Tech

Post-Soviet food system changes led to greenhouse gas reductions

Changes in agriculture, trade, food production and consumption after the collapse of the Soviet Union led to a large reduction in greenhouse gas emissions, a new study has found.

From 1991 to 2011, there was a net emissions reduction of 7.61 gigatons (Gt) of carbon dioxide equivalents - the same as one quarter of the CO2 emissions from deforestation in Latin America in the same period.

However, the team behind the research cautioned that ongoing changes in food systems in former Soviet Union countries suggest the reduced emissions will ultimately rebound.

They published their results today in Environmental Research Letters.

Dr Florian Schierhorn, from the Leibniz Institute of Agricultural Development in Transition Economies, Germany, is the study's lead author. He said: "The global food system contributes significantly to greenhouse gas (GHG) emissions, so understanding the source of GHG emissions from the different components of food systems is important. A key aspect of this is assessing how changes in international trade patterns affect regional GHG emission balances.

"When the former Soviet Union collapsed, the transition from a planned to a market economy had drastic consequences for the region's agricultural sector and food systems. Higher prices and lower purchasing power reduced the consumption of meat, particularly beef.

"This fall in demand, coupled with a reduction in state support for agriculture, led to a halving in pig and cattle numbers. This collapse in the livestock sector led to widespread agricultural abandonment."

To assess the impact this had on GHG emissions, the researchers used a database of land-use change and the associated changes in soil organic carbon stocks to quantify the emissions from agricultural production, including livestock and the emissions from the trade of agricultural goods.

They then estimated the net cumulative change in GHG emissions of all years from 1991 to 2011, minus the average emissions by the end of the Soviet Union.

Dr Schierhorn said: "The post-Soviet changes in GHG emissions from food production, food trade, and cropland extent led to a cumulative net reduction of 7.61 Gt CO2e from 1992 to 2011, compared to a scenario where emissions stayed at the late Soviet level.

"The most important reasons for this reduction were the decline in domestic livestock production, and soil organic carbon sequestration on abandoned cropland, particularly in Russia and Kazakhstan."

However, the researchers noted that the ongoing carbon balance remains unresolved. Their analysis suggests several further developments, including the potential for abandoned cropland to sequester additional significant carbon until mid-century, but with these gains likely being mitigated by an increase in agricultural development.

In addition, importing agricultural commodities such as beef may compromise these gains through embodied carbon emissions.

Dr Schierhorn said: "Once economies in the former Soviet Union had stabilised in the late 1990s, domestic food demand in the region started to rebound. The consumption of beef, for example, increased by 15 per cent between 2000 and 2008.

"However, beef production in the region had stagnated, and shows no signs of recovering. The demand meant it became the second largest importer of beef globally, with 80 per cent coming from South America. This is significant, because South American beef exports embody high GHG emissions, due to deforestation and inefficient production systems.

"This relationship shows how negative emissions due to agricultural land abandonment can be compromised by increasing emissions from rising agricultural imports. This situation is likely similar in many industrialized and emerging regions where agricultural land use has been contracting in the recent past."

Credit: 
IOP Publishing

National emergency alerts potentially vulnerable to attack

On October 3, 2018, cell phones across the United States received a text message labeled "Presidential Alert." The message read: "THIS IS A TEST of the National Wireless Emergency Alert System. No action is needed."

It was the first trial run for a new national alert system, developed by several U.S. government agencies as a way to warn as many people across the United States as possible if a disaster was imminent.

Now, a new study by researchers at the University of Colorado Boulder raises a red flag around these alerts--namely, that such emergency alerts authorized by the President of the United States can, theoretically, be spoofed.

The team, including faculty from CU Engineering's Department of Computer Science (CS), Department of Electrical, Computer and Energy Engineering (ECEE) and the Technology, Cybersecurity and Policy (TCP) program discovered a back door through which hackers might mimic those alerts, blasting fake messages to people in a confined area, such as a sports arena or a dense city block.

The researchers, who have already reported their results to U.S. government officials, say that the goal of their study is to work with relevant authorities to prevent such an attack in the future.

"We think this is something the public should be aware of to encourage cell carriers and standards bodies to correct this problem," said Eric Wustrow, a co-author of the study and an assistant professor in ECEE. "In the meantime, people should probably still trust the emergency alerts they see on their phones."

The researchers reported their results at the 2019 International Conference on Mobile Systems, Applications and Services (MobiSys) in Seoul, South Korea, where their study won the award for "best paper."

Wustrow said that he and colleagues Sangtae Ha and Dirk Grunwald decided to pursue the project, in part, because of a real-life event.

In January 2018, months before the first presidential alert test went out, millions of Hawaiians received a similar, but seemingly genuine, message on their phones: someone had launched a ballistic missile attack on the state.

It was, of course, a mistake, but that event made the CU Boulder team wonder: How secure are such emergency alerts?

The answer, at least for presidentially-authorized alerts, hinges on where you look.

"Sending the emergency alert from the government to the cell towers is reasonably secure," said co-author Sangtae Ha, an assistant professor in the Department of Computer Science. "But there are huge vulnerabilities between the cell tower and the users."

Ha explained that because the government wants presidential alerts to reach as many cell phones as possible, it takes a broad approach to broadcasting these alerts--sending messages through a distinct channel to every device in range of a cell tower.

He and his colleagues discovered that hackers could exploit that loophole by creating their own, black market cell towers. First, the team, working in a secured lab, developed software that could mimic the format of a presidential alert.

