Tech

Russian scientists have found a way to make laser optics more effective and cheaper

image: This is Senior Researcher of the 'Fabrika' Science and Technology Park, Ph.D. in Physics Anna Tsibulnikova.

Image: 
Immanuel Kant Baltic Federal University

The research team of the IKBFU developed a fundamentally new method of manufacturing laser optics, which is based on the use of rare-earth metal ions of ytterbium and its oxide. The results of the work of scientists were recently published in the scientific journal Optics Communications.

Senior Researcher of the "Fabrika" Science and Technology Park, Ph.D. in Physics Anna Tsibulnikova told us:

"During the experiments, it was found that the trivalent ytterbium ion, interacting with the same ion, glows red under infrared radiation. Previously, such a glow mechanism was observed only in systems containing several ions of various rare earth elements. For example, ytterbium, thulium, holmium, erbium. This means that it has become possible to significantly simplify and cheapen the production of laser optics. Rare earth metals are very expensive material, so using only ytterbium oxide in the production of laser media can provide significant savings"

However, the new method is not only good for this. According to Anna Tsibulnikova, the obtained fine powder is easily incorporated into the glass medium, giving it new optical properties. And its ability to withstand ultra-high temperatures (up to a thousand degrees Celsius) and low temperatures (77K) allows generation of powerful red laser radiation.

The scientist thinks that the new technologies may be used not only in laser construction but also in night-vision goggles production. Powdered on the basis of ytterbium oxide, the powder will be able to generate a strong stream of red light, which will make the image much sharper than in devices whose lenses are made using traditional technologies.

The creation of this "Wonder Powder" was possible thanks to cutting-edge equipment of the "Fabrika" Science and Technology Park. Now the IKBFU scientists work on creating new optical environments, that will increase the power of lasers. New discoveries and publications are yet to come.

Credit: 
Immanuel Kant Baltic Federal University

A photo taken with a mobile phone to detect frauds in rice labelling

A simple photograph taken with a mobile phone is able to detect irregularities in the labelling of rice, according to an investigation conducted by the Complutense University of Madrid (UCM) and the Scintillon Institute of San Diego (USA).

This has led scientists to develop an algorithm based on deep learning - a field of artificial intelligence - that is able to determine whether that rice is really the one described with the images taken with the smartphone.

"What we contribute compared to other detection methods is simplicity and we show the consumer that you do not need large sums of money to verify whether a certain type of rice is the one mentioned on the label," states José Santiago Torrecilla, Professor and researcher from the Department of Chemical Engineering and Materials of the UCM.

Although in Europe the most common fraud is selling low-quality rice as if it were high quality, in other places plastic has been added to grains in quantities undetectable by the consumer until it is cooked.

To carry out the study, the researchers used five types of rice that were ground "in order to distinguish the type of rice not only when it is in grain form but also when it is ground into flour," says Torrecilla.

With all this information, algorithms based on convolutional neural networks were designed and optimized to process the information contained in the images for classification based on the type of rice, obtaining final precision models between 93 and 99 %.

"It should be noted that rice is just one example of cereal and, therefore, this technology could be extrapolated to other types of cereals or food," concludes the UCM chemist, leaving the door open for future applications in the food industry.

Credit: 
Universidad Complutense de Madrid

New research uncovers improvements in vaccines against meningitis

New research from experts at the University of Nottingham could lead to an improved vaccine to protect against the bacterium, Neisseria meningitides that causes sepsis and meningitis.

The findings, published today in the journal 'Frontiers in Microbiology', could have major implications for the current meningococcal group B vaccines, Trumenba and Bexsero, both of which contain Factor H binding protein (FHbp), a lipoprotein found on the bacterium's surface.

Meningococcal infections are the most common cause of bacterial meningitis in the UK and Ireland, a life-threatening disease that poses a continuing threat worldwide. With growing fears around the increase of antibiotic-resistant bacteria, ensuring vaccines are as effective as they can be, could prove vital in helping reduce the number of global deaths from the disease.

Babies and adolescents are the most at risk of contracting meningococcal infection and alarmingly up to 20 percent of cases result in fatality. For those who survive, 15 percent suffer life-long complications including hearing loss, brain damage and, in the case of sepsis, organ damage and loss of extremities including whole limbs.

Bacterial vaccines contain key components from the outside of the bacterium which the body makes antibodies against without causing any infection. If the vaccinated person is subsequently exposed to the bacterium, the immune system recognises it and produces the right antibodies to stop infection.

The MenACWY meningococcal vaccine contains polysaccharide capsular antigens that coat the outside of this bacterial species. This type of vaccine is however ineffective against MenB strains, the major agents of meningococcal disease in the UK. The two new MenB vaccines, Trumenba and Bexsero contain protein antigen, FHbp, and are effective against the majority of MenB strains.

A potential problem however is that bacteria constantly mutate and produce new strains with alterations in the antigens that reduce recognition by vaccine antibodies and escape protection.

This latest study highlights the importance of multivalent vaccine approaches and how these approaches may help to protect against mutated strains.

The study was led by Dr Ruth Griffin, Assistant Professor in Microbial Pathogenesis from the School of Life Sciences at the University of Nottingham. Dr Griffin works in the Synthetic Biology Research Centre headed by Professor Nigel Minton, where she is developing vaccine platform technologies and supporting Professor Minton's health-related research.

Dr Griffin says: "The Trumenba vaccine currently used to protect against meningococcal group B is monovalent, it comprises two versions of the same antigen. The risk you take with monovalent vaccines is that isolates may have previously acquired mutations in the target or go on to acquire new mutations such that the target changes significantly from that contained within the formulation. This makes the vaccine less target-specific and less effective."

