H2 (hydrogen) from H2O, scientists have been testing various kinds of reactors heated by the thermal form of solar, CSP, which uses mirrors to concentrate solar flux on a receiver.

To attain zero-carbon heat for thermochemical reactions - which can operate at temperatures as high as 1,500 C - experts view the direct heat of CSP as a more efficient clean energy source than electricity from PV or wind.

There will be an unlimited supply of sunlight over centuries, and no climate consequences when thermochemistry is driven by solar energy. The only disadvantage compared to burning fossil energy, is that the sun goes down at night.

Night solar through CSP

Now, a group of scientists at the German Aerospace Center (DLR) supported by the Aerosol and Particle Technology Laboratory of CPERI/CERTH Greece have built and tested a new solar reactor design that includes storage so it can provide round-the-clock heat like the current fossil-fired method, but without the emissions.

Their paper, Fabrication and testing of CONTISOL: A new receiver-reactor for day and night solar thermochemistry was published in December 2017, at Applied Thermal Engineering.

"Solar reactors in the past have had the problem of what you do at night when you don't have sun, or even when clouds go by," said the paper's lead author, Justin Lapp, formerly of DLR, and now Assistant Professor of Mechanical Engineering at the University of Maine.

Lapp explained that when the temperature drops, the reaction could need to be halted or the flow rate of the reactants slowed, reducing the amount of products that you get out. If the reactor shuts down at night it cools off, not just wasting residual heat, but starting over from nothing next morning.

How it works

"So the main idea of CONTISOL was to build two reactors together," he said. "One where sunlight is directly doing chemical processing. The other side for storing energy. In the chemical channels the high temperatures of the material drive the chemical reaction and you get a change from reactants to products within those channels, and in the air channels cooler air goes in the front and hotter air comes out the back."

By combining storage capabilities with a direct solar thermochemical reactor, they get the best of both worlds, stable temperatures round the clock but also the most efficient heat source to perform reactions because it's direct, so "you don't have as many losses with multiple steps between the sunlight and the chemistry that's happening."

CONTISOL uses an open air receiver, based on the volumetric air receiver operated at its test solar tower at Julich by DLR (Deutsches Zentrum für Luft- und Raumfahrt), which can heat air to 1,100 C. There an open air receiver takes air from the atmosphere and pulls it through small channels in a monolithic material.

"Ours is a volumetric air receiver like this one," said Lapp. "The center is an extruded monolith; a large cylinder with many smaller rectangle channels. Every other row of channels is used for chemistry or for passing air through the monolith. These channels are open to the front to allow sunlight to go in and heat up this monolithic material."

The original test used silicon carbide for the multichannel receiver, but the scientists plan to try Inconel, a harder metal alloy for the receiver.

"Silicon carbide is a little bit difficult to manufacture because it cannot be machined as well as a metal. So getting very tight tolerances can be tough. It's not too expensive but it is not the easiest material to work with in manufacturing," he related.

Temperatures between 800-900 C are needed to rearrange water or hydrocarbon molecules into most solar fuels, so that was the temperature goal. The prototype reactor successfully operated at 850 C at lab-scale: 5kW.

CONTISOL was tested at Cologne, Germany using simulated 'suns', rather than an actual solar field, and the storage and heat exchanger was also simulated, as the reactor itself is the innovation.

"This scale is a scientific prototype simply for us to understand how to control it. It wouldn't be commercialized at 5 kW,"he said. "Commercially, 1-5 MW would be about the smallest for industrial-scale reactors, and they could scale to 100 MW or even larger."

"In our case we are doing methane reforming as an example. But it's not tied to methane, it could make any number of solar fuels. One interesting one is hydrogen production from sulphuric acid as a cycling material. When you evaporate sulphuric acid at about 400 C into steam and SO3, it is not corrosive, so you can even use stainless steel components."

Why air as the heat transfer medium?

Transferring the heat in air opens options for high efficiency storage systems like thermochemical storage or latent heat storage in copper or copper alloys which melt between 900 - 1100 C.

The advantages of air are that it is accessible, freely available and abundant. Air is not corrosive, and any leaks would be inconsequential, so it doesn't need to be contained in a closed loop, he explained.

"It can pull air in just out of the atmosphere and then runs it through the heat exchanger to store the heat. And then it can vent that air out once it is cool."

With other heat transfer materials, "you have to ensure the system is sealed everywhere and if you lose some you must buy more to make it up. With air you don't have that problem."

Unlike many heat transfer media, which can change their molecular structure at high temperatures, air remains stable at high temperatures.

However, an air receiver would seem to rule out chemical reactions using liquids like water. Not so, said Lapp.

"There are very few liquids that stay liquid in the 600 to 800 degree range that we are interested in," he explained. "Most of the chemical reactions we deal with are either with gases like methane or with solid materials like metal oxide reactions.

Even splitting water is done at so high a temperature that water is not liquid, but steam.

"Water coming in already as steam makes it a lot easier to design the receiver. You don't have the problems of steam expansion while its boiling. Its easier to keep it tight for steam than liquid," he said. So to ready water for splitting, it would first be boiled to steam right in the tower.

