Tech

Scientists develop noninvasive ultrasound neuromodulation technique

Epilepsy is a central nervous system disorder characterized by recurrent seizures resulting from excessive excitation or inadequate inhibition of neurons.

Ultrasound stimulation has recently emerged as a noninvasive method for modulating brain activity; however, its range and effectiveness for different neurological disorders, such as Parkinson Disease, Epilepsy and Depression, have not been fully elucidated.

Researchers from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences developed a noninvasive ultrasound neuromodulation technique, which could potentially modulate neuronal excitability without any harm in the brain.

Low-intensity pulsed ultrasound and ultrasound neuromodulation system were prepared for non-human primate model of epilepsy and human epileptic tissues experiments, respectively.

The results showed that ultrasound stimulation could exert an inhibitory influence on epileptiform discharges and improve behavioral seizures in a non-human primate epileptic model.

Ultrasound stimulation inhibited epileptiform activities with an efficiency exceeding 65% in biopsy specimens from epileptic patients in vitro.

The mechanism underlying the inhibition of neuronal excitability could be due to adjusting the balance of excitatory-inhibitory (E/I) synaptic inputs by the increased activity of local inhibitory neurons. In addition, the variation of temperature among these brain slices was less than 0.64°C during the experimental procedure.

The study demonstrated for the first time that low-intensity pulsed ultrasound improved electrophysiological activities and behavioral outcomes in a non-human primate model of epilepsy and suppressed epileptiform activities of neurons from human epileptic slices.

It provided evidence for the potential clinical use of non-invasive low-intensity pulsed ultrasound stimulation for epilepsy treatment.

Credit: 
Chinese Academy of Sciences Headquarters

Dynamic stimulation of the visual cortex allows blind and sighted people to 'see' shapes

video: This video shows a blind participant drawing letters based on dynamic stimulation to the visual cortex.

Image: 
Beauchamp et al./Cell

For most adults who lose their vision, blindness results from damage to the eyes or optic nerve while the brain remains intact. For decades, researchers have proposed developing a device that could restore sight by bypassing damaged eyes and delivering visual information from a camera directly to the brain. In a paper publishing in the journal Cell on May 14, a team of investigators at Baylor College of Medicine in Houston report that they are one step closer to this goal. They describe an approach in which implanted electrodes are stimulated in a dynamic sequence, essentially "tracing" shapes on the surface of the visual cortex that participants were able to "see."

"When we used electrical stimulation to dynamically trace letters directly on patients' brains, they were able to 'see' the intended letter shapes and could correctly identify different letters," senior author Daniel Yoshor says. "They described seeing glowing spots or lines forming the letters, like skywriting."

Previous attempts to stimulate the visual cortex have been less successful. Earlier methods treated each electrode like a pixel in a visual display, stimulating many of them at the same time. Participants could detect spots of light but found it hard to discern visual objects or forms. "Rather than trying to build shapes from multiple spots of light, we traced outlines," says first author Michael Beauchamp. "Our inspiration for this was the idea of tracing a letter in the palm of someone's hand."

The investigators tested the approach in four sighted people who had electrodes implanted in their brains to monitor epilepsy and two blind people who had electrodes implanted over their visual cortex as part of a study of a visual cortical prosthetic device. Stimulation of multiple electrodes in sequences produced perceptions of shapes that subjects were able to correctly identify as specific letters.

The approach, the researchers say, demonstrates that it could be possible for blind people to regain the ability to detect and recognize visual forms by using technology that inputs visual information directly into the brain, should they wish to. The researchers note, however, that several obstacles must be overcome before this technology could be implemented in clinical practice.

"The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes," Beauchamp says. "An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people."

Credit: 
Cell Press

'Metabolic signature' can determine adherence to Mediterranean diet, help predict CVD risk

A newly identified "metabolic signature" can evaluate an individual's adherence and metabolic response to the Mediterranean diet and help predict future risk of developing cardiovascular disease (CVD), according to new research led by Harvard T.H. Chan School of Public Health with collaborators from the Broad Institute of MIT and Harvard and Spain.

The metabolic signature consists of 67 metabolites--small chemicals produced in the processes of metabolism that circulate in the bloodstream--and can be measured through a blood sample.

The findings will be published online in the European Heart Journal on May 14, 2020.

For the study, researchers used a machine-learning model to analyze hundreds of metabolites in blood samples from 1,859 participants from the Spanish PREDIMED study, the largest study of the Mediterranean diet's ability to prevent CVD. The model identified 67 metabolites that when analyzed collectively indicated whether a person had followed the Mediterranean diet and showed how the person responded to the diet, which is high in unsaturated fats and emphasizes plant-based foods, fish, and olive oil, and has shown to be effective in reducing the risk of CVD and overall mortality. The study also showed that a higher level of the metabolic signature was associated with a lower long-term risk of CVD among PREDIMED study participants. Even after accounting for traditional CVD risk factors, the metabolic signature was effective at predicting long-term risk of CVD, the researchers said.