The study found that over 88 percent of invasive strains express the precursor version of FHbp- i.e. a larger, uncleaved protein that is not lipidated. Therefore the antigen in the Trumenba vaccine is presented in a different manner to the native antigen produced by most strains. It is unclear at the moment whether the altered presentation affects the ability of vaccine-elicited antibodies to kill these strains.

"We analysed the FHbp sequence of almost 2000 isolates and experimentally tested 20 and saw a 100 percent correlation between mutations in the signal peptide sequence and inability to convert the precursor protein to the cleaved lipidated antigen, "says Dr Griffin.

The test currently used to predict which meningococcal isolates will be targeted by Trumenba measures the abundance of FHbp on the cell surface since a critical amount is needed for antibodies to bind the cell and aid killing.

Dr Griffin says: "The data reported from these tests show that some strains with sufficient FHbp levels are surprisingly not susceptible to killing by Trumenba vaccine antibodies. With our discovery that key mutations affect FHbp structure and abundance on the cell surface, this data can be re-evaluated and the MEASURE assay refined to include appropriate reference strains that express the precursor so that isolates can be benchmarked against typical strains.

"Knowledge of the signal peptide sequence, (as well as "promoter" sequences which affect the amount of the protein made), can now be used to make predictions on FHbp structure and abundance and recognition by Trumenba. Importantly including the precursor form of FHbp in formulations will no doubt increase the breadth of isolates that can be targeted.
"So, not only is improving target recognition of individual antigens important but increasing the number of antigens in formulation is vital to overcome problems encountered by mutation".

Credit: 
University of Nottingham

Longevity protein SIRT6 also protects against fatty liver and fatty liver disease

image: Researchers at Bar-Ilan University reveal in a new study published in Cell Reports that the longevity protein SIRT6, which regulates many biological processes such as aging, obesity, insulin resistance, inflammation and metabolism, also plays a crucial role in burning and regulating liver fat metabolism. By activating and working together with the protein PPAR-alpha, SIRT6 can actually send a message to the body to burn more fat. This cooperation is one way in which SIRT6 protects against fatty liver and fatty liver disease, as well as obesity-related damage. In this image the researchers show that SIRT6 activates PPAR-alpha to promote fatty acid beta oxidation and inhibit pyruvate oxidation during fasting. This ultimately decides the energy source under nutrient-limited conditions, promoting fat usage over other energy sources.

Image: 
Avia Cohen

Fatty liver, or hepatic steatosis, which develops when the body produces too much fat or doesn't metabolize fat efficiently enough, affects around 25% of the global population. Excess fat is stored in liver cells, where it accumulates and can cause fatty liver and other diseases.

In a study just published in the journal Cell Reports, researchers reveal for the first time that SIRT6, a protein involved in regulating many biological processes such as aging, obesity, insulin resistance, inflammation and metabolism, also plays a crucial role in burning and regulating liver fat metabolism.

SIRT6 regulates fat metabolism by activating another protein called peroxisome proliferator-activated receptor alpha (PPAR-alpha). This protein promotes the burning of fat in the liver. "SIRT6 is like a juggler that balances and coordinates between metabolic processes in the body," says the study's lead author Prof. Haim Cohen, of Bar-Ilan University's Mina and Everard Goodman Faculty of Life Sciences. "By working together with PPAR-alpha, SIRT6 can actually send a message to the body to burn more fat. This cooperation is one way in which SIRT6 protects against fatty liver and fatty liver disease, as well as obesity-related damage."

Previous research by Cohen and colleagues revealed that increased SIRT6 extends lifespan. To test how the protein might also extend healthy lifespan the researchers in this study increased regular SIRT6 levels to counteract the decrease in SIRT6 found in a high fat diet and fatty liver disease. Using a computational tool developed with Prof. Ziv Bar Joseph from Carnegie Mellon University, they looked at different metabolic states, such as fasting and regular diet, and found that a greater expression of SIRT6 leads to the burning of more fat, specifically in the liver.

"Not only does SIRT6 work with PPAR-alpha to prime the body to burn more fat and coordinate fat metabolism in the liver, but it can also regulate other metabolic pathways related to fat in the liver such as cholesterol and triglycerides metabolism," says Shoshana Naiman, a doctoral student at Bar-Ilan University's Mina and Everard Goodman Faculty of Life Sciences, who co-authored the study.

Credit: 
Bar-Ilan University

Discovering a new fundamental underwater force

video: Ocean particle accumulation has long been understood as the result of chance collisions and adhesion. But an entirely different and unexpected phenomenon is at work in the water column. Like so many discoveries, this one began accidentally. A graduate student intended to show a favorite parlor trick -- how spheres dumped into a tank of salt water will "bounce" on their way to the bottom, as long as the fluid is uniformly stratified by density. But the student in charge of the experiment made an error in setting up the density of the lower fluid. The spheres bounced and then hung there, submerged but not sinking to the bottom.

Image: 
Robert Hunt/UNC-Chapel Hill

A team of mathematicians from the University of North Carolina at Chapel Hill and Brown University has discovered a new phenomenon that generates a fluidic force capable of moving and binding particles immersed in density-layered fluids. The breakthrough offers an alternative to previously held assumptions about how particles accumulate in lakes and oceans and could lead to applications in locating biological hotspots, cleaning up the environment and even in sorting and packing.