"In these high temperature solar reactors, the center spot on the tower where all the mirrors focus is best for high temperature chemistry. We get very high flux at the center for getting to 600 - 800 C. But there's always a bunch of wasted radiation around the outside; there's still enough light to heat to 200 - 300 C, not enough for chemistry but plenty to evaporate water to steam," Lapp pointed out.

The earliest thermochemical reactors were nuclear

Research into using reactors to perform thermochemistry originated in the '60s with nuclear power, but was abandoned once researchers were unable to get nuclear reactions to reach the temperatures needed. Very few nuclear reactor designs were able to reach 800 C.

But more recently, solar reactors have taken up this research into thermochemistry, based on solar heat rather than nuclear. They are already reaching temperatures between 800 C and 1500 C at the pilot scale, using highly concentrated sunlight.

Solar reactors don't include the large power block of a CSP plant, which is a full thermal power station producing electricity (except with heat supplied by the sun). Solar reactors don't need the big turbine or generator for making electricity, but only consist of a tower, a solar field, a receiver and the reaction chamber. To this, CONTISOL adds a storage system, transferring the heat from the air into the heat exchanger.

To produce hydrogen for example, A CONTISOL-type solar reactor would comprise a solar field of heliostats (mirrors), a tower, an air receiver and the heat storage. The mirrors would reflect sunlight into the air receiver; heating air in two sets of small chambers directing air to either the reaction chamber for thermochemistry reaction, or to the heat storage.

The hydrogen could then be used in more reactions - if you'd stored it to keep it hot overnight - or you would pipe it out from the reaction chamber in the tower to be compressed, fill a tank, and drive it off.

Credit: 
SolarPACES

Listening to data could be the best way to track salmon migration

London, Feb. 21, 2018 - Sound could be the key to understanding ecological data: in a new study in Heliyon, researchers have turned chemical data that shows salmon migration patterns into sound, helping people hear when they move towards the ocean from one river to another. The approach - called sonification - enables even untrained listeners to interpret large amounts of complex data, providing an easier way to interpret "big data."

The authors, from the University of Idaho, Eastern Washington University and University of Virginia in the US, and the University of Tampere in Finland, say turning salmon migration data into sound could help scientists feel less overwhelmed by interpreting big data. As a result, they may be more engaged with the experience, leading them to spend more time exploring big data in a meaningful way.

"We have shown that it is possible to convey salmon movement using sound alone, and that people without prior training can intuitively determine when fish transition from one river to another," said Dr. Jens Hegg, first author of the study from the University of Idaho. "Our study is the first step in creating this sort of audio display, which could be a very helpful way to explore large datasets."

Salmon migration is changing as a result of human impact; in the Snake River in Idaho, USA, the behavior of young Chinook salmon is evolving rapidly. To understand the changes, researchers need to study their movement patterns in detail, over large geographical areas and short time scales.

One way to track their movement is by studying the chemistry of the salmon's balance and hearing organ - an ear stone, called an otolith. The fish's movements are recorded in the otolith like tree rings, with chemicals being deposited every day the fish is alive. The otolith record contains details about where the fish has been and how long it stayed there, but statistical tools don't capture the nuances of movement timing. Visual analysis quickly becomes too complex to interpret, so the team decided to take a different approach.

"Most scientists rely on visual displays of their data in the form of tables and graphs," said Prof. Jonathan Middleton, one of the authors of the study from Eastern Washington University and the University of Tampere. "Our research team wanted to break the mold on traditional approaches to reviewing data: we are proposing to add sounds as an auditory representation, giving scientists another perceptual field to analyze and interpret their data."

The team tested their approach by presenting the sounds in a survey to untrained listeners. They asked the listeners to identify movements, with an increasing number of fish. The results showed that the listeners were most sensitive to changes in pitch and tone, and that the group performed better as a whole compared to individuals alone.

They also presented the sonifications with and without visualizations of the data, such as graphs. The listeners identified movements better without the visualizations, suggesting sound alone is a more effective way to convey the salmon migration data.

The results suggest sonification could be a useful way to process data for crowdsourcing, and the approach might also translate to other areas of ecology. For salmon migration, there's still a way to go: now that they have shown the approach has potential, in order to apply the approach, the team will need to create tools to explore the detailed data from otoliths using sound.

"Our ears are highly analytical organs that give us much more information than we realize in all aspects of our lives, and we can harness that to learn things about the world in new ways," said Dr. Hegg. "It is always a gamble to reach beyond your comfort zone and try something completely crazy. Without combining across disciplines, and having faith in other ways of looking at things across the spectrum from science to art, these approaches that sound crazy but have potential wouldn't get a chance to succeed."

Credit: 
Elsevier

New structure discovered in human sperm tails

image: This is a picture of Johanna Höög working.

Image: 
Malin Arnesson

Human sperms are incredibly important for our reproduction. It would therefore be easy to assume that we have detailed knowledge of their appearance. However, an international team of researchers has now identified a completely new nanostructure inside sperm tails, thanks to the use of cryo-electron tomography.