"We only need to broadcast that message into the right channel, and the smartphone will pick it up and display it," Ha said.

And, he said, the team found that such messages could be sent out using commercially-available wireless transmitters with a high success rate--or roughly hitting 90 percent of phones in an area the size of CU Boulder's Folsom Field, potentially sending malicious warnings to tens of thousands of people.

It's a potentially major threat to public safety, said Grunwald, a professor in computer science.

"We think it is concerning, which is why we went through a responsible disclosure process with different government agencies and carriers," he said.

The team has already come up with a few ways to thwart such an attack and are working with partners in industry and government to determine which mechanisms are most effective.

Credit: 
University of Colorado at Boulder

Moral lessons in children's television programs may require extra explanation

Children's television programming often contains moral lessons and examples of inclusiveness, but children may struggle to comprehend and transfer the situations presented on an animated production to their own lives, University of California, Davis, research suggests.

In two separate studies, researchers monitored more than 100 4-6-year-olds of various ethnicities from urban and rural areas in the United States and the Netherlands while they watched popular children's television shows. They found that, in some instances, viewing a television show positively influenced children's sense of fairness and right and wrong, such as with theft or interpersonal violence. More complex ideas, however, proved difficult for them to comprehend. Furthermore, nuance may backfire, causing children to behave poorly in their own lives because they don't understand the nuanced solutions presented in the show.

For this reason, researchers recommend that children's programs contain inserts with brief but explicit explanations or discussions of the lessons presented in the show, such as inclusion. When researchers experimented with inserted explanations, children's responses improved.

"Just putting 30 seconds of explanation in the program helped the children to understand what the lessons were in a 12-minute segment," said Drew P. Cingel, UC Davis assistant professor of communication and the lead author of the two recent studies. He explained that the researchers' inserts were simple, but presented messages literally rather than metaphorically, which promoted prosocial intentions and decreased stigmatization of others.

Research explored 'theory of mind'

The research explored "theory of mind," which refers to an individual's ability to attribute mental states to oneself and others, and to further understand that others have mental states that differ from their own. Theory of mind undergoes rapid development during preschool years, making the research especially relevant, the article said. Children low in theory of mind were those most positively influenced by the explicit inserts.

"This could make a big difference and has such practical implications. I just think of what a significant role media could have in child development -- among children that need the most help -- with this one improvement." Follow-up studies are planned, Cingel said.

Most children who did not see the explicit insert expressed more exclusionary attitudes toward other children. In the scenarios in one study, one child was using crutches, another used a wheelchair, and yet another was obese. One child appeared to have an "average body type" without disabilities. Most children who answered questions about the characters said these children with disabilities were not as smart as others, and they expressed other negative feelings about the characters' differences, demonstrating that lessons of inclusivity may be difficult for many children to comprehend.

He said these misunderstandings made sense when one considers that in 12 minutes of content, children often see nine minutes of exclusionary behavior or a problem being presented with only three minutes or less of a solution. The solutions presented, then, often don't resonate with the child viewer in a positive way. And in most cases, the studies show, the program reinforced or suggested stereotypes and increased stigmatization, rather than educating children to behave otherwise, especially when they viewed the show with other children.

Cingel, director of the UC Davis Human Development and Media Lab, said he hopes the research prompts changes in children's programming. "I want this to matter in the lives of kids, not just academics," he said.

Credit: 
University of California - Davis

Bats' brains sync when they socialize

Berkeley -- The phrase "we're on the same wavelength" may be more than just a friendly saying: A new study by University of California, Berkeley, researchers shows that bats' brain activity is literally in sync when bats engage in social behaviors like grooming, fighting or sniffing each other.

"Whenever the bats were socially interacting, you could see these very robust correlations in brain activity," said Michael Yartsev, an assistant professor of neurobiology and bioengineering at UC Berkeley.

This study, appearing June 20 in the journal Cell, is the first to observe synchronized brain activity in a non-human species engaging in natural social interactions. The finding opens the door to future study on how our brains process social interactions and has potential implications for understanding diseases, like autism, that affect social behavior.

"This is a very core phenomenon that, for two decades, people have been excited about in humans," Yartsev said. "Now that we've observed it in an animal model, it opens the door to very detailed research of it."

While some correlations have been found between brain activity in socializing humans, human studies have been limited to using brain imaging techniques, such as functional magnetic resonance imaging (fMRI), which does not measure electrical activity directly, or electroencephalography (EEG), which is typically limited to measuring low frequency brain waves.

In the study, Yartsev and Berkeley postdoctoral scholar Wujie Zhang used wireless neural recording devices to measure the brain activity of Egyptian fruit bats while the bats freely interacted in a chamber. The researchers' recording devices allowed them to capture what fMRI and EEG techniques cannot -- signals that include the bats' higher frequency brain waves, as well as electrical activity from individual neurons.

They found surprisingly strong correlations between the bats' brains, especially for brain waves in the high frequency band. These correlations were present whenever the bats shared a social environment and increased before and during their social interactions.

"The inter-brain correlations were so strong that you could easily see them in the raw data," Zhang said. "This is the first time in my career where a result was so robust that it popped out from the data like that."

To better understand these correlations, a team of undergraduate assistants went frame-by-frame through hours of high-speed video of the bats, characterizing their behavior in each frame. Zhang and Yartsev then analyzed the relationship between bat behavior and inter-brain correlation.