The researchers further tested and verified the metabolic signature in blood samples from 6,868 participants from the U.S.-based Nurses' Health Study, Nurses' Health Study II, and Health Professional's Follow-Up Survey. They noted that ability for the signature to determine adherence and metabolic response to the Mediterranean diet, and to predict future CVD risk, were highly reproducible across all the study populations despite the fact that individuals living in Spain and in the U.S. have different dietary habits, lifestyles, and environmental exposures.

"This study is the first to develop a metabolic signature for the Mediterranean diet based on comprehensive metabolomic profiles. It demonstrates that the level of dietary adherence and individual's response to diet can be objectively measured," said Liming Liang, associate professor of epidemiology and biostatistics at Harvard Chan School and co-senior author of the paper. "The reproducibility of the findings in the U.S. and Spanish populations indicate the robustness of the approach."

Assessing adherence to the Mediterranean diet has often relied on self-reported data obtained through questionnaires of study participants. The newly discovered metabolic signature could prove to be a potent and objective tool for the research community to further evaluate individuals' adherence and metabolic response to the Mediterranean diet in various study populations and settings.

"The metabolic signature and metabolites included in the signature could also help researchers better understand how the Mediterranean diet can benefit people with complex metabolic diseases," said Jun Li, research scientist of nutrition and epidemiology at Harvard Chan School and the first author of the paper. "Given that the metabolic signature is reflective of individuals' metabolic response to diet and CVD risk, the signature has potential in the future to help facilitate personalized nutrition interventions."

"From a public health perspective, our findings underscored the beneficial effects of the Mediterranean diet for the prevention of cardiovascular disease at a molecular level," said Miguel A. Martinez-Gonzalez, Professor at the University of Navarra (Spain) and coauthor of this study.

Credit: 
Harvard T.H. Chan School of Public Health

Researchers find one-two punch may help fight against Salmonella

image: Brian Coombes is a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University and the Canada Research Chair in Infectious Disease Pathogenesis.

Image: 
McMaster University

Hamilton, ON (May 14, 2020) - McMaster University researchers have discovered a combination punch to treat drug-resistant infections that is showing promise based on testing in mice.

Researchers found that a natural product called dephostatin is an effective partner for the antibiotic colistin in treating infections caused by the bacteria Salmonella.

Colistin is considered a last-resort antibiotic for multidrug-resistant bacterial infections due its toxic effect on the body, which has limited its use in medicine. However, when paired together, dephostatin allowed for drastically lower concentrations of colistin in a treatment regimen for Salmonella infection in mice that maintained the antibiotic's effectiveness.

The study details are published in Cell Chemical Biology.

"The rise of antibiotic resistance has ushered in the post-antibiotic age, and alternatives to antibiotics are urgently required," said Caressa Tsai, first author of the study and a PhD student in biochemistry and biomedical sciences in the Coombes lab at McMaster. "Solving the antibiotic resistance crisis will require us to shift away from the traditional view of antibiotic discovery."

The World Health Organization has classified antibiotic-resistant Salmonella, which can cause infection from eating contaminated foods, as a high-priority pathogen.

In their study, researchers found that dephostatin does not kill Salmonella or stop it from growing. Instead, dephostatin prevents Salmonella from causing infection in two ways: It blocks its ability to resist being killed by immune cells and it enhances its sensitivity to colistin.

While the initial findings were done using a method of experimentation called high-throughput screening, the researchers were excited to find that co-administering dephostatin and colistin in mice with a lethal Salmonella infection significantly prolonged animal survival and used a lower concentration of colistin than is normally required for treatment, thereby reducing its toxic effect.

By the numbers, treatment with colistin alone extended survival of almost 88 per cent of mice to approximately five days post infection and 25 per cent of mice survived to the end of the experiment. However, more than 62 per cent of mice treated with both dephostatin and colistin survived the infection, indicating a significant improvement over therapy with one antibiotic.

"Traditional antibiotics all work in a similar way - they clear infections by killing bacteria," said Tsai. "Here, we were interested in a different approach - keeping bacteria alive, but chemically inactivating important pathways to prevent them from causing infection."

Researchers are continuing their research to understand how dephostatin works against Salmonella. Their ongoing work will explore the activity of dephostatin alone and in combination therapies during the treatment of infected animals.

"Dephostatin appears to knock out two important regulatory pathways that control Salmonella virulence and antibiotic resistance mechanisms," said Coombes, corresponding author and a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University. He holds the Canada Research Chair in Infectious Disease Pathogenesis.

"This research highlights the opportunities in taking a different approach than traditional antibiotic discovery and is enabling new drug combinations to emerge."

Credit: 
McMaster University

Surrey unveils fast-charging super-capacitor technology

Experts from the University of Surrey believe their dream of clean energy storage is a step closer after they unveiled their ground-breaking super-capacitor technology that is able to store and deliver electricity at high power rates, particularly for mobile applications.

In a paper published by the journal Energy and Environmental Materials, researchers from Surrey's Advanced Technology Institute (ATI) revealed their new technology which has the potential to revolutionise energy use in electric vehicles and reduce renewable based energy loss in the national grid. The team also believe their technology can help push forward the advancement of wind, wave and solar energy by smoothing out the intermittent nature of the energy sources.