How matter settles and aggregates under gravitation in fluid systems, such as lakes and oceans, is a broad and important area of scientific study, one that greatly impacts humanity and the planet. Consider "marine snow," the shower of organic matter constantly falling from upper waters to the deep ocean. Not only is nutrient-rich marine snow essential to the global food chain, but its accumulations in the briny deep represent the Earth's largest carbon sink and one of the least-understood components of the planet's carbon cycle. There is also the growing concern over microplastics swirling in ocean gyres.

Ocean particle accumulation has long been understood as the result of chance collisions and adhesion. But an entirely different and unexpected phenomenon is at work in the water column, according to a paper published Dec. 20 in Nature Communications by a team led by professors Richard McLaughlin and Roberto Camassa of the Carolina Center for Interdisciplinary Applied Mathematics in the College of Arts & Sciences, along with their UNC-Chapel Hill graduate student Robert Hunt and Dan Harris of the School of Engineering at Brown University.

In the paper, the researchers demonstrate that particles suspended in fluids of different densities, such as seawater of varying layers of salinity, exhibit two previously undiscovered behaviors. First, the particles self-assemble without electrostatic or magnetic attraction or, in the case of micro-organisms, without propulsion devices such as beating flagella or cilia. Second, they clump together without any need for adhesive or other bonding forces. The larger the cluster, the stronger the attractive force.

Like so many discoveries, this one began accidentally, a couple years ago, during a demonstration for VIPs visiting the Joint Applied Mathematics and Marine Sciences Fluids Lab that Camassa and McLaughlin run. The pair, long fascinated with stratified fluids, intended to show a favorite parlor trick -- how spheres dumped into a tank of salt water will "bounce" on their way to the bottom, as long as the fluid is uniformly stratified by density. But the graduate student in charge of the experiment made an error in setting up the density of the lower fluid. The spheres bounced and then hung there, submerged but not sinking to the bottom.

"And then I made what was a good decision," said McLaughlin, "to not clean up the mess." Go home, he told the grad student. We'll, deal with it later. The next morning, the balls were still suspended, but they had begun to cluster together -- to self-assemble for no apparent reason.

The researchers eventually discovered the reason, though it took more than two years of benchmark experimental studies and lots of math.

You can see the phenomenon at work in a video the researchers produced. Plastic microbeads dropped into a container of salt water topped with less dense fresh water are pulled down by the force of gravity and thrust upward by buoyancy. As they hang suspended, the interplay between buoyancy and diffusion -- acting to balance out the concentration gradient of salt -- creates flows around the microbeads, causing them to slowly move. Rather than moving randomly, however, they clump together, solving their own jigsaw-like puzzles. As the clusters grow, the fluid force increases.

"It's almost like we discovered an effective new force," Camassa said.

The discovery of this previously unknown first-principle mechanism opens the doors of understanding for how matter organizes in the environment. In highly stratified bodies of water, such as estuaries and the deep ocean, being able to mathematically understand the phenomenon may allow scientists to model and predict the location of biological hotspots, including feeding grounds for commercial fish or endangered species. Harnessing the power of the phenomenon might also lead to better ways to locate ocean microplastics or even petroleum from deep-sea oil spills. Or, in an industrial-sized version of the Fluids Lab experiment, the mechanism might be used to sort materials of different densities, for example different colors of crushed recyclable glass.

"We've been working for years with stratified systems, typically looking at how stuff falls through them," McLaughlin said. "This is one of the most exciting things I've encountered in my career."

Credit: 
University of North Carolina at Chapel Hill

Study suggests obesity associated with greater greenhouse gas emissions

SILVER SPRING, Md.--A new analysis suggests that the increasing average body size of people on Earth, in addition to the growing world population may further challenge attempts to reduce man-made carbon dioxide emissions, according to a paper published online in Obesity, the flagship journal of The Obesity Society.

All oxygen-dependent organisms on the planet produce carbon dioxide as a result of metabolic processes necessary to sustain life. Total carbon dioxide production from any species is linked to the average metabolic rate, the average body size and the total number of individuals of the species.

People with obesity have greater carbon dioxide production from oxidative metabolism than individuals with normal weight. Also, maintenance of greater body weights requires more food and drinks to be produced and transported to the consumers. Similarly, transportation of heavier people is associated with increased consumption of fossil fuels. This results in additional carbon dioxide emissions related to food production and transportation processes. Globally, obesity was estimated to contribute to an extra 700 megatons of carbon dioxide emissions per year or about 1.6 percent of all man-made emissions.

The authors emphasize that it is critically important that this new information does not lead to more weight stigmatization. People with obesity already suffer from negative attitudes and discrimination, and numerous studies have documented several prevalent stereotypes.

"This study makes it clear that we pay a steep price for making it difficult to access care for obesity. Not only does obesity affect the health of the individuals who have it, untreated obesity might also contribute to environmental issues," said Ted Kyle, RPh, MBA, founder of ConscienHealth, who was not involved in the research.

Physical activity is also associated with much more carbon dioxide being produced compared with rest, but no one will ever think of stigmatizing people who exercise for having a negative effect on the environment, according to Boyd Swinburn, MB ChB, FRACP, MD, FNZCPHM, in the School of Population Health at the University of Auckland in New Zealand. Swinburn wrote a commentary on the paper.

"Our analysis suggests that, in addition to beneficial effects on morbidity, mortality, and healthcare costs, managing obesity can favorably affect the environment as well," said Faidon Magkos, of the Department of Nutrition, Exercise and Sports at the University of Copenhagen in Denmark. "This has important implications for all those involved in the management of obesity." Magkos is the corresponding author of the paper.

