Tech

Understanding steam burns

image: Firefighters are at risk for steam burns caused by their own sweat. Even if the wound looks superficially harmless, steam burns must be cooled persistently. Empa researchers have now been able to show for the first time how hot steam achieves its vicious effect: it penetrates the upper skin layer and can cause severe burns in the lower skin layers -- initially almost invisible.

Image: 
US Airforce

Whether working with steam pipes or in the kitchen: When boiling hot steam hits the skin, it will quickly cause burns. Firefighters are also at risk - due to their own sweat: If it evaporates under the heavy protective clothing in the heat of the fire and cannot escape, it condenses on the cooler skin and burns it.

Skin burns caused by water vapour are often particularly malicious: If the skin is only exposed to the hot vapour for a short time, it is possible that the burn looks harmless on the surface - while the lower skin layer is severely damaged. So why is that? Until recently, there was no response to this question because, unlike dry heat burns, the exact mechanisms of steam burns are still poorly understood.

Why the epidermis does not protect against steam

Researchers in Empa's Biomimetic Membranes and Textiles department have now solved this mystery. "We were able to show that the uppermost skin layer, the epidermis, cannot properly perform its protective function against water vapour," explains René Rossi, head of the research group. "The steam penetrates through the skin pores onto the lower skin layer, the dermis. Only there does the steam condense, thereby releasing its thermal energy directly onto the sensitive dermis - and thus directly triggers second-degree burns".

The scientists have investigated their thesis on pig skin, which often serves as a model for human skin thanks to its similar properties. They exposed the skin to hot steam. The researchers then investigated the water content of the different skin layers using Raman spectroscopy, an analytical method that permits conclusions to be drawn about material properties through the scattering of light.

And indeed, it turned out that when the skin is exposed to hot steam, the heat penetrates the underlying skin layers faster and deeper than with dry heat. The experiments showed that the water content of all skin layers already increases within the first 15 seconds. The reason for this is that the uppermost skin layer has pores which are usually much larger than a water molecule - and the water vapour can pass through them unhindered. Only when the epidermis is swollen by the absorbed amount of water, the pores become too small for the water vapour - but then the damage is already done in the lower skin layer.

Minimize the damage

One problem with all burns is the so-called afterburn effect: the epidermis is a relatively poor heat conductor. Once the skin has absorbed heat - especially in the deeper layers of the skin - it releases it very slowly. As a result, the heat can act on the tissue for longer and damage it even more. This effect is often particularly strong in the case of burns caused by water vapour, as the heat penetrates deep very quickly. "In the case of a steam burn, the skin must therefore be cooled for a long time - two minutes in an ice bath is not enough to dissipate the high amount of energy from the deeper layers of skin," explains Rossi.

Credit: 
Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Early BPA exposure may influence cardiac function, according to new study in neonatal rats

image: Nikki Gillum Posnack, Ph.D., is a study author and an assistant professor at Children's National Heart Institute and at George Washington University.

Image: 
Children's National Health System

WASHINGTON - (May 14, 2018) - More than 8 million pounds of bisphenol A (BPA) is produced each year and reaches 90 percent of the population through consumer and medical products. Epidemiological studies find BPA exposure in adults correlate with adverse cardiovascular events, ranging from abnormal heart beats, or arrhythmias, and angina, chest pain, to coronary artery disease, the narrowing of the arteries, commonly referred to atherosclerosis--the leading cause of death in the United Sates. Now, based on a preclinical study, researchers find that the immature heart may respond to BPA in a similar fashion--with slower heart rates, irregular heart rhythms and calcium instabilities. The study appears as an online advance in Scientific Reports.

The authors note that while additional research is needed to determine the impact prolonged BPA exposure has on a child's developing heart, this study documents the elevated risk short-term BPA exposure, for a period of 15 minutes, may have in pediatric intensive care settings. The authors highlight the importance of incentivizing the development, manufacturing and clinical adoption of alternative biomaterials to potentially improve patient safety outcomes, based on the preliminary data.

"Current research explores the impact endocrine disruptors, specifically BPA, have on adults and their cardiovascular and kidney function," notes Nikki Gillum Posnack, Ph.D., a study author and assistant professor at Children's National Heart Institute and the George Washington University. "We know that once this chemical enters the body, it can be bioactive and therefore can influence how heart cells function. This is the first study to look at the impact BPA exposure can have on heart cells that are still developing."

The significance of this research is that plastics have revolutionized the way doctors and surgeons treat young patients, especially patients with compromised immune or cardiac function.

"We're exploring the potential - and inadvertent risk of plastic medical devices, which have revolutionized the medical field," notes Dr. Posnack. "We're investigating whether these hospital-based exposures may cause unintended effects on cardiac function and looking at ways to mitigate chemical exposure. We hope this preliminary research incentivizes the development of alternative products by medical device manufacturers and encourages the research community to study the impact of plastics on sensitive patient populations."

Dr. Posnack's ongoing research examines the impact environmental influences--including BPA and other endocrine disruptors--have on cardiac function. Her next studies are aimed at measuring chemical exposures in patients and translating her results to human models.