The ATI's super-capacitor technology is based on a material called Polyaniline (PANI), which stores energy through a mechanism known as "pseudocapacitance." This cheap polymer material is conductive and can be used as the electrode in a super-capacitor device. The electrode stores charge by trapping ions within the electrode. It does this by exchanging electrons with the ion, which "dopes" the material.

In their paper, the team detail how they developed a new three-layer composite using carbon nanotubes, PANI, and hydrothermal carbon that demonstrates remarkable rate-capability at high energy densities, independent of the power use.

Ash Stott, lead scientist on the project and Ph.D student from the University of Surrey, said: "The future of global energy will depend on consumers and industry using and generating energy more efficiently and super-capacitors have already been proven to be one of the leading technologies for intermittent storage as well as high-power delivery. Our work, has established a baseline for high energy devices that also operate at high power, effectively widening the range of potential applications."

Professor Ravi Silva, Director of the ATI at the University of Surrey, said: "This highly ambitious and impactful work has the potential to change the way we all live our lives - and it might be what is needed to make the change for an efficient and fast charging solution of harvested energy from the environment. We see this having an impact in all sorts of industries - from all wearable technology to mobile Internet of Things applications that will launch the 5G revolution. The potential for our super-capacitor is limitless."

Credit: 
University of Surrey

How interstitial ordering affects high-strength steels

For the fundamental basic composition of any steel - iron and carbon - the concentration and ordering of carbon atoms and their interaction with the iron host lattice in martensitic steels was analysed by a team of scientists from the Max-Planck-Institut für Eisenforschung (MPIE) and the Ruhr-Universität Bochum (RUB). The scientists examined the mechanisms of collective interstitial ordering in Fe-C steels and determined how anharmonicity and segregation affect the ordering mechanism and consequently, the material's performance. Their recent findings were published in Nature Materials.

Where carbon atoms go

„When carbon atoms enter the iron host lattice of martensitic steels, they diffuse between the iron atoms and do not take over the iron atoms' positions in the host lattice. Nevertheless, they create strain fields influencing the whole lattice. Understanding the mechanism of the resulting interstitial ordering is a key to designing ultra-high performance steels as they gain their strength from the martensite formation, thus, from the collective interstitial ordering", explains Dr. Tilmann Hickel. Hickel is head of the group „Computational Phase Studies" at the MPIE and was the main supervisor of Dr. Xie Zhang, the first author of the publication. Each interstitial atom, due to its size and chemical interaction with atoms of the host lattice, creates a local strain field that displaces its neighbouring host atoms away from their original lattice positions. „Imagine inserting a wooden stick into sand at the beach and watching how the stick displaces the grains of sand surrounding it. The same happens when we add carbon to the iron host lattice. The carbon interstitials, find their way through the host lattice, order in energetically favourable places and distort and harden the previous structure", explains Hickel. A high concentration of interstitials leads to ordering/disordering phenomena and lattice distortions, thus influencing the steels' bulk performance.

The research team identified two components that influence the interstitial ordering. The first one results from the anharmonicity caused by the strain fields in the Fe lattice. „Due to this anharmonicity, the critical C concentration for an order-disorder transformation is decreased. To understand the displacement of the Fe atoms at different distances, we must consider the anharmonic contribution in the first neighbour position of a C interstitial", explains Dr. Jutta Rogal from the Interdisciplinary Centre for Advanced Materials Simulation of the Ruhr-Universität Bochum.

The second component that influences the interstitial ordering is the segregation of C to extended defects. This segregation takes place at low C concentrations and is suppressed at high C concentrations due to a lowering of the C chemical potential in ordered martensite. The chemical potential of C in Fe-C martensite gradually increases with increasing C concentration until 0.8 at.% are reached. Then it rapidly decreases due to the order-disorder transition.

Order-disorder transition

Both components, the level of anharmonicity and the segregation behaviour, are decisive for the order-disorder transition. „An unexpected outcome of the study was that it is not sufficient to analyse only the arrangement of the carbon atoms in bulk. Rather, a strong competition between the carbon concentration in the bulk and its segregation to extended defects occurs. Only with this insight it was possible to gain a comprehensive understanding of the order-disorder transition. This competition decreases with an increasing concentration of carbon interstitials, as extended defects can incorporate interstitials only to a limited amount. The exact concentration depends on the density of the defects. In our calculations and confirmed by experiments, disordered martensite is triggered by a carbon concentration in the range between 0.8 at.% and 2.6 at.%. Above 2.6 at.% ordered martensite is formed, which provides a superior strength to steels. Below 0.8 at.%, carbon atoms segregate to dislocations in grain boundaries", explains Professor Jörg Neugebauer, director of the department Computational Materials Design at the MPIE. The theoretical calculations were confirmed by transmission electron microscopy and atom probe tomography measurements performed at the Ruhr-Universität Bochum.