To assess the impact of obesity on the environment, researchers used the standard definitions of obesity (body mass index of greater than or equal to 30 kg/m2) and normal weight (body mass index of less than 25). Calculations were made of the extra emission of greenhouse gases (carbon dioxide, methane, and nitrous oxide) from the increased oxidative metabolism, the increased food production and consumption and the increased fuel used to transport the greater body weight of people with obesity.

Compared with an individual with normal weight, researchers found an individual with obesity produces an extra 81 kg/y of carbon dioxide emissions from higher metabolism, an extra 593 kg/y of carbon dioxide emissions from greater food and drink consumption and an extra 476 kg/y of carbon dioxide emissions from car and air transportation. Overall, obesity is associated with approximately 20 percent greater greenhouse gas emissions when compared to people with normal weight.

"Harmonizing data from epidemiology (prevalence rates of obesity), physiology (total energy intake and expenditure) and environmental science (carbon dioxide emissions from different sources) is not a straightforward task, and we emphasize that our estimates are not intended to be precise, but rather be reasonable enough," said Magkos.

In the commentary accompanying the paper, Swinburn said the estimates add valuable information to the growing literature examining the nexus between obesity and climate change. He added, "while the contribution of obesity to greenhouse gas emissions is small, acting on the underlying drivers of them both is of paramount importance."

Credit: 
The Obesity Society

The 'airbag' that protects cells against stress

image: Caveaolae rosette, the cell structure with a force-damping function described in the study.

Image: 
CNIC

Scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have identified the molecular mechanisms that allow our cells to adapt to, protect themselves against, and survive mechanical stress. The results, published today in Nature Communications, show that our cells produce molecules that act as a type of 'airbag' in response to mechanical stress. Without this protective and adaptive system, the heart, an organ subject to continuous mechanical forces, "would be unable to correctly perform its blood-pumping role," explained lead author Miguel Ángel del Pozo. First author Asier Echarri added that the findings "show the importance of identifying the molecular mechanisms that protect cells against mechanical stress."

Many physiological processes, such as embryonic development, wound healing, organ homeostasis, lipid storage, and muscular activity, involve exposure to diverse and potentially damaging mechanical forces. All living organisms, and the cells that compose them, are subject to different physical forces, both mechanical (gravity, impact, blood flow, muscle stretching, etc.) and electromagnetic.

Human cells are able to perceive, adapt to and respond to mechanical forces. According to Del Pozo, "These forces can sometimes be excessive, placing cells under a mechanical stress that can rupture the cell membrane and result in the death of affected cells. To avoid this rupture and thus prevent cell death, nature has evolved molecular sensors that 'switch on' in response to these forces and initiate adaptive and protective processes. The purpose of this response is to adapt cells to these forces before they cause tissue or organ damage."

The Nature Communications study identified relatively large folded or wrinkled structures surrounding cells that can unfold or flatten when the cell is stretched, thus giving cells an extra coating that prevents breakage upon excessive stretching. "It can be likened to an accordion, which unfolds as it is stretched, thus preventing it from breaking when pulled," explained the researchers. These folds thus function as a kind of 'airbag', cushioning cells against excessive mechanical stress.

The team also identified molecules that participate in this mechanism, permitting cells to perceive mechanical force and initiate the biochemical changes needed to adapt to mechanical stress.

The study was undertaken in partnership with CNIC scientist Jorge Alegre-Cebollada and researchers from the Institut Pasteur in Paris, Queensland University in Australia, and Donostia International Physics Center in San Sebastián. The team identified molecules with opposing functions; "one of the molecules (FBP17) protects the cell against mechanical stress, whereas another (ABL) makes the cell more sensitive to these forces", explained Del Pozo and Echarri.

Both molecules, working in an ordered fashion, "coordinate changes in the cell envelope that protect the cell and the cell skeleton, giving it the structure and solidity needed to resist mechanical stress," explained Dr Echarri.

The authors also managed to alter the amount or activity of these molecules in human cells; inhibiting the action of ABL increased protection against mechanical stress, whereas inhibition of FBP17 made cells more sensitive.

The findings are important because knowledge about how cells are protected against mechanical stress "will give us a better understanding of the molecular basis of diseases such as some forms of muscular dystrophy, cardiomyopathies, and lung or vascular diseases characterized by sensitivity to physical activity. The findings will also shed light on the mechanisms of injury to organs with a high level of mechanical activity, such as the heart, lungs, muscles, and blood vessels." The authors concluded that "This work opens the way to future therapies in patients with these conditions."

Credit: 
Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P.)

New security system to revolutionise communications privacy

image: A new uncrackable security system created by researchers at the University of St Andrews, King Abdullah University of Science and Technology (KAUST) and Center for Unconventional Processes of Sciences (CUP Sciences) is set to revolutionize communications privacy.

Image: 
KAUST

New computer chip enables information to be sent from user to user using a one-time un-hackable communication

Technology overcomes major threat of quantum computers, which are soon predicted to be able to crack existing communication methods

The method uses existing communication networks and takes up less space on the networks.

A new uncrackable security system created by researchers at King Abdullah University of Science and Technology (KAUST), the University of St Andrews and the Center for Unconventional Processes of Sciences (CUP Sciences) is set to revolutionize communications privacy.

The international team of scientists have created optical chips that enable information to be sent from user to user using a one-time un-hackable communication that achieves 'perfect secrecy' allowing confidential data to be protected more securely than ever before on public classical communication channels.

Their proposed system uses silicon chips that contain complex structures that are irreversibly changed, to send information in a one-time key that can never be recreated nor intercepted by an attacker.