Their detailed analysis allowed them to rule out other possible explanations for the synced-up brain activity, such as that the bats' brains were simply reacting to the same environment, or that the bats were engaging in the same behavior. For example, two bats placed in identical, but separate, chambers and both busy grooming did not show the same synchronization.

The inter-brain synchronization was really all about sharing a social experience together, Yartsev said. Even when three bats shared the same social environment, but only two of them were actively interacting with each other, the brains of all three were synchronized.

"It's kind of like, if you think about a dinner table, some people could be talking back and forth, while another person would be sitting there, still paying attention, while still being part of the social interaction," Yartsev said. "Under that analogy, then, supposedly all of the brains would be correlated simultaneously."

There is still much to be revealed about just what this high frequency band of brain waves does, though there is some evidence that it is involved in a number of mental processes that would be needed to successfully navigate a dinner party -- including sensory and emotional information-processing, attention and working memory.

And while being "on the same wavelength" may seem a little magical or mysterious, the researchers stress that it is anything but.

"One of the explanations of this is that, when you and I are interacting, we are basically forming a closed loop," Yartsev said. "I am doing a bunch of motor actions, such as articulating words, and you are hearing them, and you are processing them, and then you are making ongoing, on-the-fly decisions about how to react to them. And I respond in exactly the same way to you. This loop between us is what likely leads to brains getting linked to one another and is an important aspect of the ability to engage in successful social interactions."

"The 'magic' here is social interaction," Zhang added. "When we interact, our brains engage each other indirectly through our behaviors."

Credit: 
University of California - Berkeley

Sugars that coat proteins are a possible drug target for pancreatitis

image: Pancreatic lineage immunofluorescence (IF) of the whole body, R;F CA19-9 mouse model.

Image: 
Tuveson lab/CSHL 2019

Cold Spring Harbor, NY -- Pancreatitis is an inflammation of the pancreas that accounts for 275,000 hospitalizations in the United States annually. Patients who suffer from hereditary pancreatitis have a 40 to 50 percent lifetime risk of developing pancreatic cancer.

Dannielle Engle, a former Cold Spring Harbor Laboratory (CSHL) Cancer Center postdoctoral fellow who was recently appointed Assistant Professor at Salk Institute, studies the progression of pancreatitis to pancreatic cancer. She has focused on a potentially powerful biomarker, a chemical structure created by complex sugar molecules called CA19-9, since CA19-9 is elevated in patients with pancreatitis and pancreatic cancer. Now, Engle and her team provide the first evidence that CA19-9 actually causes the disease it was correlated with as a biomarker, and suggest that blocking this complex sugar structure could be used therapeutically to prevent the progression from pancreatitis to pancreatic cancer. Their findings are published in the journal Science.

"This is one of those unique opportunities where prophylactic intervention of pancreatitis may lead to prevention of pancreatic cancer in at-risk patients," Engle said.

In Cancer Center Director David Tuveson's lab at CSHL, Engle investigated the properties of pancreatic cancer. She zeroed in on CA19-9, a complex sugar structure that coats many proteins but had not previously been ascribed with any particular function. A single enzyme controls the final step in production of CA19-9 in humans, but this enzyme is missing in rodents. Engle generated mice that produced CA19-9, and surprisingly noted that the mice developed severe pancreatitis. Engle's findings position CA19-9 as an attractive therapeutic target for pancreatitis.

In mice, CA19-9 recruits the immune system to repair injuries from pancreatitis. Engle found that during this recruitment process, CA19-9 can also induce a cascade of biochemical reactions propelled by the release of deleterious digestive enzymes from the pancreas. This cascade opens a transformational gateway for cancer to develop and Engle also demonstrated that CA19-9 can dramatically accelerate the growth of pancreatic tumors.

"Pancreatitis is required for developing pancreatic cancer, and we might be able to prevent that transition in patients with pancreatitis by targeting CA19-9," posited Engle. "By targeting CA19-9 with antibodies in animal models, we were able to reduce the severity of pancreatitis and even prevent it from occurring."

A pending patent application filed by CSHL covering use of CA19-9 antibodies for the treatment and prevention of pancreatitis has been exclusively licensed to BioNTech, a German-based biotech company.

Credit: 
Cold Spring Harbor Laboratory

NIST team supersizes 'quantum squeezing' to measure ultrasmall motion

image: Diagram of NIST's ion trap used for reversible 'quantum squeezing' to amplify and measure ion motion. The ion (white ball) is confined 30 micrometers above the trap surface by voltages applied to the eight gold electrodes and the two red electrodes. Squeezing -- which reduces the uncertainty of motion measurements -- is achieved by applying a specific signal to the red electrodes. The ion is moved by applying another type of signal to one of the gold electrodes. Then the squeezing is reversed, and the blue electrodes generate magnetic fields used to decode the amplified motion measurement.

Image: 
Burd/NIST

Physicists at the National Institute of Standards and Technology (NIST) have harnessed the phenomenon of "quantum squeezing" to amplify and measure trillionths-of-a-meter motions of a lone trapped magnesium ion (electrically charged atom).

Described in the June 21 issue of Science, NIST's rapid, reversible squeezing method could enhance sensing of extremely weak electric fields in surface science applications, for example, or detect absorption of very slight amounts of light in devices such as atomic clocks. The technique could also speed up operations in a quantum computer.

"By using squeezing, we can measure with greater sensitivity than could be achieved without quantum effects," lead author Shaun Burd said.