In general, the exact critical C concentration depends on the microstructure of the material and the binding energy between C and a specific extended defect. The shown critical concentration range of 0.8 at.% and 2.6 at.% is not universal, but depends on the sample and its extended defects. However, the critical concentrations can be precisely calculated if a) the exact binding energy between C and the extended defect, and b) the maximum C concentration that can be included by the extended defect, are known. The MPIE and RUB team showed the decisive role anharmonicity and segregation play regarding the mechanism of interstitial ordering, using the Fe-C alloys as a model for other relevant systems. Including anharmonic effects into order-disorder phase transitions provides a new level of predictive materials modelling, paving the way to designing ultra-high-performance steels.

Credit: 
Ruhr-University Bochum

How particulate matter arises from pollutant gases

When winter smog takes over Asian mega-cities, more particulate matter is measured in the streets than expected. An international team, including researchers from Goethe University Frankfurt, as well as the universities in Vienna and Innsbruck, has now discovered that nitric acid and ammonia in particular contribute to the formation of additional particulate matter. Nitric acid and ammonia arise in city centres predominantly from car exhaust. Experiments show that the high local concentration of the vapours in narrow and enclosed city streets accelerates the growth of tiny nanoparticles into stabile aerosol particles (Nature, DOI 10.1038/s41586-020-2270-4).

In crowded urban centres, high concentrations of particulate matter cause considerable health effects. Especially in winter months, the situation in many Asian mega-cities is dramatic when smog significantly reduces visibility and breathing becomes difficult.

Particulates, with a diameter of less than 2.5 micrometres, mostly form directly through combustion processes, for example in cars or heaters. These are called primary particulates. Particulates also form in the air as secondary particulates, when gases from organic substances, sulphuric acid, nitric acid or ammonia, condense on tiny nanoparticles. These grow into particles that make up a part of particulate matter.

Until now, how secondary particulates could be newly formed in the narrow streets of mega-cities was a puzzle. According to calculations, the tiny nanoparticles should accumulate on the abundantly available larger particles rather than forming new particulates.

Scientists in the international research project CLOUD have now recreated the conditions that prevail in the streets of mega-cities in a climate chamber at the particle accelerator CERN in Geneva, and reconstructed the formation of secondary particulates: in the narrow and enclosed streets of a city, a local increase of pollutants occurs. The cause of the irregular distribution of the pollutants is due in part to the high pollutant emissions at the street level. Furthermore, it takes a while before the street air mixes with the surrounding air. This leads to the two pollutants ammonia and nitric acid being temporarily concentrated in the street air. As the CLOUD experiments demonstrate, this high concentration creates conditions in which the two pollutants can condense onto nanoparticles: ammonium nitrate forms on condensation cores the size of only a few nanometres, causing these particles to grow rapidly.

"We have observed that these nanoparticles grow rapidly within just a few minutes. Some of them grow one hundred times more quickly than we had previously ever seen with other pollutants, such as sulphuric acid," explains climate researcher Professor Joachim Curtius from Goethe University Frankfurt. "In crowded urban centres, the process we observed therefore makes an important contribution to the formation of particulate matter in winter smog - because this process only takes place at temperatures below about 5 degrees Celsius." The aerosol physicist Paul Winkler from the University of Vienna adds: "When conditions are warmer, the particles are too volatile to contribute to growth."

The formation of aerosol particles from ammonia and nitric acid probably takes place not only in cities and crowded areas, but on occasion also in higher atmospheric altitudes. Ammonia, which is primarily emitted from animal husbandry and other agriculture, arrives in the upper troposphere from air parcels rising from close to the ground by deep convection, and lightning creates nitric acid out of nitrogen in the air. "At the prevailing low temperatures there, new ammonium nitrate particles are formed which as condensation seeds play a role in cloud formation," explains ion physicist Armin Hansel from the University of Innsbruck, pointing out the relevance of the research findings for climate.

The experiment CLOUD (Cosmics Leaving OUtdoor Droplets) at CERN studies how new aerosol particles are formed in the atmosphere out of precursor gases and continue to grow into condensation seeds. CLOUD thereby provides fundamental understanding on the formation of clouds and particulate matter. CLOUD is carried out by an international consortium consisting of 21 institutions. The CLOUD measuring chamber was developed with CERN know-how and achieves very precisely defined measuring conditions. CLOUD experiments use a variety of different measuring instruments to characterise the physical and chemical conditions of the atmosphere consisting of particles and gases. In the CLOUD project, the team led by Joachim Curtius from the Institute for Atmosphere and Environment at Goethe University Frankfurt develops and operates two mass spectrometers to detect trace gases such as ammonia and sulphuric acid even at the smallest concentrations as part of projects funded by the BMBF and the EU. At the Faculty of Physics at the University of Vienna, the team led by Paul Winkler is developing a new particle measuring device as part of an ERC project. The device will enable the quantitative investigation of aerosol dynamics specifically in the relevant size range of 1 to 10 nanometres. Armin Hansel from the Institute for Ion Physics and Applied Physics at the University of Innsbruck developed a new measuring procedure (PTR3-TOF-MS) to enable an even more sensitive analysis of trace gases in the CLOUD experiment with his research team as part of an FFG project.