The results published in the scientific journal Nature Communications open a new pathway towards implementing 'perfect secrecy' cryptography at the global scale with contained costs.

"This new technique is absolutely unbreakable, as we rigorously demonstrated in our article. It can be used to protect the confidentiality of communications exchanged by users separated by any distance, at an ultrafast speed close to the light limit and in inexpensive and electronic compatible optical chips," says Professor Andrea di Falco of the School of Physics and Astronomy at the University of St. Andrews and first author of the study.

Current standard cryptographic techniques allow information to be sent quickly but can be broken by future computers and quantum algorithms. The research team say their new method for encrypting data, is unbreakable, and uses the existing communication networks, taking up less space on the networks than traditional encrypted communications.

"With the advent of more powerful and quantum computers, all current encryptions will be broken in very short time, exposing the privacy of our present and, more importantly, past communications. For instance, an attacker can store an encrypted message that is sent today and wait for the right technology to become available to decipher the communication," says Dr. Andrea Fratalocchi, Associate Professor of Electrical Engineering at KAUST and co-author of the study.

"Implementing massive and affordable resources of global security is a worldwide problem that this research has the potential to solve for everyone, and everywhere. If this scheme could be implemented globally, crypto-hackers will have to look for another job," Dr. Fratalocchi continues.

The new method uses the classical law of physics to protect the messages and in particular the second law of thermodynamics. The technique achieves 'perfect secrecy' meaning a hacker will never be able to access the information contained in the communication.

Keys generated by the chip, which unlock each message, are never stored and are not communicated with the message, nor can they ever be recreated, even by the users themselves, adding extra security.

"This system is the practical solution the cyber security sector has been waiting for since the perfect secrecy theoretical proof in 1917 by Gilbert Vernam. It'll be a key candidate to solving global cyber security threats, from private to national security, all the way to smart energy grids." says Dr. Aluizio M Cruz, co-founder and CEO of the Center for Unconventional Processes of Sciences (CUP Sciences) in California, and co-author of the study.

The team is currently working on developing commercial applications of this patented technology, have a fully functional demo and are building user-friendly software for this system.

Credit: 
King Abdullah University of Science & Technology (KAUST)

Revealing the structure of axons

image: Microscopy

Image: 
© Christophe Leterrier / CC

Recent studies have shown that under the axonal membrane, rings composed of actin filaments give the structure its flexibility. But those studies had not been able to define the precise architecture of these rings. By combining two microscopy techniques, optical and electronic, French researchers have now managed to observe these rings at the molecular scale. They are formed of long braided actin filaments, braided like a Christmas wreath.

Axons, the threadlike part of a nerve cell that conducts impulses, are both flexible and strong, which makes them a mystery in the eyes of biologists. Recent studies have shown that under the axonal membrane, rings composed of actin filaments give the structure its flexibility. But those studies had not been able to define the precise architecture of these rings. By combining two microscopy techniques, optical and electronic, researchers at the Institut de Neurophysiopathologie (CNRS/Aix-Marseille Université) and the Institut de Myologie (INSERM/Sorbonne Université) have now managed to observe these rings at the molecular scale. They are formed of long braided actin filaments, braided like a Christmas wreath. This work, which brings key new insights into our understanding of axonal architecture, was published on 20 December 2019 in Nature Communications.

Credit: 
CNRS

Mechanical force as a new way of starting chemical reactions

image: Reaction mixtures before and after grinding in a ball mill. Mechanoredox arylation reactions occurred with aryl diazonium salts and furan in the presence of a piezoelectric material (BaTiO3). (Kubota K. et al. Science, Dec. 19, 2019)

Image: 
Kubota K. et al. <em>Science</em>, December 19, 2019

Researchers have shown mechanical force can start chemical reactions, making them cheaper, more broadly applicable, and more environmentally friendly than conventional methods.

Chemical reactions are most conventionally prompted by heating up the reaction mixtures. Within the last ten years, there has been extensive research on "photoredox catalysts" that can be activated by visible light and enable highly specific and efficient chemical reactions. However, these reactions often require a large amount of harmful organic solvents, making them applicable only to soluble reactants.

"Piezoelectric materials" such as barium titanate are known to generate electric potentials when a mechanical pressure is applied to them, which is why they are used in microphones and lighters. In the current study published in Science, the research team led by Hajime Ito and Koji Kubota of the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) at Hokkaido University proved this electric potential can also be used to activate chemical reactions. "In our system, we use the mechanical force provided by a ball mill to activate a piezoelectric material for redox reactions, while eliminating the use of organic solvent," says Koji Kubota. They call it a mechanoredox reaction as opposed to a photoredox reaction.

The team demonstrated that electric potentials derived from piezoelectric material (BaTiO3) activate a compound called aryl diazonium salts generating highly reactive radicals. The radicals undergo bond-forming reactions such as arylation and borylation reactions -- both of which are important in synthetic chemistry -- with high efficiency. The team also showed that the borylation reaction could occur by striking the mixture in a plastic bag with a hammer.

"This is the first example of arylation and borylation reactions using mechanically induced piezoelectricity," says Koji Kubota. "Our solvent-free system using a ball mill has enabled us to eliminate organic solvents, making the reactions easier to handle, more environmentally friendly, and applicable even to reactants that cannot be dissolved in the reaction solvent." They could also recycle the barium titanate and achieve better yields than photoredox reactions, even further increasing the attractiveness of this approach.

"We are now exploring the tunability of the mechanically generated electric potential. Together with computational predictions, we aim to extend the applicability of this technique," says Hajime Ito. "Our goal is to complement or at least partly replace existing photoredox approaches and provide an environmentally friendly and cost-efficient alternative to be used in industrial organic synthesis."