Credit: 
Children's National Hospital

Altered body odor indicates malaria even if microscope doesn't

image: An Anopheles stephensi mosquito is obtaining a blood meal from a human host through its pointed proboscis. Note the droplet of blood being expelled from the abdomen after having engorged itself on its host's blood. This mosquito is a known malarial vector with a distribution that ranges from Egypt all the way to China.

Image: 
Jim Gathany / CDC

Typhoid Mary may have infected a hundred or more people, but asymptomatic carriers of malaria infect far more people every year. An international team of researchers is working toward a way to identify malaria patients including infected individuals who show no malaria symptoms.

People who have malaria but are not symptomatic abound in the heaviest areas of malaria infestation. Even blood tests do not necessarily pick up infection with the plasmodium parasite, especially at low parasite densities. DNA tests for the parasite usually show infection, but they are far from rapid.

"Our previous work in a mouse model found that malaria infection altered the odors of infected mice in ways that made them more attractive to mosquitoes, particularly at a stage of infection where the transmissible stage of the parasite was present at high levels," said Consuelo De Moraes, adjunct professor of biology, Penn State, and professor of environmental systems science, ETH Zurich. "We also found long-term changes in the odor profiles of infected mice."

The researchers wanted to see if they could identify changes in human odors associated with malaria infection that might be useful for diagnosing infected individuals. They were particularly interested in identifying those who were infected, but had no symptoms.
The researchers initially used microscopy and an SD Bioline Rapid Diagnostic Test to identify patients with malaria. Because these methods have limited sensitivity, particularly when parasite loads are low, infections were confirmed by DNA tests. They identified 333 people who unambiguously were either infected with malaria or were not infected with malaria.

Only if both microscopy and DNA studies were negative were subjects considered malaria-free. Infected patients for the initial studies were both microscopy and DNA positive for malaria. In some later analyses, the researchers included 77 people who were positive for malaria according to DNA, but showed no parasites in the microscopic tests.Malaria infection does not create new volatile chemicals in the body, but alters the amounts -- up or down -- of volatile chemicals that are already present in the odors of healthy people.

"It is interesting that the symptomatic and asymptomatic infections were different from each other as well as from healthy people," said Mark C. Mescher, adjunct professor of biology, Penn State, and professor of environmental systems science, ETH Zurich.

This difference among infected, infected asymptomatic, and healthy individuals may eventually lead to tests capable of rapidly and accurately identifying infected people, even those without symptoms.

The researchers report in today's (May 14) issue of Proceedings of the National Academy of Sciences that predictive models using machine learning reliably identify infection status based on volatile biomarkers. They state "our models identified asymptomatic infections with 100 percent sensitivity, even in the case of low-level infections not detectable by microscopy." These results far exceed any currently available rapid diagnostic tests.

"But, we should emphasize that we are a long way away from developing a practical diagnostic assay based on odor cues," said De Moraes.

For a test to succeed it would need to be rapidly and cheaply deployable under field conditions, but still detect infections with high sensitivity.

"In the near term, our goal is to refine the current findings to find the most reliable and effective biomarkers we can," said Mescher. "This is really basic science to identify the biomarkers of malaria. There is still a lot more work to be done to develop a practical diagnostic assay."

Credit: 
Penn State

WSU Tri-Cities team researching use of fungi to restore native plant populations

image: Megan Brauner, a Washington State University Tri-Cities undergraduate, is researching how fungi can help restore native plant populations.

Image: 
Washington State University

RICHLAND, Wash. - Transplanting fungi to restore native plant populations in the Midwest and Northwest is the focus of efforts by a team of WSU Tri-Cities researchers.

Mycorrhizal fungi form a symbiotic relationship with many plant roots, which helps stabilize the soil, conserve water and provides a habitat for many birds and insects, said Tanya Cheeke, assistant professor of biology. Some native plant species are more dependent on mycorrhizal fungi than invasive plant species. So, when that fungi is disturbed, native plants may not be able to compete as well with invasive species, disrupting the natural ecosystem of the environment and inhibiting many natural processes, she said.

Inoculate seedlings with microbes

"One way to improve native plant survival and growth in disturbed environments may be to inoculate seedlings with native soil microbes, which are then transplanted into a restoration site," Cheeke said. "We've been doing prairie restoration in Kansas for the past two years. Now, we're also doing something similar in the Palouse area in Washington."

Cheeke is working with a team of undergraduate and graduate students to complete the research. A group of her undergraduate students recently presented their project during the WSU Tri-Cities Undergraduate Research Symposium and Art Exhibition. Those students include Catalina Yepez, Jasmine Gonzales, Megan Brauner and Bryndalyn Corey.

The undergraduate team spent the past semester analyzing the spread of fungi from an inoculated soil environment in Kansas to see how far the fungi had spread into a restoration area. One year after planting, soil samples were collected at 0.5 meter, 1 meter, 1.5 meters, and 2 meters from the site of the inoculation in each plot. The samples were then tested for the presence of fungal DNA to see if the inoculated mycorrhizal species had reached the various distances from the inoculation points.