Credit: 
Goethe University Frankfurt

Unlocking the gate to the millisecond CT

image: How the bent crystal changes the direction of the X-rays.

Image: 
Tohoku University

Many will undergo a CT scan at some point in their lifetime - being slid in and out of a tunnel as a large machine rotates around. X-ray computed tomography, better known by its acronym CT, is a widely used method of obtaining cross-sectional images of objects.

Now a research team - led by Tohoku University Professor, Wataru Yashiro - has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

High-speed, high-resolution X-ray CT is currently possible using intense synchrotron radiation. However, this requires samples to be rotated at high speed to obtain images from many directions. This would make CT scans more akin to a rollercoaster ride!

Extreme rotation also makes controlling the temperature or atmosphere of the sample impossible.

Nevertheless, the research team solved this conundrum by creating an optical system that splits single synchrotron X-ray beams into many. These beams then shine onto the sample from different directions at the same time; thus, negating the need to rotate the sample.

This "multi-beam" method is no easy task since the direction of X-rays cannot be easily changed. Unlike visible light, X-rays interact with matters weakly, making it difficult to utilize mirrors and prisms to change the path of the beams.

To overcome this, the research team used micro-fabrication techniques to create uniquely shaped crystals. These crystals were then bent in the shape of a hyperbola. By combining three rows of crystals, the multi-beam optics were able to cover an angle of ±70°.

Carrying out their experiments at the SPring-8 synchrotron radiation facility, the research team took advantage of a cutting-edge compressed-sensing algorithm that needs only a few dozen projection images for image reconstruction.

"The invention makes 3-D observations of living beings and liquid samples within milliseconds possible" exclaimed Professor Yashiro. "Its possible application is wide-spread, from fundamental material science to life sciences to industry," added Yashiro.

Credit: 
Tohoku University

Local inflammatory cells are characteristic for advanced multiple sclerosis

In the brains of people that suffer from long-term multiple sclerosis (MS), inflammatory cells are not entering the brain via the bloodstream anymore. Instead, the cells arise from local memory cells in the brain. Nina Fransen and her colleagues of the Netherlands Institute for Neuroscience show this in a recently published article in the scientific journal Brain.

At its onset, MS is characterized by a relatively high frequency of attacks of neurological symptoms that recover relatively well. During attacks early in the disease, white blood cells migrate from the bloodstream into the brain, where they contribute to the inflammation. In patients with advanced MS, the number of attacks with neurological symptoms is reduced, but disability does progress. "Our previous studies indicated that there is still a significant amount of inflammatory activity in the brain also at later stages of MS, which is remarkable", says Nina Fransen. The researchers therefore wondered whether white blood cells still play a role in the inflammation during advanced MS.

White blood cells

In this study, the research group of professor Inge Huitinga focussed mainly on one specific type of white blood cell, the T cell. Brain tissue that was donated by MS patients that are passed away, was examined at the Netherlands Brain Bank. In this tissue, the researchers found activated T cells inside of the inflammatory lesion centers. These cells had characteristics of tissue-resident memory T cells. This kind of T cell remains in tissues after viral infections and offers long-term local protection to new infections. In the brain, these cells have only recently been discovered by the same research group.

These new findings support the idea that during the late phase of MS, the disease is happening entirely inside the brain. In this case, white blood cells on the outside of the brain do not influence the disease any more. "These data give us insight into the disappointing effects of current treatments during later stages of MS. By mapping the behavior of the T cells, we can start thinking of ways to slow down the disease process in patients with advanced MS", explains Joost Smolders, member of the research group and neurologist at Erasmus MC in Rotterdam.

Multiple sclerosis

In people with MS, inflammation in the brain is responsible for the breakdown of myelin, the insulating layer that forms around nerves. Without this insulation, it would not be possible for nerve cells to communicate properly with each other. As a consequence, important functions like walking, feeling, talking and thinking are being affected. Each person with the condition is affected differently and the course of the disease is hard to predict. Unfortunately, there is no cure for MS yet.

Credit: 
Netherlands Institute for Neuroscience - KNAW

Making quantum 'waves' in ultrathin materials

image: Illustration of plasmon waves created by an ultrafast laser coupled to an atomic force microscopy tip. The plasmon waves are shown as concentric red and blue rings moving slowly across an atomically thin layer of tantalum disulfide.

Image: 
Felipe da Jornada/Berkeley Lab

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

In atomically thin 2D materials, plasmons have an energy that is more useful for applications, including sensors and communication devices, than plasmons found in bulk metals. But determining how long plasmons live and whether their energy and other properties can be controlled at the nanoscale (billionths of a meter) has eluded many.

Now, as reported in the journal Nature Communications, a team of researchers co-led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) - with support from the Department of Energy's Center for Computational Study of Excited-State Phenomena in Energy Materials (C2SEPEM) - has observed long-lived plasmons in a new class of conducting transition metal dichalcogenide (TMD) called "quasi 2D crystals."