Credit: 
Hokkaido University

Artificial 'inclusion bodies' created for controlled drug release

image: Artificial inclusion bodies

Image: 
Author: CIBER-BBN , UAB, IR Sant Pau

Precision medicine is becoming increasingly important, achieving to create more efficient personalised therapies for each patient and innovative pharmacological developments. In the oncology field, for example, researchers are developing different approaches aimed at directed and controlled drug release systems, thereby diminishing toxicity to the organism.

In this sense, researchers at the CIBER's Bioengineering, Biomaterials and Nanomedicine sector (CIBER-BBN), the Institute of Biotechnology and Biomedicine of the Universitat Autònoma de Barcelona (IBB-UAB) and the Hospital Sant Pau Research Institute have developed a new type of protein biomaterial capable of a sustained release of therapeutic proteins administered subcutaneously in lab animals.

"These structures, measuring a few micrometres in diameter, contain functional proteins that are released similarly to how human hormones are released by the endocrine system", states Antonio Villaverde, researcher at the UAB and the CIBER-BBN and one of the study's coordinators.

The study is the result of a stable scientific collaboration between Antonio Villaverde's group and the group led by Ramon Mangues at the Hospital Sant Pau Research Institute. It also included the involvement of the Institute for Biological and Technological Research of the National University of Cordoba-CONICET in Argentina.

Dr Mangues, also researcher at the CIBER-BBN and co-author of the paper, explains that "the new biomaterial imitates a bacterial product commonly found in biotechnological processes known as 'inclusion bodies', pharmacologically of interest, which in this artificial version offer a wide array of therapeutic possibilities for the oncological field and any other clinical sector in which a sustained release is needed".

Researchers used as models the enzymes common to biotechnology and a nanostructured bacterial toxin directed to human colorectal cancer metastatic cells, which have been tested on animal models. "In this way, we achieved to generate as many immovable catalysts as a new anti-tumour drug with prolonged action", the leading authors of the study explain.

Enormous Clinical Potencial

The artificial protein granules developed, which had previously been proposed as "nanopills" (therapeutic pills at nanoscopic scale), imitate the action of bacterial inclusion bodies and have enormous clinical potential for vaccines and controlled-release drug delivery systems.

"We have seen that natural inclusion bodies, administered as drugs, can produce undesired immune system responses due to the inevitable contamination of the bacterial materials", researchers say. However, in this new study, the development of artificial inclusion bodies with secreton capacity "prevents many of the regulatory problems associated with the potential development of bacterial 'nanopills', and offers a transverse platform through which to obtain functional components for cosmetical and clinical uses", they add.

This study suggests that artificial inclusion bodies can become a new category of exploitable biomaterials to be used in biotechnological applications, due to the facility with which they are manufactured and the foresight of future clinical applications.

Credit: 
Universitat Autonoma de Barcelona

A discovery helps the development of a topological quantum computer and dark matter detector

The Laboratory of the Electronic and Spin Structure of Nanosystems of St Petersburg University is headed by Eugene Chulkov, professor at the University of the Basque Country. Researchers from the laboratory note that they have been working to achieve this result for several years. First, the existence of single crystals with unusual properties was predicted in theory. Then they were synthesised in laboratory at Technische Universität Dresden and Azerbaijan State Oil and Industry University. The new material turned out to have simultaneously the properties of an antiferromagnet and a topological insulator.

Ferromagnets are materials in which the magnetic moments of all atoms are aligned. They create a macroscopic magnetic field in the material. For example, computer hard drives are made of ferromagnets. However, everything is different in antiferromagnets: the magnetic moments of the atoms are oppositely directed. They therefore do not create a stray magnetic field, which, in fact, negatively affects the elements of electronics. It is antiferromagnets that might be used to produce storage devices in the future. Unlike ferromagnets, such memory devices can be put close to each other as many times as you wish. And this will make your computer more powerful. Additionally, the resonant frequency of antiferromagnets is not gigahertz, but terahertz. This means that devices based on them will work 1,000 times faster than classical ones. By the way, a prototype of an element of antiferromagnetic memory based on the new material MnBi2Te4 has been recently proposed in one research paper.

A discovered single crystal is also a topological insulator. It is a special material on the surface of which electrons behave in a fundamentally different way to how they do inside a single crystal. On the surface it is an extra fine conductive layer, and inside it is a semiconductor. It is these unique surface electrons, which form the so-called Dirac cone, that have been measured in the laboratory of St Petersburg University. What is important, even if the material surface is destroyed, it does not lose its properties and remains topologically protected. This property can be useful in the development of quantum computers. At present, one of the main problems in developing such computers is related to the fact that a qubit - a unit of information storage - is subject to decoherence. It means that, according to quantum laws, it collapses over time. However, if we make a qubit based on a topological insulator, hypothetically this problem can be avoided.

'This single crystal is also of interest because of the fact that it provides researchers with a whole class of new materials,' said Professor Aleksandr Shikin, the deputy head of the laboratory. 'If layers that are connected antiferromagnetically are separated by layers of a topological insulator, we can create unique magnetic characteristics of the material with a gradual transition from antiferromagnetism to two-dimensional ferromagnetism. This is a completely new system with new features, which, by and large, have not even been discovered yet.'