The method, for which Joachim Frank, Jacques Dubochet and Richard Henderson were awarded a Nobel Prize in 2017, produces 3D images of cellular structures.

"Since the cells are depicted frozen in ice, without the addition of chemicals which can obscure the smallest cell structures, even individual proteins inside the cell can be observed" explains Johanna Höög, a research at the University of Gothenburg's Department of Chemistry and Molecular Biology.

A highly effective tail is needed in order for a sperm to be able to swim, and for an egg to be fertilised.

The tail is a highly complex machine that consists of around a thousand different types of building blocks. The most important of these are called tubulins, which form long tubes (microtubules). The tubes are found inside the sperm tail.

Thousands of motorproteins - molecules that can move - are affixed to these tubes. By being fixed to one microtubule and "walking on" the adjacent microtubule, the motorproteins in the sperm tail pull and the tail bends, enabling the sperm to swim.

"It's actually quite incredible that it can work," adds Johanna, who led the study. "The movement of thousands of motorproteins has to be coordinated in the minutest of detail in order for the sperm to be able to swim."

The research was started in order to see what human sperm tails look like in 3D. This would then provide clues about how sperms work, in the same way that a sketch of an engine helps to explain how it operates.

"When we looked at the first 3D images of the very end section of a sperm tail, we spotted something we had never seen before inside the microtubules: spiral that stretched in from the tip of the sperm and was about a tenth of the length of the tail."

What the spiral is doing there, what it consists of and whether it is important in order for sperms to swim are questions that the research team will now focus on answering.

"We believe that this spiral may act as a cork inside the microtubules, preventing them from growing and shrinking as they would normally do, and instead allowing the sperm's energy to be fully focussed on swimming quickly towards the egg," says Davide Zabeo, the lead PhD student behind the discovery.

Credit: 
University of Gothenburg

Assassination of political leaders connected to increase in social conflict

image: This is Francis Yammarino, SUNY distinguished professor of management at Binghamton University.

Image: 
Binghamton University, State University of New York

BINGHAMTON, NY - An increase in social conflict increases the likelihood of assassinations of political leaders, according to new research co-conducted by faculty at Binghamton University, State University of New York.

"We looked at the connections between social conflict, in particular, and assassinations of political leaders who were heads of state, heads of government and de facto leaders of a country over the last 200 years," said Francis Yammarino, SUNY distinguished professor of management at Binghamton University. "We found that (1) an increase in social conflict increases the likelihood of assassination and (2) environmental constraints and traditional culture predict social conflict and then, ultimately, leader assassination."

The study was led by Andra Serban at Virginia Commonwealth University and conducted by a team of eight researchers that also included Kristin Lee Sotak at the State University of New York at Oswego.

Yammarino said that this information can be helpful in predicting whether or not an assassination attempt is likely in a certain area, and could be a tool to help safeguard political leaders and protect them from assassination. In another article, published in 2013, he and a similar team of researchers studied the connection between styles of leadership and assassinations and attempted assassinations.

"The findings from both articles suggest that knowing something about a political leader's style and the social conflict in his/her country can suggest whether that leader will be assassinated or face assassination attempts," he said.

According to Yammarino, social conflict is a major factor in the occurrence of an assassination.

"Social conflict is really inter-group conflict within a country," said Yammarino. "We use the notion of social conflict as an umbrella term for the various types of social stratification and intergroup division within a country. As these divisions increase, tensions within the country increase. And if tensions reach a tipping point and impact enough people negatively, then assassinations or assassination attempts can result as assassins (or those negatively affected) blame the leader in charge for these problems."

Often, people believe that if a leader is assassinated, problems will be alleviated. However, according to Yammarino, that is not always the case.

"It depends on a lot of additional factors (environmental constraints, traditional culture, religion, level of democracy, civil liberties and rule of law, political corruption) and how the country reacts after the assassination of or assassination attempt of a political leader," he said.

Yammarino also found that other conditions such as socio-economic development, religious fundamentalism and even climate can all affect the likelihood of an assassination.

Credit: 
Binghamton University

Protein levels in spinal fluid correlate to posture and gait difficulty in Parkinson's

image: This is Dr. Jennifer Goldman, lead author of the study and movement disorders neurologist at Rush University Medical Center.

Image: 
Rush University Medical Center

(CHICAGO) - Levels of a protein found in the brain called alpha-synuclein (α-syn) are significantly lower than normal in cerebrospinal fluid collected in Parkinson's disease patients suffering from postural instability and gait difficulty, a study led by movement disorders experts at Rush University Medical Center has found. The results recently were published online in the journal Movement Disorders.

"This report is an important contribution in our efforts to understand and quantify Parkinson's biology to accelerate drug development," said Mark Frasier, PhD, an author on the study and the senior vice president of research programs at the Michael J. Fox Foundation, which provided funding for the study.

A mysteriously harmful presence

Alpha-synuclein's function in the brain is currently unknown but of great interest to Parkinson's researchers because it is a major constituent of Lewy bodies - the protein clumps that are the pathological hallmark of Parkinson's disease.