To understand how plasmons operate in quasi 2D crystals, the researchers characterized the properties of both nonconductive electrons as well as conductive electrons in a monolayer of the TMD tantalum disulfide. Previous studies only looked at conducting electrons. "We discovered that it was very important to carefully include all the interactions between both types of electrons," said C2SEPEM Director Steven Louie, who led the study. Louie also holds titles as senior faculty scientist in the Materials Sciences Division at Berkeley Lab and professor of physics at UC Berkeley.

The researchers developed sophisticated new algorithms to compute the material's electronic properties, including plasmon oscillations with long wavelengths, "as this was a bottleneck with previous computational approaches," said lead author Felipe da Jornada, who was a postdoctoral researcher in Berkeley Lab's Materials Sciences Division at the time of the study. Jornada is currently an assistant professor in materials science and engineering at Stanford University.

To the researchers' surprise, the results from calculations performed by the Cori supercomputer at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) revealed that plasmons in quasi 2D TMDs are much more stable - for as long as approximately 2 picoseconds, or 2 trillionths of a second - than previously thought.

Their findings also suggest that plasmons generated by quasi 2D TMDs could enhance the intensity of light by more than 10 million times, opening the door for renewable chemistry (chemical reactions triggered by light), or the engineering of electronic materials that can be controlled by light.

In future studies, the researchers plan to investigate how to harness the highly energetic electrons released by such plasmons upon decay, and if they can be used to catalyze chemical reactions.

Credit: 
DOE/Lawrence Berkeley National Laboratory

The carnivorous plant lifestyle is gene costly

image: The genomes of the carnivorous plants Venus flytrap, spoon-leaved sundew and waterwheel (from left) are decoded.

Image: 
(Picture: Dirk Becker and Sönke Scherzer / University of Würzburg)

Plants can produce energy-rich biomass with the help of light, water and carbon dioxide. This is why they are at the beginning of the food chains. But the carnivorous plants have turned the tables and hunt animals. Insects are their main food source.

A publication in the journal Current Biology now sheds light on the secret life of the green carnivores. The plant scientist Rainer Hedrich and the evolutionary bioinformatician Jörg Schultz, both from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, and their colleague Mitsujasu Hasebe from the University of Okazaki (Japan) have deciphered and analysed the genomes of three carnivorous plant species.

They studied the Venus flytrap Dionaea muscipula, which originates from North America, the globally occurring waterwheel plant Aldrovanda vesiculosa and the spoon-leaved sundew Drosera spatulata, which is widely distributed in Asia.

All three belong to the sundew family. Nevertheless, they have each conquered different habitats and developed their own trapping mechanisms. In Dionaea and Aldrovanda, the ends of the leaves are transformed into folding traps. The sundew, on the other hand, attaches its prey to the leaf surface with sticky tentacles.

Basic genes for carnivory

The first thing the international research team found out was that, despite their different lifestyles and trapping mechanisms, Venus flytrap, sundew and waterwheel have a common "basic set" of genes that are essential for the carnivorous lifestyle.

"The function of these genes is related to the ability to sense and digest prey animals and to utilise their nutrients," explains Rainer Hedrich.

"We were able to trace the origin of the carnivory genes back to a duplication event that occurred many millions of years ago in the genome of the last common ancestor of the three carnivorous species," says Jörg Schultz. The duplication of the entire genome has provided evolution with an ideal playing ground for developing new functions.

Genetic poverty despite a special way of life

To their surprise, the researchers discovered that the plants do not need a particularly large number of genes for carnivory. Instead, the three species studied are actually among the most gene-poor plants known. Drosera has 18,111, Dionaea 21,135 and Aldrovanda 25,123 genes. In contrast, most plants have between 30,000 and 40,000 genes.

How can this be reconciled with the fact that a wealth of new genes is usually needed to develop new ways of life? "This can only mean that the specialization in animal food was accompanied by an increase in the number of genes, but also a massive loss of genes," concludes developmental biologist Hasebe.

Root genes are active in the trapping organs

Most of the genes required for the insect traps are also found in slightly modified form in normal plants. "In carnivorous plants, several genes are active in the trapping organs, which in other plants have their effect in the root. In the trapping organs, these genes are only switched on when the prey is secure," explains Hedrich. This finding is consistent with the fact that the roots are considerably reduced in Venus flytrap and sundew. In the waterwheel they are completely absent.

Further research into the trapping function

The researchers now have an insight into the evolution of carnivory in plants and hold three blueprints for this particular way of life in their hands. Their next goal is to gain an even better understanding of the molecular basis of the trapping function.

"We have found that the Venus flytrap counts the electrical stimuli triggered by the prey, can remember this number for a certain time and finally makes a decision that corresponds to the number," says Hedrich. Now it is important to understand the biophysical-biochemical principle according to which carnivorous plants count.