"We demonstrate one of the highest levels of quantum squeezing ever reported and use it to amplify small mechanical motions," NIST physicist Daniel Slichter said. "We are 7.3 times more sensitive to these motions than would be possible without the use of this technique."

Although squeezing an orange might make a juicy mess, quantum squeezing is a very precise process, which moves measurement uncertainty from one place to another.

Imagine you are holding a long balloon, and the air inside it represents uncertainty. Quantum squeezing is like pinching the balloon on one end to push air into the other end. You move uncertainty from a place where you want more precise measurements, to another place, where you can live with less precision, while keeping the total uncertainty of the system the same.

In the case of the magnesium ion, measurements of its motion are normally limited by so-called quantum fluctuations in the ion's position and momentum, which occur all the time, even when the ion has the lowest possible energy. Squeezing manipulates these fluctuations, for example by pushing uncertainty from the position to the momentum when improved position sensitivity is desired.

In NIST's method, a single ion is held in space 30 micrometers (millionths of a meter) above a flat sapphire chip covered with gold electrodes used to trap and control the ion. Laser and microwave pulses are applied to calm the ion's electrons and motion to their lowest-energy states. The motion is then squeezed by wiggling the voltage on certain electrodes at twice the natural frequency of the ion's back-and-forth motion. This process lasts only a few microseconds.

After the squeezing, a small, oscillating electric field "test signal" is applied to the ion to make it move a little bit in three-dimensional space. To be amplified, this extra motion needs to be "in sync" with the squeezing.

Finally, the squeezing step is repeated, but now with the electrode voltages exactly out of sync with the original squeezing voltages. This out-of-sync squeezing reverses the initial squeezing; however, at the same time it amplifies the small motion caused by the test signal. When this step is complete, the uncertainty in the ion motion is back to its original value, but the back-and-forth motion of the ion is larger than if the test signal had been applied without any of the squeezing steps.

To obtain the results, an oscillating magnetic field is applied to map or encode the ion's motion onto its electronic "spin" state, which is then measured by shining a laser on the ion and observing whether it fluoresces.

Using a test signal allows the NIST researchers to measure how much amplification their technique provides. In a real sensing application, the test signal would be replaced by the actual signal to be amplified and measured.

The NIST method can amplify and quickly measure ion motions of just 50 picometers (trillionths of a meter), which is about one-tenth the size of the smallest atom (hydrogen) and about one-hundredth the size of the unsqueezed quantum fluctuations. Even smaller motions can be measured by repeating the experiment more times and averaging the results. The squeezing-based amplification technique allows motions of a given size to be sensed with 53 times fewer measurements than would otherwise be needed.

Squeezing has previously been achieved in a variety of physical systems, including ions, but the NIST result represents one of the largest squeezing-based sensing enhancements ever reported.

NIST's new squeezing method can boost measurement sensitivity in quantum sensors and could be used to more rapidly create entanglement, which links properties of quantum particles, thus speeding up quantum simulation and quantum computing operations. The methods might also be used to generate exotic motional states. The amplification method is applicable to many other vibrating mechanical objects and other charged particles such as electrons.

Credit: 
National Institute of Standards and Technology (NIST)

Perovskite solar cells tested for real-world performance -- in the lab

image: Perovskite solar cells in the lab.

Image: 
Wolfgang Tress (EPFL)

It was only ten years ago that metal-halide perovskites were discovered to be photovoltaic materials. Today, perovskite solar cells made are almost as efficient as the best conventional silicon ones, and there is much hope that they will become a highly efficient and low-cost alternative, as they can be manufactured by rather simple and fast methods like printing.

The major obstacle for commercialization is the stability of perovskite devices. Operational stability is commonly assessed either by continuous illumination in the lab or by outdoor testing. The first approach has the disadvantage of not accounting for real-world operation variations in irradiance and temperature because of day-night and season changes. These are especially important for perovskite solar cells because of their slow response times.

On the other hand, outdoor tests require that the devices are encapsulated to protect them against exposure to harsh weather conditions. But encapsulation mainly addresses parasitic failure mechanisms that are not necessarily related to the perovskite material itself.

To escape from this dilemma, Wolfgang Tress, a scientist with the lab of Anders Hagfeldt at EPFL, working with colleagues at the lab of Michael Grätzel, brought the real-world conditions into the controlled environment of the lab. Using data from a weather station near Lausanne (Switzerland) they reproduced the real-world temperature and irradiance profiles from specific days during the course of the year. With this approach, the scientists were able to quantify the energy yield of the devices under realistic conditions. "This is what ultimately counts for the real-world application of solar cells," says Tress.

The study found that temperature and irradiance variations does not affect the performance of perovskite solar cells in any dramatic way, and although the efficiency of the cells decreases slightly during the course of a day, it recovers during the night.

"The study provides a further step towards the assessment of the performance and reliability of perovskite solar cells under realistic operation conditions," says Tress.

Credit: 
Ecole Polytechnique Fédérale de Lausanne

A chemical approach to imaging cells from the inside

image: This image compares optical imaging of a cell population (left) with an inferred visualization of the same cell population based on the information provided by DNA microscopy (right). Scale bar = 100 μm.

Image: 
Weinstein et al./Cell

A team of researchers at the Broad Institute of MIT and Harvard has developed a new technique for mapping cells. The approach, called DNA microscopy, shows how biomolecules such as DNA and RNA are organized in cells and tissues, revealing spatial and molecular information that is not easily accessible through other microscopy methods. DNA microscopy also does not require specialized equipment, enabling large numbers of samples to be processed simultaneously.