"The results will be used to inform ecological restoration efforts aimed at improving the survival and growth of native plants in disturbed ecosystems," undergraduate student Megan Brauner said.

Disturbed vs. pristine environments

Cheeke said they also are looking at how microbes change across gradients of disturbed environments compared to pristine environments.

"We want to determine the microbes that are present in pristine environments, but are missing from disturbed sites," she said.

Eventually, Cheeke said they would like to develop soil restoration strategies that other people can implement in their own environments.

Credit: 
Washington State University

Call for low-cost approach to tackle disease afflicting millions of the world's poorest

image: This is Gail Davey, Professor of Global Health Epidemiology at BSMS.

Image: 
Brighton and Sussex Medical School

Researchers at Brighton and Sussex Medical School (BSMS) are asking governments in the developing world to adopt a low-cost, community-based approach to prevent acute attacks that occur in patients with a devastating neglected tropical disease.

A new study published in The Lancet Global Health shows that a simple package of self-care significantly reduced "acute attacks" among podoconiosis patients. The study was jointly funded by the Wellcome Trust, the UK Medical Research Council and UKAid.

Podoconiosis is a non-infectious disease which causes massive swelling of the legs among barefoot subsistence farmers who are in frequent contact with red volcanic clay soil. The disease causes pain, disability and disfigurement among some of the world's poorest communities, along with great stigma. Acute attacks ('michader') bring malaise, fever, chills, increased swelling of the limbs and skin peeling, when patients cannot move their legs and are confined to bed.

Researchers conducted a pragmatic randomised controlled trial in Northern Ethiopia to test the hypothesis that a simple, inexpensive lymphoedema management package would reduce the incidence of acute episodes in adult podoconiosis patients. Around 700 patients were individually randomised to a package comprising instruction in foot hygiene, skin care, bandaging, exercises, use of socks and shoes, with support by lay Community Podoconiosis Agents at monthly meetings; or had no intervention.

Both groups were followed up after a year, and the group who received the intervention showed a marked reduction in acute episodes, with an incidence rate ratio of 0.81 (a reduction in episode rate of almost 20% in those treated).

Gail Davey, Professor of Global Health Epidemiology at BSMS, who led the study, said: "In most countries that suffer from podoconiosis, there are not yet policies in place to manage this debilitating disease, largely due to limited awareness of the condition and lack of evidence for treatment.

"Our rigorous study provides vital evidence that a simple and cost-effective package of community-managed self-care could have a significant impact on the incidence of acute attacks in people with podoconiosis. Not only would implementing such an approach on a national scale reduce suffering and stigma among many of the poorest communities, it would have a significant impact on these communities' social and economic wellbeing. We would urge governments of countries with high prevalence of podoconiosis to develop policies for its management that include such a community-based approach."

Credit: 
University of Sussex

Study picks out children with incurable brain cancer who could benefit from adult therapy

Children with incurable brain tumours could benefit from potentially life-extending treatment if genetic testing was used to personalise therapy as it is in many adults, major new research reports.

Scientists analysed the DNA of children taking an adult cancer drug on a clinical trial deemed to have 'failed', and found that many with particular genetic traits had actually responded well to treatment.

Some of these children survived more than a year longer than others on the trial.

The international study - led by a team at The Institute of Cancer Research, London, and involving 51 centres in 14 countries - found that children whose tumours had mutations in the MAPK network of genes benefited from Avastin (bevacizumab) alongside standard treatment.

In these children, Avastin also appeared to cause immune cells to flood in to help destroy their tumours - raising the possibility that they could be good candidates for future immunotherapy.

Children's aggressive, or 'high grade', brain tumours are currently treated as one disease, but a recent genetic analysis by the same team at The Institute of Cancer Research (ICR) showed they were actually at least 10 different diseases.

The new research shows the benefits of testing children for genetic mutations in their tumours to make sure they receive the treatment most likely to work.

Increasingly, treatment of adult cancers is shaped by genetic testing, but children's cancer continues to lag behind.

The new independent academic study - published today (Monday) in the prestigious journal Cancer Cell and funded by Roche - analysed genetic, molecular and immunology data from the HERBY phase II clinical trial after it had been completed.

The researchers will now look to confirm the findings in a clinical trial set up specifically to test the effectiveness of Avastin in children with these mutations. If successful, it would open up a whole new treatment option for a disease with very few effective therapies.

This trial compared Avastin combined with standard treatment of temozolomide and radiotherapy with standard treatment alone in 121 children aged three to 18 with high-grade brain tumours.

The trial found that, overall, children did not benefit from the addition of adult cancer drug Avastin - a drug that works by blocking a tumour's blood supply and drawing the immune system to the cancer.

But looking deeper into the genetics of the tumours revealed that children taking Avastin whose tumours had mutations in the MAPK network of genes - around 10-15 per cent of the total - survived up to 16 months longer than other patients.