The illness gradually destroys neurons that produce the chemical dopamine, which conveys nerve signals, in turn causing the tremors and difficulty moving that are a common symptom of Parkinson's disease. The prevailing wisdom has been that these neurons may die from a toxic reaction to alpha-synuclein deposits.

However, Parkinson's disease has been linked to some gene variants that affect how the immune system works, leading to an alternative theory that alpha-synuclein causes Parkinson's disease by triggering the immune system to attack the brain.

In addition to its presence in the brain, alpha-synuclein can be found in peripheral tissues and body fluids. The Movement Disorders study, called BioFIND, is the first to try to differentiate the biomarkers of neurodegeneration in Parkinson's disease patients based on fluids collected from spinal fluid, blood and saliva.

The cross-sectional, observational study collected data and body fluid samples from 120 people with moderately advanced Parkinson's disease and 100 control volunteers across eight academic sites in the U.S. at two points over two weeks.

Dr. Jennifer G. Goldman, a movement disorders neurologist at Rush University Medical Center and the study lead author, has profiled the Parkinson's-associated protein levels in these biofluids and their relationships to clinical features of the disease. The study found that levels of alpha-synuclein were lower in cerebrospinal fluid from Parkinson's patients with certain motor function impairments - specifically in those who had more problems with balance and walking compared to those with more tremor.

In addition, levels of beta-amyloid, known for its association with Alzheimer's disease, were lower in those with Parkinson's and related to worse scores on a memory recall in Parkinson's as measured on a rest of thinking and memory given to study participants.

The study also showed that alpha-synuclein levels in plasma and saliva did not differ between people with Parkinson's and control volunteers, and alpha-synuclein did not significantly correlate among other biological fluids.

Findings can help guide selection for clinical trials

"These are important insights for the ongoing pursuit of accessible biomarker tests to diagnose and track the disease," said Goldman. "For example, people with Parkinson's and lower beta-amyloid may be more likely to develop memory problems and therefore would benefit more from a cognitive therapy," said Goldman. "Enrolling this population in trials can help us see a treatment effect more clearly than testing the therapy on people who will not have this symptom."

Future studies may further explore biomarkers

Next steps include validation of these findings in the Parkinson's Progression Markers Initiative (PPMI), a biomarkers study sponsored by the Michael J. Fox Foundation that is following more than 1,500 people with Parkinson's or risk factors and control volunteers over at least five years. Additionally, trials ongoing or launching in the near future could use alpha-synuclein or beta-amyloid levels as exploratory biomarkers in motor symptom or cognition drug trials, respectively.

Parkinson's disease is the second most common age-related neurodegenerative disorder after Alzheimer's disease, affecting an estimated 7 million to 10 million people worldwide.

Many of the affected neurons signal via the neurotransmitter dopamine; therefore, traditional therapy continues to rely on dopamine replacement therapy. This approach alleviates symptoms, but does not halt disease progression. Currently, there is no cure for Parkinson's disease.

Credit: 
Rush University Medical Center

Study shows higher risk of Dementia for adults with congenital heart disease

CINCINNATI -- A new study is believed to be the first to show a higher risk of dementia in adults who were born with heart disease.

The study of more than 10,000 adults with congenital heart disease (CHD) in Denmark discovered a particularly increased risk for early dementia in middle-age adults.

"We've learned that CHD is a lifelong condition," says Nicolas Madsen, MD, a pediatric cardiologist at Cincinnati Children's Hospital Medical Center and senior author of the study. "Research shows that children born with heart problems are at a greater risk for one or more neurodevelopmental issues when compared to children without heart disease. We can now say that the risk for these types of problems continues well into adulthood."

The study is published online in Circulation, a journal of the American Heart Association.

Dr. Madsen and his colleagues at Aarhus University Hospital in Denmark studied 10,632 adults born between 1890 and 1982. The researchers used medical registries and a medical records review covering all Danish hospitals to identify adults with CHD diagnosed between 1963 and 2012.

The researchers found a 60 percent increased risk of dementia compared to the general population. The risk was 160 percent higher (2.6 times higher) when comparing those less than 65 years old.

Dr. Madsen says it is important to recognize that many of these adults were born during a time when medical and surgical interventions were more limited than they are today. Still, he says "we need to understand the healthcare needs and risk factors affecting the larger number of middle-age and older adults currently living with CHD."

CHD occurs in six to 10 of every 1,000 live births. Because these individuals are now living longer, the population of those with CHD is experiencing different neurodevelopmental issues than those previously described only in infants, children and young adults.

Credit: 
Cincinnati Children's Hospital Medical Center

Antibodies protect nerve-muscle connections in a mouse model of Lou Gehrig's disease

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse models of ALS reproduce the hallmarks of the disease, including a loss of nerve-muscle connections, called neuromuscular synapses, and a subsequent loss of nerve cells that connect to muscle, called motor neurons.

Now a new study led by NYU School of Medicine researchers identifies a novel treatment strategy that preserved neuromuscular synapses in a mouse model of aggressive ALS. Published February 20 in the journal eLife, the study found that the loss of such synapses was reduced in ALS mice injected with antibodies that stimulate a molecule in muscle which keeps nerves attached to the muscle.