"DNA microscopy is an entirely new way of visualizing cells that captures both spatial and genetic information simultaneously from a single specimen," says first author Joshua Weinstein, a postdoctoral associate at the Broad Institute. "It will allow us to see how genetically unique cells -- those comprising the immune system, cancer, or the gut, for instance -- interact with one another and give rise to complex multicellular life."

The new technique is described in Cell. Aviv Regev, core institute member and director of the Klarman Cell Observatory at the Broad Institute and professor of biology at MIT, and Feng Zhang, core institute member of the Broad Institute, investigator at the McGovern Institute for Brain Research at MIT, and the James and Patricia Poitras Professor of Neuroscience at MIT, are co-authors. Regev and Zhang are also Howard Hughes Medical Institute Investigators.

The evolution of biological imaging

In recent decades, researchers have developed tools to collect molecular information from tissue samples, data that cannot be captured by either light or electron microscopes. However, attempts to couple this molecular information with spatial data -- to see how it is naturally arranged in a sample -- are often machinery-intensive, with limited scalability.

DNA microscopy takes a new approach to combining molecular information with spatial data, using DNA itself as a tool.

To visualize a tissue sample, researchers first add small synthetic DNA tags, which latch on to molecules of genetic material inside cells. The tags are then replicated, diffusing in "clouds" across cells and chemically reacting with each other, further combining and creating more unique DNA labels. The labeled biomolecules are collected, sequenced, and computationally decoded to reconstruct their relative positions and a physical image of the sample.

The interactions between these DNA tags enable researchers to calculate the locations of the different molecules -- somewhat analogous to cell- phone towers triangulating the locations of different cell phones in their vicinity. Because the process only requires standard lab tools, it is efficient and scalable.

In this study, the authors demonstrate the ability to molecularly map the locations of individual human cancer cells in a sample by tagging RNA molecules. DNA microscopy could be used to map any group of molecules that will interact with the synthetic DNA tags, including cellular genomes, RNA, or proteins with DNA-labeled antibodies, according to the team.

"DNA microscopy gives us microscopic information without a microscope-defined coordinate system," says Weinstein. "We've used DNA in a way that's mathematically similar to photons in light microscopy. This allows us to visualize biology as cells see it and not as the human eye does. We're excited to use this tool in expanding our understanding of genetic and molecular complexity."

Credit: 
Broad Institute of MIT and Harvard

Scientists discover new method for developing tracers used for medical imaging

image: Wei Chen, Ph.D., postdoctoral research associate at the UNC School of Medicine Biomedical Research Imaging Center, demonstrates the set-up of an experiment used to create a new method for radiotags used in PET imaging.

Image: 
UNC Lineberger Comprehensive Cancer Center

In an advance for medical imaging, scientists from University of North Carolina Lineberger Comprehensive Cancer Center have discovered a method for creating radioactive tracers to better track pharmaceuticals in the body as well as image diseases, such as cancer, and other medical conditions.

The researchers reported in the journal Science a method for creating tracers used with positron emission tomography, or PET, imaging. Researchers said their findings could make it possible to attach radioactive tags to compounds that previously have been difficult or even impossible to label.

"Positron emission tomography is a powerful and rapidly developing technology that plays key roles in medical imaging as well as in drug discovery and development," said the study's co-corresponding author, UNC Lineberger's Zibo Li, PhD, an associate professor in the UNC School of Medicine Department of Radiology, and director of the Cyclotron and Radiochemistry Program at the UNC Biomedical Research Imaging Center. "This discovery opens a new window for generating novel PET agents from existing drugs."

PET scans track a radioactive tag that is attached to a compound. These tracers are generally injected into the body, and they produce bright images on medical scans as the tracer accumulates in the targeted lesion, organ or tissue. Scientists can attach tags to molecules like glucose, which will accumulate in tumors as cancer cells consume sugar to drive their overactive growth, or to amino acids, which, as the building blocks of proteins, are can be highly consumed in tumors. They can also attach them to potential new drugs to track their course in the body.

"What is believed to occur is that tumor molecules uptake these resources faster than healthy cells do," said David Nicewicz, PhD, professor in the UNC-Chapel Hill Department of Chemistry and the co-corresponding author of the study. "What we've contributed to the field is a new method to introduce radio-labeled isotopes of atoms into drug molecules in a way that hasn't been done before."

In their study, the researchers described a new way of attaching the radioactive molecule Fluorine-18, a widely used isotope in PET imaging, by breaking a specific chemical structure of carbon and hydrogen atoms. In the presence of blue light from a laser and after the addition a catalyst material to speed the reaction, the researchers could break existing chemical bonds in the structure and insert Fluorine-18. Once attached, the tracer emits gamma rays that are picked up by imaging. The researchers used a cyclotron, a particle accelerator, in UNC's Biomedical Research Imaging Center to create Fluorine-18.

Researchers envision multiple potential applications for their discovery, including for medical imaging to screen patients for response to a drug, or to aid in drug development research.

"Not only can we study where drugs are localized in the body, which is something that's important for drug development work, but we could also develop imaging agents to track cancer progression or inflammation in the body, aiding in cancer research and Alzheimer's research," Nicewicz said. "Having more than one method for tumor detection may give you cross-verification to make sure what you're seeing is real. If you have two methods to validate a scan - two is better than one."

While existing radiolabeling methods requires the synthesis of dedicated new compounds to attach the radiotag, researchers say their approach may allow them to attach a tag existing compounds - a boon for drug development research.

