Tech

An 'instruction' to the crocodylian skull

image: A 3D skull model of the false gharial Tomistoma schlegelii; the bones of the braincase are in colour. The specimen is from the collection of the Zoological Museum, Moscow State University, Moscow

Image: 
SPbU

The braincase of crocodylians has a distinctive structure. Unlike evolutionary relatives (birds and squamates), in crocodylians, all braincase bones are rigidly fixed together and form an akinetic structure. In the process of evolution, this made it possible for animals to develop powerful jaws and stronger bite forces, thanks to which crocodylians could gnaw through the hard shell of crayfish and turtles and hunt fish and land animals, including dinosaurs. As a result, they have managed to fill the niche of predators and survive to the present day.

At present, in comparison with other parts of the crocodylian skull, the structure of their braincase has been understudied. This is because, until recently, scientists did not have the opportunity to investigate the complicated akinetic structure so that in the end the valuable collection specimen remained intact. At the same time, there is confusion in the already known data in terms and names. This complicates the work of many researchers studying the evolution of crocodylians.

Ivan Kuzmin, a doctoral student at St Petersburg University, decided to readdress this situation together with his colleagues from St Petersburg University, the Borissiak Paleontological Institute of the Russian Academy of Sciences, the Research and Practical Clinical Centre for Diagnostics and Telemedicine of the Moscow Department of Health, and the Smithsonian Institution (USA). To achieve this, they used computed tomography and a special 3D visualization program to create and study 3D models of 75 braincases of present-day crocodylians. This made it possible, without damaging the collection samples, to literally disassemble them by the bones and study every detail. Additionally, the researchers analysed academic papers describing the structure of the braincase from the beginning of the 19th century. The earliest work studied was an article dated 1821.

As a result, the scientists compiled a summary table in which they assigned a name to each structure in the crocodylian braincase. 'Our paper is the first one in which this part of the skull is described in detail and a complete ordered list of all its details is provided. We have introduced some terms, for example, the names of bone processes in the auditory area. In some cases, because the structures were named incorrectly before us, in others, because we have discovered new elements,' notes Ivan Kuzmin, the main author of the study, Master of Science from St Petersburg University.

While studying 3D models of braincases, the researchers found previously unknown evolutionary features. According to the scientists, recent data can help to better understand the structure of the crocodylian skeleton and resolve the contradictions around the genealogical tree of reptiles. The fact is that for almost 30 years, molecular biologists and paleontologists have been unable to agree on the sequence in which crocodylian species should be located on the evolutionary tree. For example, based on gene studies, molecular biologists assume that alligators are the most basal ones, while paleontologists, studying fossil remains, come to the conclusion that the most primitive ones are gharials. 'In the future, we plan to conduct a phylogenetic analysis and, based on its results, resolve this conflict,' says Ivan Kuzmin. 'The initial assumptions show that molecular biologists might be right.'

During the research, the authors also found out through what developmental mechanisms the crocodylian braincase acquired an akinetic structure. The researchers compared the evolution of the braincase in fossil relatives of crocodylians (crocodylomorphs) with the development of the braincase in the embryos of present-day animals. They have found out that in the crocodylian braincase area, in contrast to lizards and birds, complimentary structures appear at the initial stages of ontogenesis.

'Bones in an embryo are formed in two ways: endochondral and dermal. In the former case, cartilage first appears; then it ossifies. In the latter case, bones are formed as bones initially,' explains Ivan Kuzmin. 'Most of the braincase of all animals is formed by the endochondral process. However, it has turned out that everything happens differently in crocodylians. In addition to structures that are formed through endochondral ossification, they have new elements that are formed embryonically in the form of dermal ossifications. That is, new bone blocks that are missing in other animals are attached to the cartilaginous structures, as in the LEGO construction set. With further development of the embryo, cartilages are transformed into bones, and everything merges into a single structure. The same embryonic processes likely happened during the early stages of crocodylomorph evolution.'

Credit: 
St. Petersburg State University

Synthetic biology circuits can respond within seconds

Synthetic biology offers a way to engineer cells to perform novel functions, such as glowing with fluorescent light when they detect a certain chemical. Usually, this is done by altering cells so they express genes that can be triggered by a certain input.

However, there is often a long lag time between an event such as detecting a molecule and the resulting output, because of the time required for cells to transcribe and translate the necessary genes. MIT synthetic biologists have now developed an alternative approach to designing such circuits, which relies exclusively on fast, reversible protein-protein interactions. This means that there's no waiting for genes to be transcribed or translated into proteins, so circuits can be turned on much faster -- within seconds.