These children also saw many more immune cells called killer T cells flock to the site of their tumours - in some cases because their cancers had more mutations overall and so were easier for the immune system to pick apart from healthy cells.

Children with these tumours could potentially be considered for future clinical trials of immunotherapies, which tend to work best in patients whose cancers have already sparked some immune reaction.

Children with tumours that were driven by mutations in the histone H3F3FA gene did not benefit from Avastin, with an average survival of only 7.9 months, and there were very few immune cells present in and around the tumour.

Researchers at the ICR - a research institute and charity - believe that testing for mutations could help direct treatment so some children are picked out for Avastin, and others spared treatment that is very unlikely to work for them.

Although rare, aggressive childhood brain tumours are the biggest cause of cancer-related death under 19 years of age because survival rates are so poor - children with these tumours are only expected to live an average of nine to 15 months.

Study leader Professor Chris Jones, Professor of Childhood Brain Tumour Biology at The Institute of Cancer Research, London, said: "We will never see progress in treatment of children's brain cancers while we continue to lump everyone with these cancers together in one group. Children deserve better.

"Our research has previously shown that children's brain cancer is really 10 different diseases, and our new study found these genetic differences can have a major impact on how children respond to drugs. We are building up evidence that genetic testing in children with cancer can have real benefits for selecting the best treatment.

"The next step is to confirm our findings in a clinical trial where only children with these specific mutations receive Avastin. If that is successful, we can open up a promising new option for paediatric brain cancer by turning an established drug for adult cancers into a targeted treatment for children."

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said: "We've seen dramatic progress in the treatment of adult cancers, through advances such as the introduction of targeted therapies and more recently immunotherapies. But that progress hasn't yet been matched in children.

"This exciting research is giving us the tools to personalise treatment for children with brain cancer. It's vital that we take advantage of advances in research by improving children's access to genetic testing and clinical trials, so every child has the best possible chance of receiving a drug that may work for them."

Credit: 
Institute of Cancer Research

Research examines wing shapes to reduce vortex and wake

image: This is a photo showing wake turbulence.

Image: 
Ryoh Ishihara

It's common to see line-shaped clouds in the sky, known as contrails, trailing behind the engines of a jet airplane.

What's not always visible is a vortex coming off of the tip of each wing--like two tiny horizontal tornadoes--leaving behind a turbulent wake behind the vehicle. The wake poses a destabilizing flight hazard, particularly for smaller aircraft that share the same flight path.

Recent research at the University of Illinois demonstrated that, although most wing shapes used today create these turbulent wake vortices, wing geometrics can be designed to reduce or eliminate wingtip vortices almost entirely. In the study, the vortex and wake characteristics were computed for three classic wing designs: the elliptic wing, and wing designs developed in classic studies by R.T. Jones and Ludwig Prandt.

"The elliptic wing configuration has been used as the gold standard of aerodynamic efficiency for the better part of a century. We teach our students that it has the optimal loading characteristics and that it's often used when looking at wing efficiency for say, minimizing drag," said Phillip Ansell, assistant professor in the Department of Aerospace Engineering at U of I.

In a previous experimental study on optimizing wing configurations, Ansell learned you can gain efficiency of the wing system with a non-elliptic wing profile. "Previous academic studies have shown that, theoretically, there are other designs that actually provide lower drag of a planar wing for a fixed amount of lift generation. But what has been missing is an actual apples-to-apples experiment to prove it."

In this new research, Ansell, and his graduate student, Prateek Ranjan, used the real data from the previous study to analyze the three wing configurations.

"We chased this down because we saw something curious in our measurements in the earlier experiment. Consequently, in this new study, we simulated the flow about these three wings and saw significant differences in how the vortices and wakes developed from each of the three wing types. The Jones and the Prandtl wing configurations didn't have wing-tip vortices like the elliptic wing. They had a much more gradual bulk deformation of the whole wake structure, rather than an immediate coherent roll-up. We now know that we can delay the formation of wake vortex structures, and increase the distance it takes a trailing wake vortex to roll up by about 12 times, making it weaker and less of a hazard to the aircraft entering its wake."

Ansell said this information can be used to re-tailor how formation flight is viewed between aircraft, or to develop a new an ideal configuration for the lift loading for takeoffs and landings, and subsequently reduce the length of separation between aircraft in the same flight path.

"Trailing wingtip vortices tend to take a long time to go away once they form in the atmosphere. So the time it takes for the vortex to dissipate has to be figured into the takeoff time of the next aircraft going in that same path. The motion of the air produced by these vortices can create a hazard for trailing aircraft, as it can be unpredictable and make for dangerous flight regimes. So using the Jones or Prandtl wings would result in much less turbulent air behind a plane," Ansell said.

You'd think that Ansell's conclusion is to use only the Jones or Prandtl wing configurations, but it's not.

"One of the things that first drew me to the topic of aerodynamics is that the right answer always depends on what your constraints are. If you're building a tiny unmanned vehicle that will fly at a low speed, you'll get a different solution for design needs than if you're building an aircraft that will carry people at high altitudes and high speeds. So technically, you could argue that all three wing types are the best solution. The question is, what are your driving constraints, such as wing span and weight, behind selecting one of them?"