"In this study, we showed that we could label a broad spectrum of compounds," Li said, including for anti-inflammatory drugs, and specific amino acids to show that they could image tumors.

Li also said the information obtained by the new PET tracer could aid in the development of corresponding treatment plans, depending on the imaging result, which would be an important step in providing personalized medicine.

The researchers said the next step is to develop a device that would make it easier for scientists to use this new method for creating radiolabeled tracers. In addition, they are working to expand their technology to develop other tracers that use a different radioactive material, such as Carbon-11.

"This discovery opens a new window for generating novel PET agents from existing drugs," Li said. "Many very complicated, or almost impossible to label drugs, could potentially work using this method."

Credit: 
UNC Lineberger Comprehensive Cancer Center

New e-tattoo enables accurate, uninterrupted heart monitoring for days

image: Stretchable e-tattoo enables heart monitoring for days.

Image: 
Cockrell School of Engineering, The University of Texas at Austin

AUSTIN, Texas -- The leading cause of death in Texas is heart disease, according to the National Center for Health Statistics, accounting for more than 45,000 deaths statewide in 2017. A new wearable technology made from stretchy, lightweight material could make heart health monitoring easier and more accurate than existing electrocardiograph machines -- a technology that has changed little in almost a century.

Developed by engineers at The University of Texas at Austin and led by Nanshu Lu in the Cockrell School of Engineering, this is the latest incarnation of Lu's electronic tattoo technology, a graphene-based wearable device that can be placed on the skin to measure a variety of body responses, from electrical to biomechanical signals.

The research team reported on their newest e-tattoo in a recent issue of Advanced Science.

The device is so lightweight and stretchable that it can be placed over the heart for extended periods with little or no discomfort. It also measures cardiac health in two ways, taking electrocardiograph and seismocardiograph readings simultaneously. Most of us are familiar with the electrocardiogram (ECG), a method that records the rates of electrical activity produced each time the heart beats. Seismocardiography (SCG) is a measurement technique using chest vibrations associated with heartbeats. Powered remotely by a smartphone, the e-tattoo is the first ultrathin and stretchable technology to measure both ECG and SCG.

"We can get much greater insight into heart health by the synchronous collection of data from both sources," said Lu, an associate professor in the departments of Aerospace Engineering and Engineering Mechanics and Biomedical Engineering.

ECG readings alone are not accurate enough for determining heart health, but they provide additional information when combined with SCG signal recordings. Like a form of quality control, the SCG indicates the accuracy of the ECG readings.

Although soft e-tattoos for ECG sensing are not new, other sensors, such as the SCG sensor, are still made from nonstretchable materials, making them bulky and uncomfortable to wear. Lu and her team's e-tattoo is made of a piezoelectric polymer called polyvinylidene fluoride, capable of generating its own electric charge in response to mechanical stress. The device also includes 3D digital image correlation technology that is used to map chest vibrations in order to identify the best location on the chest to place the e?tattoo.

The e-tattoo has another advantage over traditional methods. Usually an ECG measurement requires going into a doctor's office, where heart health can be monitored only for a couple of minutes at a time. This device can be worn for days, providing constant heart monitoring.

Lu and her team are already working on improvements to data collection and storage for the device, as well as ways to power the e-tattoo wirelessly for longer periods. They recently developed a smartphone app that not only stores the data safely but can also show a heart beating on the screen in real time.

Credit: 
University of Texas at Austin

Heat kills invasive jumping worm cocoons, could help limit spread

image: Asian jumping worms in the UW-Madison Arboretum in 2016.

Image: 
Chris Barncard / UW-Madison

MADISON, Wis. -- New research out of the University of Wisconsin-Madison Arboretum shows that temperatures of about 100 degrees Fahrenheit kill the cocoons of invasive jumping worms.

That's good news for ecologists and horticulturalists who are working to slow or stop the spread of the worms, which can damage the soils they invade. Common practices that raise the temperature sufficiently could limit the ability of worms to spread through paths such as compost or potted plants.

But this study is just an early step -- little remains known about the life cycle of these invaders or how to stop them.

"We've been focused on the cocoon stage of the life cycle because we think that's one way they are being spread. They're small and hard to see so they're easy to spread on shoes, equipment or soil," says Brad Herrick, the Arboretum ecologist who co-led the recent study. "We wanted to try heat because in Wisconsin and many other states, commercially produced compost must be heated to 55 degrees Celsius, a treatment that we thought could kill the cocoons."

Herrick and Arboretum research specialist Marie Johnston published their findings in May in the American Midland Naturalist journal. Herrick has been studying the jumping worms, named for their characteristic thrashing when disturbed, since they were spotted in Wisconsin for the first time in Arboretum forests in 2013.

For the new study, Johnston and Herrick collected individuals from the two jumping worm species that have invaded the Arboretum grounds. The team housed groups of worms in colonies, fed them with leaf litter and collected all the cocoons each colony produced until the end of the reproductive season in late fall. Mating wasn't a concern -- the worms are parthenogenic, able to reproduce on their own.

In all, Herrick and Johnston collected hundreds of cocoons. Then they exposed the cocoons to temperatures ranging from 20 to 60 degrees Celsius for three or 15 days.

The cocoons were extremely sensitive to heat. Any treatment at or above 40 degrees Celsius (104 degrees Fahrenheit) killed all jumping worm cocoons in just three days. Because of variation in how hot their incubation ovens actually got, Herrick and Johnston pinpoint the lethal temperature to somewhere between 81 and 100 degrees Fahrenheit.