By the way, the physicists have already managed to observe the quantum anomalous Hall effect in these single crystals. In solid state physics, the ordinary Hall effect is that if an external voltage is applied to a material placed in a magnetic field, there appears a current perpendicular to this voltage. It is used, for example, in magnetometers in smartphones and in electronic ignition systems of internal combustion engines. There is also a quantum Hall effect. However, it is the quantum anomalous Hall effect that has never been observed before in systems where the magnetic layer is precisely ordered, as in a MnBi2Te4 single crystal. Since in this case the effect is possible without applying an external magnetic field, the new material becomes very promising for developing a wide variety of electronic devices. For example, another paper has already proposed a model of a topological spin field-effect transistor based on MnBi2Te4 material.

Additionally, as the researchers note, the single crystal that is obtained can give an impetus to the development of elementary particle physics. There is a hope that topological insulators will help experimentally detect Majorana fermions - specific particles that are their own antiparticles at the same time. They were hypothesised by the Italian physicist Ettore Majorana in the 1930s, but have not yet been discovered. According to theoretical studies, the Majorana fermion can exist as a quasiparticle in topological insulators. As a matter of fact, it is this particle that due to its topological protectability is an excellent candidate for a qubit in a quantum computer.

'Another interesting example is the theoretical work which states that it is possible to develop a dark matter detector based on our material,' said Ilya Klimovskikh, PhD and laboratory assistant. 'Since it is a magnetic topological insulator, it is possible to realise the phase of an axion insulator in it. On its basis it is possible to develop a dark matter detector with a certain range that does not exist yet. This is very unexpected, but such papers are likely to appear because the material has completely new and unique properties.'

At St Petersburg University, the researchers measured the magnetic characteristics and photoelectron spectra of the new single crystal. It was done using the equipment of the resource centres of the University Research Park: the Centre for Physical Methods of Surface Investigation and the Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics. Interestingly, the preliminary version of the scientific article (preprint), which appeared in the public domain before publication, has been cited more than 60 times. In total, the scientific collaboration supervised by St Petersburg University Professor Evgeny Chulkov includes 22 research institutions from all over the world.

'So many institutions participating in a single publication in the field of condensed matter may seem unusual. However, to solve effectively complex problems in modern solid state science requires consolidated efforts of various highly professional teams. They include theorists, chemists, physicists and materials scientists. This trend will only grow stronger in the foreseeable future,' said Eugene Chulkov.

Credit: 
St. Petersburg State University

Scientists discover first antiferromagnetic topological quantum material

image: MnBi2Te4 single crystal

Image: 
(c) Anna Isaeva

Quantum materials are worldwide in the focus of research activities within diverse sci-entific disciplines. This material class appears to be increasingly complex and rich in physical phenomena such as magnetism, superconductivity or topology, and is there-fore extremely promising for technological advances in the fields of information pro-cessing, sensors, computing and many more. Also at TU Dresden, quantum materials research plays an important role. With the establishment of the Cluster of Excellence ct.qmat - Complexity and Topology in Quantum Materials together with the Julius-Maximilians-University Würzburg, the field has gained even more impact.

The extraordinary properties in quantum materials often require special, hardly achiev-able conditions such as low temperatures, extremely strong magnetic fields or high pressure. Scientists are therefore looking for materials that exhibit their exotic proper-ties even at room temperature, without external magnetic fields and under normal at-mospheric pressure. Especially promising are the so-called magnetic topological insula-tors (MTI). They are considered a source of novel quasi-particles and unprecedented quantum phenomena, but their experimental implementation is very challenging.

Dr. Anna Isaeva is an associate member of the Cluster of Excellence ct.qmat and Junior Professor for Synthesis and Crystal Growth of Quantum Materials at TU Dresden and the Leibniz Institute for Solid State and Materials Research Dresden (IFW). Together with her group, she works at the interface of chemistry, physics and crystallography on the identification of new quantum materials.

In a large international cooperation of over 40 scientists from over 20 research institu-tions, Dr. Isaeva's team is significantly involved in the discovery of a new, promising quantum material. Together with Dr. Alexander Zeugner from the Leibniz Institute for Solid State and Materials Research Dresden, , the scientists at TU Dresden developed the first crystal growing technique for the first intrinsically magnetic topological materi-al: manganese-bismuth telluride (MnBi2Te4) and characterized the physical properties of the crystals. The research cooperation was able to prove both in theory, led by the Donostia International Physics Center in Spain, and in spectroscopic experiments, headed by the University of Würzburg, that MnBi2Te4 is the first antiferromagnetic topological insulator (AFMTI) below its Néel temperature.

The significance of this discovery for the scientific community is huge: An MTI crystal has an edge state on its surface that may realize a quantized Hall conductivity even without an external magnetic field. In addition, the fabrication of an AFMTI makes an important contribution to the booming field of antiferromagnetic spintronics. The new research area of magnetic van der Waals materials could also benefit from novel two-dimensional ferromagnets.

Dr. Isaeva's team has already further optimized the synthesis protocol for the new ma-terial so that MnBi2Te4 single crystals can be produced more easily. Research teams worldwide have joined the study of the interaction of magnetism and topology in MnBi2Te4. Recent findings show that there are even more structural derivatives of MnBi2Te4, which are relevant in the context of MTI.

"We witness the emergence of a new family of magnetic topological insulators that rely on intrinsic magnetization rather than on the magnetic doping approach. There is a lot of competition among the teams worldwide, which has also triggered a flood of new publications on the subject," says Jun.-Prof. Dr. Anna Isaeva, referring to three subse-quent articles of her own team.

Credit: 
Technische Universität Dresden

Towards new lithium-ion batteries that are safer and more efficient

image: Images from a high-resolution scanning electron microscope, and atomic models in which can be observed the atomic structure of the cathodes that suffer energy-density loss in the first charge cycle (left) and the new superstructure that prevents this loss (right).