"We now have a methodology for designing protein interactions that occur at a very fast timescale, which no one has been able to develop systematically. We're getting to the point of being able to engineer any function at timescales of a few seconds or less," says Deepak Mishra, a research associate in MIT's Department of Biological Engineering and the lead author of the new study.

This kind of circuit could be useful for creating environmental sensors or diagnostics that could reveal disease states or imminent events such as a heart attack, the researchers say.

Ron Weiss, a professor of biological engineering and of electrical engineering and computer science, is the senior author of the study, which appears today in Science. Other authors include Tristan Bepler, a former MIT postdoc; Bonnie Berger, the Simons Professor of Mathematics and head of the Computation and Biology group in MIT's Computer Science and Artificial Intelligence Laboratory; Brian Teague, an assistant professor at the University of Wisconsin; and Jim Broach, chair of the Department of Biochemistry and Molecular Biology at Penn State Hershey Medical Center.

Protein interactions

Inside living cells, protein-protein interactions are essential steps in many signaling pathways, including those involved in immune cell activation and responses to hormones or other signals. Many of these interactions involve one protein activating or deactivating another by adding or removing chemical groups called phosphates.

In this study, the researchers used yeast cells to host their circuit and created a network of 14 proteins from species including yeast, bacteria, plants, and humans. The researchers modified these proteins so they could regulate each other in the network to yield a signal in response to a particular event.

Their network, the first synthetic circuit to consist solely of phosphorylation / dephosphorylation protein-protein interactions, is designed as a toggle switch -- a circuit that can quickly and reversibly switch between two stable states, allowing it to "remember" a specific event such as exposure to a certain chemical. In this case, the target is sorbitol, a sugar alcohol found in many fruits.

Once sorbitol is detected, the cell stores a memory of the exposure, in the form of a fluorescent protein localized in the nucleus. This memory is also passed on to future cell generations. The circuit can also be reset by exposing it to a different molecule, in this case, a chemical called isopentenyl adenine.

These networks can also be programmed to perform other functions in response to an input. To demonstrate this, the researchers also designed a circuit that shuts down cells' ability to divide after sorbitol is detected.

By using large arrays of these cells, the researchers can create ultrasensitive sensors that respond to concentrations of the target molecule as low as parts per billion. And because of the fast protein-protein interactions, the signal can be triggered in as little as one second. With traditional synthetic circuits, it could take hours or even days to see the output.

"That switch to extremely fast speeds is going to be really important moving forward in synthetic biology and expanding the type of applications that are possible," Weiss says.

Complicated networks

The toggle network that the researchers designed in this study is larger and more complex than most synthetic circuits that have been previously designed. Once they built it, the researchers wondered if any similar networks might exist in living cells. Using a computational model that they designed, they discovered six naturally occurring, complicated toggle networks in yeast that had never been seen before.

"We wouldn't think to look for those because they're not intuitive. They're not necessarily optimal or elegant, but we did find multiple examples of such toggle switch behaviors," Weiss says. "This is a new, engineered-inspired approach to discovering regulatory networks in biological systems."

The researchers now hope to use their protein-based circuits to develop sensors that could be used to detect environmental pollutants. Another potential application is deploying custom protein networks within mammalian cells that could act as diagnostic sensors within the human body to detect abnormal hormone or blood sugar levels. In the longer term, Weiss envisions designing circuits that could be programmed into human cells to report drug overdoses or an imminent heart attack.

"You could have a situation where the cell reports that information to an electronic device that would alert the patient or the doctor, and the electronic device could also have reservoirs of chemicals that could counteract a shock to the system," he says.

Credit: 
Massachusetts Institute of Technology

To understand ecology, follow the connections

image: Wildlife overpass near Banff National Park.

Image: 
Lucilleb/iStock/Getty Images Plus

AMHERST, Mass. - City sprawl and road development is increasingly fragmenting the habitats that many plant and animal species need to survive. Ecologists have long known than sustainable development requires attention to ecological connectivity - the ability to keep plant and wildlife populations intact and healthy, typically by preserving large tracts of land or creating habitat corridors for animals. New research from the University of Massachusetts Amherst argues that it's not enough for ecological modelling to focus on the landscape. If we want the best-possible ecological management, we should consider when and where individuals are located.

"Everybody needs a place to live," says Joseph Drake, a graduate student in the department of environmental conservation and the organismic and evolutionary biology program at UMass, and the lead author of the research that appeared recently in Ecography. "Humans build roads, but animals and plants have pathways. Movement along the pathways are essential to the continued persistence of plant and animal populations." This is where connectivity comes in, and there are two traditional ways of modelling it. One, the structural approach, focuses on where suitable habitats are and whether or not these habitats are contiguous, connected via corridors, or broken up and widespread. The other definition, functional connectivity, considers how species respond in relation to the habitats they move through.