By boosting the action of a protein called MuSK, the new approach slowed the loss of neuromuscular synapses, temporarily extended survival of motor neurons, and extended the lifespan of ALS mice.

"Our findings reveal a new therapeutic strategy for ALS that protects a pathway essential for keeping nerves and muscles connected," says Steven Burden, PhD, a professor in the Skirball Institute of Biomolecular Medicine, and in the Department of Neuroscience and Physiology, at NYU School of Medicine.

"There are few treatments for ALS, and the two FDA-approved drugs extend survival for only a few months in a subset of patients," says Burden. "We believe that our approach, mostly likely in combination with other drugs, may extend quality of life during the early phases of this disease."

Study Details

The results are based on the ability of neurons to pass messages to one another or to other targets, including skeletal muscle, at specialized junctions. Motor neurons connect to skeletal muscle at neuromuscular synapses, and the dismantling of these synapses is an early sign of disease in ALS. Although this dismantling is known to be a primary cause of ALS paralysis, most experimental treatments have sought to instead stop the death of motor neurons, which happens later in the disease course, researchers say.

The new approach centers on MuSK, a receptor tyrosine kinase on the muscle cell surface. Once stimulated by a signal provided by the nerve, MuSK provides instructions for building the neuromuscular synapse, including the attachment of motor nerve endings to muscle.

To test whether increasing attachment between nerve and muscle might keep synapses connected when they would otherwise be dismantled in ALS mice, the researchers used an antibody that stimulates MuSK to boost signaling from muscle to nerve. A single dose of a MuSK-stimulatory antibody, introduced into ALS mice after disease onset, increased the number of fully innervated neuromuscular synapses 2.6-fold.

Chronic dosing with the stimulatory antibody led to a sustained increase in the number of neuromuscular synapses for two months, and improved function of diaphragm muscle, which is critical for breathing. Untreated ALS mice survive for about five months, and the MuSK-stimulatory antibody prolonged their survival by about week.

"The therapeutic strategy described here targets a disease mechanism, namely the loss of neuromuscular synapses, which is common to familial and sporadic forms of ALS; and is based on a therapeutic antibody format with considerable clinical precedence," says Burden. "Although the MuSK agonist antibody cannot override the many pathological pathways that occur in motor neurons and in non-neuronal cells, therapeutic interventions that preserve neuromuscular synapses have the potential to improve the quality of life for a majority of ALS patients."

Credit: 
NYU Langone Health / NYU Grossman School of Medicine

Preventing the misdiagnosis of cellulitis

Study finds that early dermatology consultation for presumptive cellulitis can improve patient outcomes, reduce costs and reduce unnecessary hospitalization.

Cellulitis - a bacterial infection of the skin - is a common medical condition, yet there is no diagnostic tool for it currently available. The only way to diagnose cellulitis is based on the appearance of the affected area and the patient's reported symptoms. Many other medical conditions cause skin inflammation that mimics the appearance of cellulitis (known as pseudocellulitis) and are commonly misdiagnosed. A new study by researchers from Brigham and Women's Hospital demonstrates that early consultation by a dermatologist for patients with presumed cellulitis was a cost-effective intervention to prevent misdiagnoses and improve health-related outcomes. Their results are published in JAMA Dermatology.

"This is a big win-win for both the patients and for the hospitals," said corresponding author Arash Mostaghimi, MD, MPA, MPH, Director of Inpatient Dermatology. "Our findings show that early intervention by dermatologists for patients with presumptive cellulitis, not only improves outcomes for the patients, but saves the hospitals on costs associated with unnecessary hospitalization and opens up beds in the emergency department."

Previous work by Mostaghimi and his colleagues evaluated a series of patients in BWH's Emergency Department with presumptive diagnosis of cellulitis and determined that a third of these patients had pseudocellulitis. Alarmed by this statistic, the dermatology consult team partnered with the inpatient group and ED to provide dermatology consultation for 165 patients in the ED observation unit who were about to be admitted with presumptive diagnosis of cellulitis. A third of these patients were diagnosed with pseudocellulitis by dermatology consultation. The dermatologists recommended the discontinuation of antibiotics in 82.4 percent of these patients, and discharge from planned observation or inpatient admissions in half of the patients. None of the patients diagnosed with pseudocellulitis showed worsening of their condition after discharge.

Extrapolating from their findings, the researchers estimate that dermatology consultation for presumed cellulitis could nationally prevent between 97,000 to 256,000 in hospitalization days and 34,000 to 91,000 cases of unnecessary antibiotic exposure. It could also result in $80 million to $210 million in net cost savings annually.

While the results of their proof-of-concept study show the benefits of early dermatology consultation, the major challenge now is scalability. The researchers have already implemented protocols at BWH to involve dermatology experts early in the care of patients with presumptive cellulitis, but this is hard to do in settings that do not have access to 24/7 dermatology consultation, such as primary care offices, nursing homes and rehabilitation centers. Mostaghimi and his team are currently developing tools to allow them to provide high quality dermatology consultation remotely, which they call "teledermatology," to improve health-related outcomes of pseudocellulitis diagnoses on a much larger scale.