Credit: 
University of Würzburg

Danish researchers find new breast cancer gene in young people

Over the past 20 years, our knowledge of hereditary diseases has taken a quantum leap, and several hereditary gene variants have been found that may predispose to the development of cancer. We have known for a long time that mutations in human BRCA1 and BRCA2 genes may lead to the development of cancer, especially in the ovaries and breast. But researchers around the world also know that there are still a great number of variants in our hereditary systems that may lead to life-threatening diseases such as breast cancer.

A research team from the University of Copenhagen, BRIC and Rigshospitalet has embarked on a new chapter in the research and is now adding important knowledge to our understanding of hereditary genes and the biological mechanisms that underlie the development of breast cancer. They have located the RBBP8 gene and described its functions as a crucial factor in the development of breast cancer in a group of very young women.

- We have studied the biological significance of RBBP8 gene variants in a group of young women with breast cancer. It is a patient group where we assume that genetic factors play a role. We have now shown that RBBP8 normally protects the cells against damage to the genome and that a reduced RBBP8 function may, conversely, lead to cancer, says Research Director Claus Storgaard Sørensen, BRIC, the University of Copenhagen.

The RBBP8 gene which does the coding for the CtIP protein, has not previously been associated with the development of hereditary breast cancer. In the new study, just published in The Journal of Clinical Investigation, it is the conclusion that these are rare variants and mutations.

Specific Patient is the Starting Point

The study is based on a specific patient, but the group has subsequently studied the RBBP8 gene in both Danish patients and in larger international cohorts.

The researchers screened 129 young Danish patients who had been diagnosed with breast cancer at a young age, under 35, and subsequently, we performed extensive gene sequencing of a larger group of 1,092 patients with breast cancer or other cancers that did not have mutations in the BRCA1 or BRCA2 genes.

The mutations in RBBP8 may explain why some very young women develop breast cancer. The basic scientific studies of the protein show that RBBP8 plays a crucial role in protecting and regulating the human body's DNA because it repairs damage to the chromosomes.

- Our collaboration has created rapid progress because we have the opportunity to combine clinical data and basic scientific methods. This helps to improve our understanding of the complex mechanisms and rare gene variants that present an increased risk of developing breast cancer and other cancers, says Clinical Professor Finn Cilius Nielsen, who on a daily basis is the Head of Genomic Medicine at Rigshospitalet and National Genome Center East in Glostrup.

Further Studies are Needed

The researchers hope that this study will form the basis for discoveries of more genes that may predispose to the development of cancer and, in the long term, offer studies that may help the early detection, diagnosis and treatment of cancer patients. Further studies, including family studies and international studies, are needed to more accurately map the risk of mutations.

The research is supported by the Lundbeck Foundation, the Danish Cancer Society and the Novo Nordisk Foundation. The project has lasted for five years - with participation by the Center for Genomic Medicine and the Department of Oncology at Rigshospitalet, the University of Copenhagen, BRIC, and with the help of the Danish Cancer Biobank and international collaboration partners.

Credit: 
University of Copenhagen - The Faculty of Health and Medical Sciences

General descriptor sparks advancements in dye chemistry

image: Researchers from SUTD, DICP, and POSTECH developed a theoretical descriptor ΔE for predicting PET-based fluorescence probes; utilizing this descriptor, they quantitatively designed fluorescent stains of lipid droplets and mitochondria for live-cell bioimaging.

Image: 
SUTD

There is an ongoing demand in biological research to accelerate the development of fluorescent probes based on the photo-induced electron transfer (PET) mechanism. By modulating PET formations, these probes significantly change fluorescence intensities, allowing a convenient route to monitor analytes or environmental changes with high sensitivity, vivid visibility and excellent spatiotemporal resolution.

However, the quantitative design of fluorescence probes based on the PET mechanism continues to be a challenging task as dye chemistry is still largely based on trial-and-error.

To address this challenge, an international team of researchers from the Singapore University of Technology and Design (SUTD), Dalian Institute of Chemical Physics in China (DICP), and Pohang University of Science and Technology (POSTECH) in South Korea have developed a theoretical descriptor, ΔE, to quantitatively design PET fluorescence probes (refer to image). Their research paper was published in ACS publications.

The team established the ΔE descriptor by performing quantum chemical calculations on around 140 existing PET probes and analysing the correlations between their electronic structures and their quantum yields, or otherwise known as the efficiency of generating fluorescence.

The researchers also demonstrated that the descriptor was applicable to several families of fluorophores such as BODIPY, fluorescein, and rhodamine derivatives. Based on the descriptor, they accurately predicted and successfully developed wash-free fluorescent stains of lipid droplets and mitochondria for live cell bioimaging.

They were also able to quantitatively design fluorophores with the aggregation induced emission properties. The establishment of this theoretical descriptor enables chemists and biologists to quantitatively search and design new PET-based fluorescence probes.

"Our research goal is to transform the dye chemistry from trial-and-error to molecular engineering, with the state-of-art research tools such as chemical big data and quantum chemical calculations. As we continue to closely work with dye chemists to achieve this goal, we will also be developing high-performance fluorescent materials along the way," said Assistant Professor Liu Xiaogang from SUTD.