"What this tells us is there is a limit to what temperature cocoons can survive in," says Herrick. "If a pile of compost, which we know is a vector for earthworms, is treated right to temperatures at 40 degrees Celsius or above, then that pile should be jumping-worm free."

But, Herrick points out, that doesn't make heat a cure-all. Even if compost is sterilized properly, it could still get contaminated by cocoons after the heat treatment is done. Plus, ecologists believe worms spread through many other pathways that aren't exposed to high temps, such as dirty equipment or shared plants.

And while temperatures of 100 degrees Fahrenheit killed cocoons in the lab setting, cocoons could be much hardier if the temperature was raised more gradually or if they were in soil and leaf litter rather than glass vials. Herrick and Johnston are now testing cocoon viability under these more realistic conditions.

Nonetheless, the confirmation that sufficient heat can interrupt these invaders' life cycle is welcome news as Wisconsin and other states work to limit the northward spread of these damaging invaders.

Credit: 
University of Wisconsin-Madison

Animals may have more than one means of surviving hypoxia

image: This is a pair of Tigriopus californicus.

Image: 
Allie Graham and Jason Presnell, OSU College of Science

CORVALLIS, Ore. - A tidepool crustacean's ability to survive oxygen deprivation though it lacks a key set of genes raises the possibility that animals might have more ways of dealing with hypoxic environments than had been thought.

Published in the Proceedings of the National Academy of Sciences, the findings by Oregon State University researchers are important because hypoxia - areas of low oxygen - is on the rise in waters around the globe, largely because of human-caused factors such as agricultural runoff, fossil-fuel burning and wastewater treatment effluent.

Hypoxia presents a major physiological challenge for animals, whose evolutionary history includes the development of cellular mechanisms to address changes in oxygen availability. The HIF pathway - hypoxia-inducible factor - is the primary mechanism animals use to sense and regulate oxygen levels.

The Pacific Coast crustacean Tigriopus californicus, however, is missing major genetic components of the HIF pathway, and doesn't have gills or respiratory pigment - a molecule, such as hemoglobin in humans, that increases the blood's oxygen-carrying capacity. Still, it's tolerant to extremely low oxygen levels for at least 24 hours in both its larval and adult stages.

Research by Oregon State University suggests that T. californicus may rely on other genes, those involved in cuticle reorganization and chitin metabolism, to successfully respond to hypoxic stress in its intertidal home; cuticle refers to a layer secreted by and covering the epidermis, the outer layer of skin, and chitin makes up a crustacean's exoskeleton.

RNA sequencing of animals exposed to conditions that were nearly anoxic - an extreme type of hypoxia - showed more than 400 genes being expressed, with the chitin metabolism and cuticle reorganization genes displaying consistent patterns of change during anoxia.

"That pathway is this small animal's potential solution to low oxygen availability," said study co-author Felipe Barreto, assistant professor of integrative biology in the OSU College of Science.

T. californicus has become an excellent model for studying physiological adaptations in the marine environment, said the study's lead author, Allie Graham, a postdoctoral researcher in Barreto's lab.

Last summer, Graham received a two-year National Science Foundation Postdoctoral Research Fellowship in Biology to look into how marine organisms cope with stressful environmental conditions, especially hypoxia. Patterns and mechanisms for T. californicus' hypoxia tolerance have largely been underexamined, she said.

"Hypoxia in ocean waters has been rapidly increasing in distribution, frequency and severity," Graham said. "Some coastal ecosystems even reach levels of anoxia seasonally. Low oxygen makes life difficult for a wide range of organisms, and generally fish and crustaceans have the lowest levels of tolerance."

T. californicus lives in pools that are primarily refreshed by waves as opposed to high tides, putting it and the pools' other residents under extreme environmental stress not just from low oxygen but also from fluctuations in salinity, acidity and temperature.

"With no respiratory structures or pigment, T. californicus likely relies on cutaneous diffusion to exchange carbon dioxide for oxygen," Graham said. "Its physiology might explain how it can tolerate the loss of that crucial HIF pathway and, in turn, co-opted other cellular stress-response mechanisms to keep its oxygen levels stable.

"As someone who had spent a large part of my doctoral work discussing the importance of the HIF pathway for animals in oxygen-limited environments, it was certainly a huge shock to not find these genes present in the T. californicus genome," she added. "The current literature discusses this pathway as though it was a given in all animals, which for vertebrates is crucial for blood vessel development and even plays a role in tumor biology. So the absence of these genes, the heart of the HIF-pathway, is intriguing."

Credit: 
Oregon State University

Signature of an ineffective immune response to cancer revealed

Montreal, June 20, 2019 - Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough. In a study published in The Journal of Clinical Investigation, researchers from the University of Montreal Hospital Research Centre (CRCHUM) revealed the genetic signature of this failed immune response for the first time.

"This distinctive signature includes 28 genes. We were able to identify the signature by studying the genetic programming of immune cells from kidney tumours and from the blood of patients whose cancer was progressing, and then comparing it with the genetic programming of healthy people's immune cells. This signature could help us predict which patients will fare worse," said Réjean Lapointe, researcher and head of the cancer research theme at the CRCHUM.

The research team also showed that these same genes that are linked to a failed immune response are found in patients with cancers other than kidney cancer or with bacterial and viral infections such as AIDS.