Image: 
University of Seville

Researchers from the University of Oxford and the University of Seville have published a study in the review Nature in which they define new strategies for the manufacturing of a generation of safer and more efficient lithium-ion batteries. In this way, they intend to overcome some of the limitations that these devices currently have. Their storage capacity and the pollution caused by some of the materials used to make them.

To that end, they have studied two types of cathodes that are very similar in their composition, but which show completely different behaviour: one of them suffers from the known loss of energy density in the first charge cycle, while the other does not. "This different in behaviour is owed to the formation in one type of a new superstructure, that is to say, to a very particular ordering of the metal atoms", explains Juan Gabriel Lozano, researcher from the Higher Technical School of Engineering at the University of Seville. It has been shown that this characteristic prevents restructuring during the first charge cycle. "This result will allow us to overcome one of the principle bottlenecks that has, until now, been met in the development of this type of technology", the researcher explains.

Lithium-ion batteries have revolutionised portable technology, and their use today is standard in mobile phones, laptop computers, etc. In recognition of that fact, the creators of this type of battery have this year received the Nobel Prize for Chemistry. However, there are still specific problems that have to be resolved. Firstly, "conventional Li-ion batteries are not capable of storing sufficient energy for their use to extend to grater uses such as in electric cars. In addition, in their cathodes, the majority use metals that are toxic, polluting and have associated safety problems. For all those reasons, there is a growing interest in the scientific community in developing new materials that solve these problems", explains the University of Seville researcher.

Among the strongest candidates for replacing part of the current technology, are so-called lithium transition metal oxides. These cathodes are capable of storing a greater energy density than conventional ones, and are safer, cheaper and less harmful to the environment. However, they have a fundamental problem, and that is that a good part of the energy density is lost in the first charge cycle. This problem, connected to the atomic restructuring of the cathodes during the extraction and insertion of lithium, has meant that their implementation has still not been possible. However, the finding discussed in this article will allow this difficulty to be overcome.

Credit: 
University of Seville

Breakthrough innovation enabling cheaper solar energy production is one step closer to the market

image: Material, synthesised by Kaunas University of Technology (KTU), Lithuania scientists self-assemble to form a molecular-thick electrode layer.

Image: 
KTU

While the need for renewable energy around the world is growing exponentially, Lithuanian and German researchers have come up with a novel solution for developing low-cost solar technology. Material, synthesised by Kaunas University of Technology (KTU), Lithuania scientists, which self-assemble to form a molecular-thick electrode layer, presents a facile way of realising highly efficient perovskite single-junction and tandem solar cells. The licence to produce the material has been purchased by a Japanese company.

According to scientists, achieving perovskite-based solar cells, combining low price and high efficiency, has proven to be hard endeavour in the past. The particular challenge in large-scale production is the high price and limited versatility of the available hole-selective contacts. KTU chemists have addressed this challenge.

"Solar element is akin to a sandwich, where all of the layers have its function, i.e. to absorb the energy, to separate the holes from electrons, etc. We are developing materials for the hole-selective contact layer, which is being formed by the molecules of the materials self-assembling on the surface of the substrate", explains Artiom Magomedov, PhD student at the KTU Faculty of Chemical Technology, co-author of the invention.

Developed monolayers can be called a perfect hole transporting material, as they are cheap, are formed by a scalable technique and are forming very good contact with perovskite material. The self-assembled monolayers (SAMs) are as thin as 1-2 nm, covering all the surface; the molecules are deposited on the surface by dipping it into a diluted solution. The molecules are based on carbazole head groups with phosphonic acid anchoring groups and can form SAMs on various oxides.

According to the scientists, the use of the SAMs helped to avoid the problem of the rough surface of the CIGS cell. By integrating a SAM-based perovskite solar cell into a tandem architecture, a 23.26%-efficient monolithic CIGSe/perovskite tandem solar was realized, which is currently a world record for this technology. Moreover, one of the lately developed SAMs used in the Si/perovskite tandem cell achieved the nearly record-breaking efficiency of 27.5%.

"Perovskite-based single-junction and tandem solar cells are the future of solar energy, as they are cheaper and potentially much more efficient. The limits of efficiency of currently commercially used silicon-based solar elements are saturating. Moreover, the semiconductor-grade silicon resources are becoming scarce and it is increasingly more difficult to extract the element", says Professor Vytautas Getautis, the head of the KTU research group behind the invention.

According to Magomedov, the amount of solar energy reaching the surface of the earth in one hour could be enough to cover the yearly need of the electricity of all humankind.

"The potential of the solar energy is immense", says the young researcher.

Using traditional technologies, 1 g of silicon (Si) is enough to produce only a couple of square centimetres of the solar element; however, 1 g of the material synthesised at KTU is enough to cover up to 1000 m2 of the surface. In addition, the self-assembling organic material synthesised at KTU is significantly cheaper than the alternatives used in photovoltaic elements currently.

The team of KTU chemists has been studying the use of the self-assembling molecules in solar cells for a couple of years. The material, synthesised at KTU, was applied in the production of a functioning solar cell in collaboration with Helmholtz Zentrum Berlin (HZB), Germany and Centre for Physical Sciences and Technology (Lithuania) physicists.

The licence to produce the material synthesised at KTU laboratories was purchased by a Japanese company; the material called 2PACz and MeO-2PACz will soon appear in the market. This means that innovative technology using self-assembling compounds can be further researched in the best laboratories of the world and eventually find its way into the industry.

Credit: 
Kaunas University of Technology