Credit: 
Singapore University of Technology and Design

New Chicago Booth research suggests patients prefer expert guidance for medical decisions

Over the past several decades, the United States medical system has increasingly prioritized patient autonomy. However, new research from University of Chicago Booth School of Business Professors Emma Levine and Celia Gaertig, and Northwestern Ph.D. candidate Samantha Kassirer, suggests that in times of uncertainty, people want expert guidance when making choices about their medical care.

The study, released by Proceedings of the National Academy of Sciences (PNAS), examines the important question of how patients, and advisees in general, react to full decisional autonomy when making difficult decisions about their health. The researchers found that advisers who gave advisees decisional autonomy rather than offering paternalistic advice, were judged to be less competent and less helpful. As a result, advisees are less likely to return to and recommend these advisers.

"It's clear that many of us don't want to be responsible for difficult decisions, but doctors seem more concerned than other experts that their advice might infringe on autonomy, and more worried about being blamed later," said Levine, assistant professor of behavioral science and Charles E. Merrill Faculty Scholar at Chicago Booth. "Our results suggest that advisees facing difficult decisions do not perceive autonomy as the gold standard."

The study also indicates that the preference for paternalistic guidance could extend beyond doctors. The researchers asked another set of participants to choose between two hypothetical investments, with some participants receiving recommendations from financial advisers while others did not. In a different experiment, they asked participants to imagine being given feedback from a boss about an upcoming presentation. In both cases, participants continued to prefer paternalistic advice. Moreover, in a final experiment, they didn't get angry at advisers for what turned out to be a bad outcome.

A summary of findings also appears in the Chicago Booth Review.

Credit: 
University of Chicago Booth School of Business

Satellites eye typhoon Vongfong landfall in the Philippines

image: The NOAA-20 satellite saw Typhoon Vongfong at 12:03 p.m. EDT (1703 UTC) on May 13. The imagery showed features that's expected from an intensifying storm, including overshooting tops and tropospheric gravity waves. In addition, a clear eye could be seen as well.

Image: 
NOAA/William Straka III, Univ. of Wisconsin Madison

NASA and NOAA satellites have been providing forecasters with satellite data that showed the strength and extent of Typhoon Vongfong as it made landfall in the Philippines and continued to track through the country. Warnings were in effect throughout several areas of the Philippines on May 14.

The NOAA-20 satellite saw Typhoon Vongfong at 12:03 p.m. EDT (1703 UTC) on May 13. "The imagery showed features that one would expect from an intensifying storm, including overshooting tops and tropospheric gravity waves," said William Straka III of the University of Wisconsin- Madison, who created the imagery using the satellite data. "In addition, a clear eye could be seen as well."

The infrared image also showed cloud top temperatures. Coldest cloud top temperatures are indicative of strongest storms because their cloud tops are pushed high into the atmosphere by strong uplift of air. NOAA-20 showed that the colder temperatures (where the convection is located) surrounds the circulation center, a sign of a mature tropical system.

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi NPP satellite provided a visible image of Typhoon Vongfong as it was making landfall in the east central Philippines on May 14. Vongfong made landfall in Samar. Samar is the third largest island in the Philippines, and is located in eastern Visayas region.

The VIIRS image showed bands of powerful thunderstorms north of the center and tightly around the center of circulation. Visible imagery has revealed that the eye has closed as the storm has started to weaken.

Warnings are posted throughout the Philippines on May 14. Tropical cyclone wind signal number #3 is in effect for Visayas: including Northern Samar and northern parts of eastern Samar and of Samar Luzon: Sorsogon, Albay, Masbate, Ticao Islands, Burias Islands, Catanduanes, southern parts of Camarines Sur. Tropical cyclone wind signal number 2 is also in effect for Visayas: for the northernmost part of Leyte, rest of Samar and rest of eastern Samar. Wind signal 2 is also in effect for Luzon: Camarines Norte, rest of Camarines Sur, southern parts of Quezon and Marinduque. Tropical cyclone wind signal number 1 covers Visayas and Luzon. In Visayas: Wind Signal 1 covers the rest of northern portion of Leyte, northeastern parts of Capiz and of Iloilo, and in Luzon: it covers Aurora, Bulacan, Metro Manila, Cavite, Laguna, Batangas, Rizal, rest of Quezon, Romblon, Bataan and Pampanga.

At 11 a.m. EDT (1500 UTC) on May 14, 0the Joint Typhoon Warning Center (JTWC) noted that the center of Vongfong was located near latitude 12.5 degrees north and longitude 124.5 degrees east, about 266 nautical miles east-southeast of Manila, Philippines. Vongfong was moving to the northwest and maximum sustained winds had decreased from 100 knots (115 mph/185 kph) to 85 knots (98 mph/157 kph) over the previous six hours.

The forecast from JTWC has Typhoon Vongfong weakening as it moves on a northerly track over the Visayas and Luzon regions of the Philippines, and then finally curving back into the Northwestern Pacific Ocean.

Credit: 
NASA/Goddard Space Flight Center