Credit: 
Brigham and Women's Hospital

Innuendo and pointing suspicion in news coverage can fuel conspiracy theories

Innuendo and hinting at fake information in news coverage is enough to fuel belief in conspiracy theories, new research shows.

Implication alone can significantly increase belief in false facts, according to a new study.

Experts have said the results show news outlets should be quicker to correct inaccurate information published or broadcast, and be more cautious about who they invite to provide analysis.

University of Exeter academics Benjamin Lyons, Vittorio Merola and Jason Reifler conducted the study with around 1,000 participants last month. The findings were presented at the AAAS conference in Texas.

Professor Reifler said: "This study shows it is easy to spread conspiracy theories. Debunking appears to work--but only up to a point. As a result, media companies need to be cautious about the guests they invite on air or feature in their publications. When guests imply a conspiracy, journalists should push back to the extent they can. Having lived in both the US and the UK, my experience is that UK journalists do a better job at this than their US counterparts. But, there is always room for improvement."

Participants were asked to read a mock newspaper article. They were divided into five groups: one received information which explicitly promoted a conspiracy theory, another was given the same information together with the facts which debunked this myth. Another group was given information which implicitly hinted at a conspiracy theory, and another had the same facts which debunked it. There was also a control group. All respondents received debunking information at the conclusion of the study.

The participants in the group with "explicit conditions" read an article with explicitly false information - the Zika epidemic in Brazil was caused by the release of genetically modified mosquitoes by a subsidiary of a pharmaceutical company that was hoping to profit from a future vaccine.

In reality, genetically modified mosquitoes were released after the outbreak as a way to control the spread of Zika, and the company involved does not stand to gain from selling Zika-related pharmaceutical products. The article attributed this false information to "concerned citizens" and said the motive was profit from the vaccines developed by pharmaceutical parent company.

The implicit information given included a quote from a Brazilian politician rhetorically asking "who benefits?" from the sale of the pharmaceutical products.

Professor Reifler said: "The results of the study are intriguing--both explicit and implicit information without debunking increases conspiracy beliefs, compared to the control conditions. While explicit information leads to a greater increase in conspiracy beliefs, implying a conspiracy also leads to an increase, albeit a smaller increase. Fortunately, the debunking information brings conspiracy levels back to the same level as the control. Unfortunately, the debunking information does not reduce conspiracy beliefs below the level found among participants in our control group."

The research was funded by the European Research Council as part of the Horizon 2020 funding scheme.

Credit: 
University of Exeter

Distant tropical storms have ripple effects on weather close to home

The famously intense tropical rainstorms along the Earth's equator occur thousands of miles from the United States. But atmospheric scientists know that, like ripples in a pond, tropical weather creates powerful waves in the atmosphere that travel all the way to North America and have major impacts on weather in the U.S.

These far-flung, interconnected weather processes are crucial to making better, longer-term weather predictions than are currently possible. Colorado State University atmospheric scientists, led by professors Libby Barnes and Eric Maloney, are hard at work to address these longer-term forecasting challenges.

In a new paper in npj Climate and Atmospheric Science, the CSU researchers describe a breakthrough in making accurate predictions of weather weeks ahead. They've created an empirical model fed by careful analysis of 37 years of historical weather data. Their model centers on the relationship between two well-known global weather patterns: the Madden-Julian Oscillation and the quasi-biennial oscillation.

According to the study, led by former graduate researcher Bryan Mundhenk, the model, using both these phenomena, allows skillful prediction of the behavior of major rain storms, called atmospheric rivers, three and up to five weeks in advance.

"It's impressive, considering that current state-of-the-art numerical weather models, such as NOA's Global Forecast System, or the European Centre for Medium-Range Weather Forecasts' operational model, are only skillful up to one to two weeks in advance," says paper co-author Cory Baggett, a postdoctoral researcher in the Barnes and Maloney labs.

The researchers' chief aim is improving forecast capabilities within the tricky no-man's land of "subseasonal to seasonal" timescales: roughly three weeks to three months out. Predictive capabilities that far in advance could save lives and livelihoods, from sounding alarms for floods and mudslides to preparing farmers for long dry seasons. Barnes also leads a federal NOAA task force for improving subseasonal to seasonal forecasting, with the goal of sharpening predictions for hurricanes, heat waves, the polar vortex and more.

Atmospheric rivers aren't actual waterways, but"rivers in the sky," according to researchers. They're intense plumes of water vapor that cause extreme precipitation, plumes so large they resemble rivers in satellite pictures. These "rivers" are responsible for more than half the rainfall in the western U.S.

The Madden-Julian Oscillation is a cluster of rainstorms that moves east along the Equator over 30 to 60 days. The location of the oscillation determines where atmospheric waves will form, and their eventual impact on say, California. In previous work, the researchers have uncovered key stages of the Madden-Julian Oscillation that affect far-off weather, including atmospheric rivers.