But, says Drake, it's not enough to focus on either the structural or functional aspects of connectivity. Instead, a third aspect - demography - needs to be combined with the other two. "If we wish to understand how human activities influence plants and wildlife," says Drake, "then we need to know where the animals and plants actually are, where they want to be and how they move." Drake and his co-authors advocate for a "demographically weighted approach," which substantially improves the ability of ecological models to mirror observed reality. Indeed, the authors show that ignoring demography can markedly reduce the performance of ecological models, which has real-world implications for species' chances of survival.

Furthermore, the weighted approach is better not only at understanding populations of plants and animals as they are now, but in the future, as well. As plants and animals continue to adapt to climate change by moving across the landscape, understanding how species' dispersal affects their existence will take on growing importance.

Credit: 
University of Massachusetts Amherst

New study pinpoints two separate mutation near GDF5 gene for osteoarthritis, hip dysplasia

Terence D. Capellini has been interested in how joints work for almost three decades. Part of it is due to personal experience, having sustained several joint injuries as a college ice hockey player and recently developing knee osteoarthritis. But the principal investigator of Harvard's Developmental and Evolutionary Genetics Lab has also seen the pain and limited mobility of loved ones who've received similar diagnoses and injuries.

"We have all these joints in the body and they don't look the same from one another," said Capellini, the Richard B. Wolf Associate Professor in the Department of Human Evolutionary Biology. "Two very interesting inter-related questions are: Why do certain joints naturally acquire some disease while others do not, and why are some joints more prone to injury than others?"

These type of questions, along with a passion to understand the skeleton, motivated Capellini to lead a study on joint disorders that published Tuesday in Nature Communications. The findings from the paper could one day lead to therapeutics for two difficult-to-treat joint disorders that primarily affect the world's oldest and youngest populations.

The report details regulatory variants found near a gene, which plays a crucial role joint formation called GDF5. The study pinpoints two separate mutations near the gene, one that can cause knee osteoarthritis in older adults and another that can cause hip dysplasia in babies. Knee osteoarthritis, a degenerative disease in the knee joint, affects more than 30 percent of people over the age of 65, while hip dysplasia, a structural hip disorder, is present in one out of 1,000 newborns.

The findings can lay the groundwork for possible screenings of these diseases, which could allow for medical and non-medical interventions since patients will know they are at risk. The results could also lead to the creation of potential treatments because scientists will be able to better understand, target, and possibly affect the expression of the gene mutations to prevent the diseases.

"We can begin to understand whether we can start targeting these genetic regions for therapy," Capellini said.

The team of researchers say the mutations that lead to the diseases originate within two distinct regulatory switches near the GDF5 gene. One of the switches affects a population of cells that make the knee joint form its shape, while the other switch affects the cells that make the bones growing around the hip fit correctly.

"You can think of these switches as similar to the light switches in your house, with the light bulb being the gene," Capellini said. "You may have the same 100-watt light bulb in each room, but the kitchen switch only turns on the light bulb in the kitchen, while the living room switch only turns it on in the living room."

The discovery gives the researchers clues about the biological importance of these switches as target areas for therapies because they are prone to disruption.

The report is a collaboration between scientists from Harvard's Faculty of Arts and Sciences, the Broad Institute, the Harvard School of Dental Medicine, Harvard Medical School, Boston Children's Hospital, and medical researchers in China. Pushpanathan Muthuirulan, a research associate in Capellini's lab, was first author on the study, and Ata Kiapour, an assistant professor of orthopedic surgery at HMS and Children's Hospital, did the bulk of the medical imaging work.

The research team started by examining data acquired from genome-wide association studies on knee osteoarthritis and hip dysplasia. The goal of these types of studies are to detect and map genetic mutations across the genome that are associated with disease risk or variation in a trait. They chose the GDF5 gene because it's a region of the genome associated with about 20 different skeletal traits and has hundreds of potential disease-causing mutations.

Capellini and his colleagues identified the regulatory on and off switches across the genome responsible for building different joints in the human body, such as the hip, knee, shoulder, and elbow. With that information and the genome-wide association data, they used CRISPR gene editing techniques to modify human cartilage cells in a dish and to engineer mice to have separate mutations in each of the knee and hip switches they found.

These humanized mouse models allowed the researchers to study how each mutation impacts the formation and pathology of each joint. They were able to see if the DNA sequences in those switches possessed genetic mutations that have been associated with risk of knee osteoarthritis or risk of hip dysplasia. Through the process of elimination and arduous functional testing, they found the two separate mutations that can lead to both diseases.