Ansell added that this is a basic research study and not intended to advise a specific aircraft designer or company.

"We are looking at how the wing flow behaves and the information can be used to understand how the roll-up process of vortices is produced. This study allows us to be aware of how the wing configuration affects the trailing vortex formation and wake by studying the extreme bounds of immediate and delayed vortex roll-up processes," Ansell said.

"Interestingly we identified that one of the worst offenders of creating vortices is indeed the elliptic lift distribution, which is also among the most conventional wing design. It has definitely changed the way I talk about the issue in my classes. Instead of simply referring to the flow patterns produced behind the wing as a pair of 'wingtip vortices,' I've taken to describe the full wake produced as the trailing vortex system."

Credit: 
University of Illinois Grainger College of Engineering

What financial markets, cancer cells, and global warming have in common

A team of biophysicists from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) presents a mathematically concise method for comparing different pricing models in their latest publication in Nature Communications. This enables researchers to predict more accurately how parameters such as the volatility of stock prices change over time.

The ups and downs of stock prices are the result of a complex interplay between traditional investors, day-traders and high-frequency hedge funds. The seemingly erratic short-term price fluctuations can be characterized by a diffusion constant - called volatility. However, volatility itself changes significantly over longer time scales. For example, unexpected Twitter announcements may trigger abrupt volatility spikes, while economic policy changes may induce gradual variations of volatility. Financial analysts notoriously struggle to estimate how volatility changes over time and often base their predictions on unsubstantiated assumptions.

Instead of evaluating the uncertainty of different model predictions analytically, Christoph Mark and colleagues from the Biophysics group at FAU developed a numerical implementation of the principle of 'Occam's razor', which favors those models that describe the data with the least number of assumptions.

The researchers use this method to show that the so-called fat-tailed distribution of stock market returns (including rare but dramatic events such as Black Fridays and market bubbles) emerges naturally from sudden volatility fluctuations. Moreover, with their method they can pinpoint the triggering events (such as news announcements) in real-time.

Volatility fluctuations or, more generally speaking, heterogeneous random walks are not exclusive to finance, however, and also describe the movements of invasive cancer cells, the timing of accidents and disasters, and climate change. Here, their method can be used to identify particularly invasive cells, to determine political measures that may reduce accidents, or to compare different climate models to forecast global warming.

Credit: 
Friedrich-Alexander-Universität Erlangen-Nürnberg

Cannabis use up among parents with children in the home

NEW YORK--Cannabis use increased among parents who smoke cigarettes, as well as among non-smoking parents, according to a latest study from researchers at Columbia University's Mailman School of Public Health and City University of New York. Cannabis use was nearly four times more common among cigarette smokers compared with non-smokers. Until now, little had been known about current trends in the use of cannabis among parents with children in the home, the prevalence of exposure to both tobacco and cannabis, and which populations might be at greatest risk. The findings will be published online in the June issue of Pediatrics.

"While great strides have been made to reduce children's exposure to second-hand cigarette smoke, those efforts may be undermined by increasing use of cannabis among parents with children living at home," said Renee Goodwin, PhD, in the Department of Epidemiology at the Mailman School of Public Health, and corresponding author.
 

Analyzing data from the National Survey on Drug Use and Health from 2002 to 2015, the researchers found past-month cannabis use among parents with children at home increased from 5 percent in 2002 to 7 percent in 2015, whereas cigarette smoking declined from 28 percent to 20 percent. Cannabis use increased from 11 percent in 2002 to over 17 percent in 2015 among cigarette-smoking parents and from slightly over 2 percent to 4 percent among non-cigarette-smoking parents. Cannabis use was nearly 4 times more common among cigarette smokers versus nonsmokers (17 percent vs 4 percent), as was daily cannabis use (5 percent vs 1 percent). The overall percentage of parents who used cigarettes and/or cannabis decreased from 30 percent in 2002 to 24 percent in 2015.

"While use of either cigarettes or cannabis in homes with children has declined, there was an increase in the percent of homes with both. Therefore, the increase in cannabis use may be compromising progress in curbing exposure to secondhand smoke," noted Goodwin, who is also at the Graduate School of Public Health and Health Policy at CUNY.

Cannabis use was also more prevalent among men who also smoked compared to women (10 percent vs 6 percent) and among younger parents with children in the home (11 percent) compared with those 50 and older (4 percent). The strength of the relationship between current cannabis use and cigarette smoking was significant and similar for all income levels.

"The results of our study support the public health gains in reducing overall child secondhand tobacco smoke but raise other public health concerns about child exposure to secondhand cannabis smoke and especially high risk for combined exposures in certain subpopulations," observed Goodwin.

Noteworthy, according to Goodwin, is that there remains a lack of information on the location of smoking, whether it occurs in the house or in the proximity of children. Unlike cigarettes, smoking cannabis outdoors and in a range of public areas is illegal in most places. Therefore, there is reason to believe that cannabis use is even more likely to occur in the home than cigarette smoking given their differences in legal status.