Sitting above the Madden-Julian Oscillation is a very predictable wind pattern called the quasi-biennial oscillation. Over two- to three-year periods, the winds shift east, west and back east again, and almost never deviate. This pattern directly affects the Madden-Julian Oscillation, and thus indirectly affects weather all the way to California and beyond.

The CSU researchers created a model that can accurately predict atmospheric river activity in the western U.S. three weeks from now. Its inputs include the current state of the Madden-Julian Oscillation and the quasi-biennial oscillation. Using information on how atmospheric rivers have previously behaved in response to these oscillations, they found that the quasi-biennial oscillation matters - a lot.

Armed with their model, the researchers want to identify and understand deficiencies in state-of-the-art numerical weather models that prevent them from predicting weather on these subseasonal time scales.

"It would be worthwhile to develop a good understanding of the physical relationship between the Madden-Julian Oscillation and the quasi-biennial oscillation, and see what can be done to improve models' simulation of this relationship," Mundhenk said.

Another logical extension of their work would be to test how well their model can forecast actual rainfall and wind or other severe weather, such as tornadoes and hail.

Credit: 
Colorado State University

Grey's Anatomy TV drama may be distorting public expectations of trauma care

The television drama, Grey's Anatomy, may be giving viewers a false impression of the realities of trauma care, including the speed at which patients recover after sustaining serious injuries, finds research published in the online journal Trauma Surgery & Acute Care Open.

Unrealistic expectations of healthcare may be important in an era in which patient satisfaction is a key component of quality initiatives and performance related pay, say the authors.

While many medical dramas strive for authenticity, the constraints of the format and the need to keep viewers hooked with juicy storylines often mean that realism takes a back seat, they say.

To try and quantify this, they compared the portrayal of trauma sustained by 290 fictional patients in 269 episodes of Grey's Anatomy--the first 12 seasons (2005-16)-- with real life injuries sustained by 4812 patients in the 2012 National Trauma Databank.

The death rate was 3 times higher in Grey's Anatomy than in real life (22% compared with 7%), and most (71%) of the TV patients went straight from emergency care to the operating theatre, whereas only one in four (25%) of the databank patients did so.

Among the survivors of TV trauma, only around 1 in 20 (6%) were transferred to a long term care facility--significantly lower than the proportion of actual patients (22%).

And among the seriously injured, half of fictional patients spent less than a week in hospital, whereas only one in five (20%) of real life patients did so.

"Although realism is an integral element to the success of a television drama set in a contemporary workplace, be it a hospital or police department, the requirements for dramatic effect demand a focus on the exceptional rather than the mundane," write the authors.

"Hence, American television medical dramas tend to rely on storylines that feature rare diseases, odd presentations of common diseases, fantastic and/or quirky injuries, and mass casualty events, all framed within a 'realistic' representation of a typical US hospital."

And the time constraints of an episode dictate that most of the plotlines are wrapped up within the hour.

"The balancing act between the presentation of the realistic and the dramatic can actually result in a skewed perception of reality among television viewers," write the authors, citing various previously published studies.

In an era where considerable store is set by patient satisfaction, scores for which feed into quality improvement initiatives and the payments clinicians receive, this could be important, they suggest.

"Divergence of patient expectations from reality may, in fact, contribute to lower levels of satisfaction," they conclude.

Credit: 
BMJ Group

Electric eel-inspired device reaches 110 volts

image: Electric Eel-Inspired Device Reaches 110 Volts: This photo depicts the printed, high voltage implementation of the artificial electric organ. A 3-D bioprinter was used to deposit arrays of gel precursor droplets onto plastic substrates, which were then cured with a UV light to convert them into solid gels. Alternating high-salinity and low-salinity gels (red and blue gels, respectively) were printed onto one substrate, and alternating cation-selective and anion-selective gels (green and yellow gels, respectively) were printed onto a second substrate. When overlaid, these gels connect to form a conductive pathway of 612 tetrameric gel cells that can be used to generate up to 110 volts.

Image: 
Anirvan Guha and Thomas Schroeder

WASHINGTON, D.C., February 19, 2018 -- In an effort to create a power source for future implantable technologies, a team led by Michael Mayer from the University of Fribourg, along with researchers from the University of Michigan and UC San Diego, developed an electric eel-inspired device that produced 110 volts from gels filled with water, called hydrogels. Their results show potential for a soft power source to draw on a biological system's chemical energy.

Anirvan Guha, graduate student at the University of Fribourg's Adolphe Merkle Institute, will present the research during the 62nd Biophysical Society Annual Meeting, held Feb. 17-21, in San Francisco, California. Inspired by the electric eel's ability to generate hundreds of volts, Guha and his colleagues stacked hydrogels full of varying strengths of salt water.

Ions are charged atoms or molecules and when ions accumulate on either side of a cell membrane, they form an ion gradient. The researchers harvested energy from the electric potential, or voltage, across the ion gradients. As more hydrogels were stacked on top of each other, the greater the voltage increase. The researchers were able to produce up to 110 volts.