"Thanks to our sample bank and powerful bioinformatics tools, we were able to validate the relevance of this signature on nearly 11,500 patients. Those with the worst clinical outcome had a higher presence of these 28 genes in their immune cells," explained Lapointe, who is also a professor at the Université de Montréal and the scientific director of the Institut de cancer de Montréal.

Of the 28 genes identified among the 20,000 coding genes in the human body, the scientists were able to show that the expression of three specific genes may even be able to predict a person's chance of survival.

A very detailed mapping

To achieve such conclusive results, Lapointe's team had to map the differences in genetic programming between the immune cells found in tumours and those circulating in the bloodstream, as well as the differences between immune cells that had infiltrated the tumours of patients with a very aggressive illness and those who live longer.

"There are already a few articles in the scientific literature that partly replicate some of our results. A very recent HIV study shows that the MMP9 protein is associated with patients who do not control the infection very well. That's what we had concluded in our study," said Lapointe.

This massive basic research undertaking will help identify the therapeutic targets or mechanisms that can be "unlocked" in order to wake up the immune system and eliminate cancer cells.

Credit: 
University of Montreal Hospital Research Centre (CRCHUM)

Squeezing of blood vessels may contribute to cognitive decline in Alzheimer's

Reduced blood flow to the brain associated with early Alzheimer's may be caused by the contraction of cells wrapped around blood vessels, according to a UCL-led study that opens up a new way to potentially treat the disease.

Blood provides the brain's energy supply in the form of glucose and oxygen. Earlier studies have suggested the first change in Alzheimer's disease is a decrease in cerebral blood flow.

The study, published today in the journal Science and funded by the European Research Council, Wellcome and the Wolfson Foundation, looked at the role of pericytes, cells wrapped around capillaries that have the ability to contract and regulate blood flow.

Researchers examined capillaries in Alzheimer's-affected human brain tissue and in mice bred to develop Alzheimer's pathology, and found that they were squeezed by pericytes. They also applied amyloid beta protein (which accumulates in the brains of people with Alzheimer's) to slices of healthy brain tissue, and found that the capillaries were squeezed as a result.

They calculated that the constriction was severe enough to halve blood flow, which is comparable to the decrease in blood flow found in parts of the brain affected by Alzheimer's.

Lead author Dr Ross Nortley (UCL Queen Square Institute of Neurology) said: "Our study has, for the first time, identified the underlying mechanism behind the reduction of brain blood flow in Alzheimer's disease.

"Since reduced blood flow is the first clinically detectable sign of Alzheimer's, our research generates new leads for possible treatments in the early phase of the disease."

Professor David Attwell (UCL Neuroscience, Physiology & Pharmacology), senior author of the study, said: "Damage to synapses and neurons in Alzheimer's is usually attributed to the actions of amyloid and tau proteins accumulating in the brain.

"Our research raises the question of what fraction of the damage is a consequence of the decrease in energy supply that amyloid produces by constricting the brain's finer blood vessels.

"In clinical trials, drugs that clear amyloid beta from the brain have not succeeded in slowing mental decline at a relatively late phase of the disease. We now have a new avenue for therapies intervening at an earlier stage."

The finding raises the prospect of treatments for Alzheimer's that are focused on keeping the pericytes relaxed.

Credit: 
University College London

Timed release of turmeric stops cancer cell growth

image: Turmeric has been used in cooking and as medicine for centuries in Asian countries, and its active ingredient, curcumin has been shown to have anti-oxidant, anti-inflammatory and bone-building capabilities.

Image: 
WSU

PULLMAN, Wash. - A Washington State University research team has developed a drug delivery system using curcumin, the main ingredient in the spice turmeric, that successfully inhibits bone cancer cells while promoting growth of healthy bone cells.

The work could lead to better post-operative treatments for people with osteosarcoma, the second most prevalent cause of cancer death in children.

The researchers, including Susmita Bose, Herman and Brita Lindholm Endowed Chair Professor in the School of Mechanical and Materials Engineering, and graduate student Naboneeta Sarkar, report on their work in the journal, ACS Applied Materials and Interfaces.

Young patients with bone cancer are often treated with high doses of chemotherapy before and after surgery, many of which have harmful side effects. Researchers would like to develop gentler treatment options, especially after surgery when patients are trying to recover from bone damage at the same time that they are taking harsh drugs to suppress tumor growth.

Turmeric has been used in cooking and as medicine for centuries in Asian countries, and its active ingredient, curcumin has been shown to have anti-oxidant, anti-inflammatory and bone-building capabilities. It has also been shown to prevent various forms of cancers.

"I want people to know the beneficial effects of these natural compounds," said Bose. "Natural biomolecules derived from these plant-based products are inexpensive and a safer alternative to synthetic drugs."

However, when taken orally as medicine, the compound can't be absorbed well in the body. It is metabolized and eliminated too quickly.

In their study, the researchers used 3D printing to build support scaffolds out of calcium phosphate. While most implants are currently made of metal, such ceramic scaffolds, which are more like real bone, could someday be used as a graft material after bone cancer surgery. The researchers incorporated curcumin, encapsulated in a vesicle of fat molecules into the scaffolds, allowing for the gradual release of the chemical.

The researchers found that their system inhibited the growth of osteosarcoma cells by 96 percent after 11 days as compared to untreated samples. The system also promoted healthy bone cell growth.

"This study introduces a new era of integration - where modern 3d printing technology is coupled with the safe and effective use of alternative medicine, which may provide a better tool for bone tissue engineering," said Bose.

Credit: 
Washington State University