"Efforts to decrease secondhand smoke exposure via cigarette smoking cessation may be complicated by increases in cannabis use," said Goodwin. "Educating parents about secondhand cannabis smoke exposure should be integrated into public health education programs on secondhand smoke exposure."

Credit: 
Columbia University's Mailman School of Public Health

A micro-thermometer to record tiny temperature changes

image: (a) Video still showing a tightly focused laser beam making contact with the thermocouple. (b) Graph showing the thermocouple's response over time to different laser powers (3.6 and 1.8 mW) at different repetition rates, on glass and on the silicon nitride membrane (ΔT: change in temperature, τ: time for temperature rise and decay).

Image: 
Scientific Reports

Scientists at Tokyo Institute of Technology (Tokyo Tech) and their collaborators have developed a micrometer-wide thermometer that is sensitive to heat generated by optical and electron beams, and can measure small and rapid temperature changes in real time. This new device can be used to explore heat transport on the micro- and nano-scales, and in optical microscopy and synchrotron radiation experiments.

There is an urgent need for a device that can measure thermal behavior on the nanoscale and in real time, as this technology could be applied in photo-thermal cancer treatment as well as in advanced research on crystals, optical light harvesting, etc. Moreover, a miniaturized thermal microscopy system with a nanoscale heat source and detector is essential for future development of next-generation transistors that will be employed in designing new nanoscale devices.

A thermocouple is an electrical device consisting of two dissimilar electrical conductors forming electrical junctions at differing temperatures. A thermocouple produces a temperature-dependent voltage, which can be interpreted to measure temperature. The micro-thermocouple recently developed by scientists at Tokyo Institute of Technology and their collaborators is of major importance to researchers in many fields. This device consists of a gold and nickel thermocouple on a silicon nitride membrane and is miniaturized to the extent that the electrodes are only 2.5 μm wide and the membrane is just 30 nm thick. For such a system to be used as a thermal characterization device, i.e., a thermometer, it must show sensitivity to temperature change. The developed micro-thermocouple exhibited high responsiveness to heat generated by a laser and an electron beam. Importantly, tiny temperature changes were measured by the developed thermocouple for both types of heating.

An already developed miniaturization process was used to prepare the micro-thermocouple, but critical improvements were made. In the established method, a cross pattern of metal stripes with widths of a few micrometers is created, so that a thermocouple is produced. The researchers at Tokyo Institute of Technology and their colleagues used this technique to create a pattern on a nano-thin silicon nitride membrane, which enhanced the device sensitivity and enabled it to respond faster. Through this approach, a thermometer that could measure fast and small temperature changes was successfully produced, with the measurements being performed through the nano-thin silicon nitride membrane.

As explained above, both a nanoscale heat source and a nanoscale detector are needed for a miniaturized thermal microscopy system. These requirements were successfully satisfied by the researchers, who used the nano-thin membrane and a tightly focused laser or electron beam to create a heat source with a diameter of less than 1 μm. So, combined with the micro-thermocouple detector, a nanoscale thermal microscopy system was achieved. This system can be regarded as a new "toolbox" for investigating heat transport behavior on the micro- and nano-scales, with many important applications in a wide range of fields.

Credit: 
Tokyo Institute of Technology

During disasters, active Twitter users likely to spread falsehoods

BUFFALO, N.Y. -- We know that Twitter is littered with misinformation. But how good are the social media platform's most active users at detecting these falsehoods, especially during public emergencies?

Not good, according to new University at Buffalo research that examined more than 20,000 tweets during Hurricane Sandy and the Boston Marathon bombing.

The study, published today (May 11) in the journal Natural Hazards, examined four false rumors -- two each from the marathon and hurricane, including an infamous falsehood about the New York Stock Exchange flooding.

Researchers examined three types of behavior. Twitter users could either spread the false news, seek to confirm it, or cast doubt upon it. Researchers found:

86 to 91 percent of the users spread false news, either by retweeting or "liking" the original post.

5 to 9 percent sought to confirm the false news, typically by retweeting and asking if the information was correct.

1 to 9 percent expressed doubt, often by saying the original tweet was not accurate.

"To the best of our knowledge, this is the first study to investigate how apt Twitter users are at debunking falsehoods during disasters. Unfortunately, the results paint a less than flattering picture," says the study's lead author Jun Zhuang, PhD, associate professor in the Department of Industrial and Systems Engineering in UB's School of Engineering and Applied Sciences.

Even after the false news had been debunked on Twitter and traditional news media outlets, the study found that:

Less than 10 percent of the users who spread the false news deleted their erroneous retweet.

Less than 20 percent of the same users clarified the false tweet with a new tweet.

"These findings are important because they show how easily people are deceived during times when they are most vulnerable and the role social media platforms play in these deceptions," says Zhuang, who is conducting similar research concerning Hurricane Harvey and Hurricane Irma.