To stack the thousands of individual hydrogels necessary to generate over 100 volts, the researchers used a printer that "deposits little droplets of gel ... with the precision and spatial resolution to print an array of almost 2,500 gels on a sheet the size of a normal piece of printer paper," Guha said.

The team's next goal is to increase the current running through the hydrogel. "Right now, we're in the range of tens to hundreds of microamperes [the basic unit for measuring an electrical current], which is too low to power most electronic devices," Guha said.

In the future, the research team hopes their results will help develop power sources for implantable devices that can "utilize the [ion] gradients that already exist within the human body," Guha said. "Then you may be able to create a battery which continuously recharges itself, because these ionic gradients are constantly being re-established within the body."

Credit: 
Biophysical Society

Real-time Captcha technique improves biometric authentication

image: Image shows part of the flow diagram of the Real-Time Captcha system.

Image: 
Georgia Tech

A new login authentication approach could improve the security of current biometric techniques that rely on video or images of users' faces. Known as Real-Time Captcha, the technique uses a unique "challenge" that's easy for humans -- but difficult for attackers who may be using machine learning and image generation software to spoof legitimate users.

The Real-Time Captcha requires users to look into their mobile phone's built-in camera while answering a randomly-selected question that appears within a Captcha on the screens of the devices. The response must be given within a limited period of time that's too short for artificial intelligence or machine learning programs to respond. The Captcha would supplement image- and audio-based authentication techniques that can be spoofed by attackers who may be able to find and modify images, video and audio of users -- or steal them from mobile devices.

The technique will be described February 19th at the Network and Distributed Systems Security (NDSS) Symposium 2018 in San Diego, Calif. Supported by the Office of Naval Research (ONR) and the Defense Advanced Research Projects Agency (DARPA), the research was conducted by cyber security specialists at the Georgia Institute of Technology.

"The attackers now know what to expect with authentication that asks them to smile or blink, so they can produce a blinking model or smiling face in real time relatively easily," said Erkam Uzun, a graduate research assistant in Georgia Tech's School of Computer Science and the paper's first author. "We are making the challenge harder by sending users unpredictable requests and limiting the response time to rule out machine interaction."

As part of efforts to eliminate traditional passwords for logins, mobile devices and online services are moving to biometric techniques that utilize a human face, retina or other biological attribute to verify who is attempting to log in. The iPhone X is designed to unlock with the user's face, for instance, while other systems utilize short video segments of a user nodding, blinking or smiling.

In the cat-and-mouse game of cyber security, those biometrics can be spoofed or stolen, which will force companies to find better approaches, said Wenke Lee, a professor in Georgia Tech's School of Computer Science and co-director of the Georgia Tech Institute for Information Security and Privacy.

"If the attacker knows that authentication is based on recognizing a face, they can use an algorithm to synthesize a fake image to impersonate the real user," Lee said. "But by presenting a randomly-selected challenge embedded in a Captcha image, we can prevent the attacker from knowing what to expect. The security of our system comes from a challenge that is easy for a human, but difficult for a machine."

In testing done with 30 subjects, the humans were able to respond to the challenges in one second or less. The best machines required between six and ten seconds to decode the question from the Captcha and respond with a faked video and audio. "This allows us to determine quickly if the response is from a machine or a human," Uzun said.

The new approach would require login requests to pass four tests: successful recognition of a challenge question from within a Captcha, response within a narrow time window that only humans can meet, and successful matches to both the legitimate user's pre-recorded image and voice.

"Using face recognition alone for authentication is probably not strong enough," said Lee. "We want to combine that with Captcha, a proven technology. If you combine the two, that will make face recognition technology much stronger."

Captcha technology - originally an acronym for "Completely Automated Public Turing test to tell Computers and Humans Apart" - is widely used to prevent bots from accessing forms on websites. It works by taking advantage of a human's superior ability to recognize patterns in images. The Real-Time Captcha approach would go beyond what's required on websites by prompting a response that will produce live video and audio that would then be matched against a user's stored security profile.

Captcha challenges might involve recognizing scrambled letters or solving simple math problems. The idea would be to allow humans to respond before machines can even recognize the question.

"Making a still image smile or blink takes a machine just a few seconds, but breaking our Captcha changes takes ten seconds or more," said Uzun.

In trying to improve authentication, the researchers studied image spoofing software and decided to try a new approach, hoping to open a new front in the battle against attackers. The approach moves the attacker's task from that of generating convincing video to breaking a Captcha.

"We looked at the problem knowing what the attackers would likely do," said Simon Pak Ho Chung, a research scientist in Georgia Tech's School of Computer Science. "Improving image quality is one possible response, but we wanted to create a whole new game."

The real-time Captcha approach shouldn't significantly change bandwidth requirements since the Captcha image sent to mobile devices is small and authentication schemes were already transmitting video and audio, Chung said.

Among the challenges going forward is overcoming the difficulty of recognizing speech in a noisy environment and securing the connection between the device camera and the authenticating server.

"For any security mechanism that we develop, we need to worry about the security of the mechanism first," Lee said. "Once you develop security technology, it becomes a target for the attackers, and that certainly applies to biometric technology."

Credit: 
Georgia Institute of Technology