On a more positive note, the study found that while Twitter users are likely to spread false news during disasters, Twitter and other media platforms move quickly to correct the misinformation.

Additionally, Zhuang says it's important to note that the study does not consider Twitter users who may have seen the original tweets with false news and decided to ignore them.

"It's possible that many people saw these tweets, decided they were inaccurate and chose not to engage," says Zhuang, who was recently awarded a $392,000 National Science Foundation (NSF) grant to work on additional studies, including understanding what factors prompt Twitter users to ignore certain posts during emergencies, and the best ways to debunk false news.

Credit: 
University at Buffalo

Waterloo chemists create faster and more efficient way to process information

image: This is professor Pavle Radovanovic in front of the magnetic circular dichroism system used in this study.

Image: 
University of Waterloo

University of Waterloo chemists have found a much faster and more efficient way to store and process information by expanding the limitations of how the flow of electricity can be used and managed.

In a recently released study, the chemists discovered that light can induce magnetization in certain semiconductors - the standard class of materials at the heart of all computing devices today.

"These results could allow for a fundamentally new way to process, transfer, and store information by electronic devices, that is much faster and more efficient than conventional electronics."

For decades, computer chips have been shrinking thanks to a steady stream of technological improvements in processing density. Experts have, however, been warning that we'll soon reach the end of the trend known as Moore's Law, in which the number of transistors per square inch on integrated circuits double every year.

"Simply put, there's a physical limit to the performance of conventional semiconductors as well as how dense you can build a chip," said Pavle Radovanovic, a professor of chemistry and a member of the Waterloo Institute for Nanotechnology. "In order to continue improving chip performance, you would either need to change the material transistors are made of - from silicon, say to carbon nanotubes or graphene - or change how our current materials store and process information."

Radovanovic's finding is made possible by magnetism and a field called spintronics, which proposes to store binary information within an electron's spin direction, in addition to its charge and plasmonics, which studies collective oscillations of elements in a material.

"We've basically magnetized individual semiconducting nanocrystals (tiny particles nearly 10,000 times smaller than the width of a human hair) with light at room temperature," said Radovanovic. "It's the first time someone's been able to use collective motion of electrons, known as plasmon, to induce a stable magnetization within such a non-magnetic semiconductor material."

In manipulating plasmon in doped indium oxide nanocrystals Radovanovic's findings proves that the magnetic and semiconducting properties can indeed be coupled, all without needing ultra-low temperatures (cryogens) to operate a device.

He anticipates the findings could initially lead to highly sensitive magneto-optical sensors for thermal imaging and chemical sensing. In the future, he hopes to extend this approach to quantum sensing, data storage, and quantum information processing.

Credit: 
University of Waterloo

Projecting climate change along the Millennium Silk Road in a warmer world

image: Observed annual mean precipitation amount (units: mm yr-1) over the Eurasian continent (shaded) and projected changes in annual mean precipitation over the Silk Road core region (bottom-left inset). The thick black lines in the main part of the figure indicate the Silk Road core region.

Image: 
Ning Sun

Western China and central Asia are positioned centrally along the Millennium Silk Road--a core region bridging the east and west. Understanding the potential changes in climate over this core region is important to the successful implementation of "Belt and Road Initiative" (a US$1 trillion regional investment in infrastructure). In a recently published study in Atmospheric and Oceanic Science Letters, scientists from the Institute of Atmospheric Physics, Chinese Academy of Sciences, projected both mean and extreme climate changes using the ensemble mean of CMIP5 models. The comparison of mean and extreme climate changes under 1.5°C and 2°C global warming scenarios highlights the impacts that can be avoided by achieving global warming of half a degree lower.

The results show a warming of about 1.5°C, 2.9°C, 3.6°C and 6.0°C under the RCP2.6, 4.5, 6.0 and 8.5 scenarios, respectively, by the end of the 21st century, with respect to the 1986-2005 baseline period. Meanwhile, the annual mean precipitation amount increases consistently across all RCPs, with an increase by about 14% with respect to 1986-2005 under RCP8.5. The warming over the Millennium Silk Road region reaches 1.5°C before 2020 under all the emission scenarios. The 2020s (2030s) see a 2°C warming under the RCP8.5 (RCP4.5) scenario.

"Our study suggests that half a degree less global warming will result in significant avoided impacts in the Silk Road core region," says the lead author Prof. Tianjun Zhou. According to the study, half a degree less global warming will avoid a further warming of 0.73°C (with an interquartile range of 0.49?-0.94?), as well as increasing the number of extreme heat events by 4.2 days, at a cost of a lower increase of 2.72% (0.47%-3.82%) in annual precipitation. The change in consecutive dry days is region-dependent.

Credit: 
Institute of Atmospheric Physics, Chinese Academy of Sciences

Discovery of novel biomarker with remarkable specificity to rheumatoid arthritis

Tsukuba, Japan - Rheumatoid arthritis (RA) is an autoimmune disorder that occurs when the immune system mistakenly attacks the body's tissues. Unlike the wear-and-tear damage of osteoarthritis, rheumatoid arthritis affects the lining of the joints, causing painful swelling that can eventually result in bone erosion and joint deformity.

Most RA patients are positive for anticitrullinated protein antibodies (ACPA), and these antibodies are highly specific for RA diagnosis. ACPA recognizes various citrullinated proteins, such as fibrinogen, vimentin and glucose- 6-phosphate isomerase. Citrullinated proteins are proteins that have the amino acid arginine converted into the citrulline, which is not one of the 20 standard amino acids encoded by DNA in the genetic code. Autoreactivity to citrullinated protein may increase susceptibility to RA.

While many candidate citrullinated antigens have been identified in RA joints, the involvement of citrullinated proteins in blood serum remains mostly uninvestigated. To that end, a team of University of Tsukuba-centered researchers set out to explore the expression and commonality of citrullinated proteins in peptide glucose-6-phosphate isomerase-induced arthritis (pGIA) and patients with RA, and went one step further to investigate its correlation with RA disease activity. The researchers recently published their findings in Arthritis Research & Therapy.

"We examined serum citrullinated proteins from pGIA by western blotting, and the sequence was identified by mass spectrometry. With the same methods, serum citrullinated proteins were analyzed in patients with RA, primary Sjögren's syndrome, systemic lupus erythematosus, and osteoarthritis as well as in healthy subjects," study corresponding author Isao Matsumoto explains. "In patients with RA, the relationship between the expression of the identified protein inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and clinical features was also evaluated, and the levels of citrullinated ITIH4 were compared before and after biological treatment."

The researchers found that citrullinated ITIH4 was highly specific to patients with RA, compared with patients with other autoimmune and arthritic diseases or in healthy subjects, indicating a potential role for citrullinated ITIH4 in RA pathogenesis. Notably, its levels were decreased in correlation with the reduction of disease activity score after effective treatment in patients with RA. Moreover, antibody response to citrullinated epitope in ITIH4 was specifically observed in patients with RA.

"Our results suggest that citrullinated ITIH4 might be a novel biomarker to distinguish RA from other rheumatic diseases and for assessing disease activity in patients with RA," Matsumoto says. "To our knowledge, this is the first report of its kind in the literature."

Credit: 
University of Tsukuba

Punching holes in graphene to boost hydrogen production

image: Porous NiMo composite covered with holy graphene.

Image: 
University of Tsukuba

Tsukuba, Japan - Researchers may have brought the renewable energy future one step closer. A new electrode can accomplish the hydrogen evolution reaction (HER) in acidic conditions, making the technology both cheaper and more effective. The process is helped by a smart form of graphene.

The electrolysis of water to hydrogen is vital for energy storage in a green economy. One of the major obstacles, however, is the high cost of noble-metal electrodes. Cheaper non-nobles do work, but mainly in alkaline conditions, where the reaction is electricity-hungry; the more efficient acid-phase reaction requires scarce commodity metals such as platinum. Worse still, the acid electrolytes are corrosive and eat away at the core metal.

Now, researchers led by the University of Tsukuba have found that "holey" graphene offers a way round this problem. They used nitrogen-doped graphene sheets to encapsulate a nickel-molybdenum (NiMo) electrode alloy. Crucially, the graphene was punched full of nanometer-size holes, like a colander. In a study in ACS Catalysis, they showed that in acid conditions, the new HER system dramatically outperforms an electrode using regular non-holey graphene.

The use of graphene in HER electrodes is not new - this flexible, conductive carbon sheet is ideal for wrapping around the core metal. However, while protecting the metal against corrosion, graphene also suppresses its chemical activity. In the new Tsukuba system, the all-important holes promote the reaction in two ways, while the intact graphene part protects the metal.

"We created holes by decorating the NiMo surface with silica nanoparticles," explains study co-author Kailong Hu. "Then, when we deposited the graphene layer, gaps were left behind at the nanoparticle positions - like a relief artwork. In fact, the holes are more than just gaps - they are ringed by chemically active ridges called 'fringes'. Technically, these fringes are structural defects, but they drive the chemistry of the electrode."

Compared with normal graphene, the fringes are more hydrophilic. This attracts hydronium (H3O+) in the acid solution, which plays a crucial role in one of the two HER mechanisms. The fringes are also excellent at adsorbing single H atoms, which provides extra surface area for the other important HER process. As a result, H2 is produced as efficiently as on a conventional (but expensive) Pt/C electrode. Meanwhile, the non-holey part of graphene delays the metal catalyst from dissolving in the acid.

"This is a versatile new concept for hydrogen evolution electrodes," lead author Yoshikazu Ito says. "The goal is to minimize the overpotential needed for the reaction. Therefore, it's not limited to one particular catalyst. We tuned our holey graphene layer specifically to NiMo by optimizing the size and number of holes. What's impressive is that the catalyst was still stable in acid, despite the holes. In the future, holey graphene could be customized to a range of metals, pushing the efficiency of hydrogen production toward full-scale adoption."

Credit: 
University of Tsukuba