The researchers also applied similar computational methods to other genes beyond GDF5. They found that nearly three-quarters of examined genes that are involved in multiple muscular skeletal diseases show the same patterns between potential disease-causing mutations and separate on and off switches for different joints.

The next steps for the researchers involve continuing to broaden their study to apply these experimental techniques to other regions of the genome to see if these patterns hold when it comes to knee osteoarthritis, hip dysplasia, and other skeletal diseases.

"On the broader scale, we want to explore more all these other regions of the genome because the risk for osteoarthritis and hip dysplasia is not just due to one mutation in one region of the genome," Capellini said. "It's a complex polygenic trait, so there's lots of regions of the genome that are conferring your risk for hip dysplasia or osteoarthritis. We want to be able to start modeling these mutations in more complex ways."

Credit: 
Harvard University

Colorectal cancer risk may increase with lower exposure to UVB light

University of California San Diego School of Medicine researchers have identified a possible link between inadequate exposure to ultraviolet-B (UVB) light from the sun and an increased risk of colorectal cancer, especially as people age.

Reporting in the journal BMC Public Health, researchers investigated global associations between levels of UVB light -- one of several types of ultraviolet light that reach the Earth's surface -- in 2017 and rates of colorectal cancer across several age groups in 186 countries in 2018.

Lower UVB exposure was significantly correlated with higher rates of colorectal cancer across all age groups. After other factors, such as skin pigmentation, life expectancy and smoking were considered, the association between lower UVB and risk of colorectal cancer remained significant for people aged 45 and older.

"Differences in UVB light accounted for a large amount of the variation we saw in colorectal cancer rates, especially for people over age 45. Although this is still preliminary evidence, it may be that older individuals, in particular, may reduce their risk of colorectal cancer by correcting deficiencies in vitamin D," said Raphael Cuomo, PhD, assistant professor of anesthesiology at UC San Diego School of Medicine.

Lower UVB exposure may reduce levels of vitamin D, wrote the authors. Vitamin D deficiency has previously been associated with an increased risk of colorectal cancer. The authors suggested that future research could look directly at the potential benefits of correcting vitamin D deficiencies to reduce colorectal cancer risk, especially in older age groups.

With improvements in prevention, early detection and treatment, there are more than 1.5 million colorectal cancer survivors living in the United States. Still, an estimated 52,900 people will die this year from the disease, making it the second deadliest cancer among men and women in the U.S. An estimated 149,500 people will be diagnosed with colorectal cancer in 2021.

For the study, researchers used UVB estimates obtained by the NASA EOS Aura spacecraft in April 2017 and data on colorectal cancer rates in 2018 for 186 countries from the World Health Organization's Global Cancer (GLOBOCAN) database. They also collected data for 148 countries on skin pigmentation, life expectancy, smoking, stratospheric ozone (a naturally occurring gas that filters solar radiation) and other factors that might influence health and UVB exposure, derived from previous literature and databases. Countries with lower UVB included Norway, Denmark and Canada; countries with higher UVB included United Arab Emirates, Sudan, Nigeria and India.

The authors caution that other factors may affect UVB exposure and vitamin D levels, such as vitamin D supplements, clothing and air pollution, which were not included in the study. They also caution that the observational nature of the study does not allow for conclusions about cause and effect and that more work is needed to more fully understand the relationship between UVB, vitamin D and colorectal cancer.

Credit: 
University of California - San Diego

Story tips: Powered by nature, get on the bus, accelerating methane and more

image: A team of scientists found that microbes at the SPRUCE experiment in the Minnesota peatlands are increasing production of methane under warming conditions.

Image: 
ORNL, U.S. Dept. of Energy

Manufacturing - Powered by nature

A team of researchers at Oak Ridge National Laboratory demonstrated the ability to additively manufacture power poles from bioderived and recycled materials, which could more quickly restore electricity after natural disasters.

Using the Big Area Additive Manufacturing system, the team 3D printed a 55-foot pole designed as a closed cylindrical structure. They evaluated three different composite materials with glass fibers including cellulose ester, recycled polycarbonate and bamboo fiber reinforced polystyrene.

"We developed a modular design that is easy to manufacture, transport and assemble," ORNL's Halil Tekinalp said. "Sections within the pole can also be customized to accommodate wires and different heights can be supported, too."

The ability to 3D print power poles with locally harvested materials such as wood debris and trees makes production and installation more efficient. Future research efforts will focus on increasing production efficiency and improving material performance.

Media contact: Jennifer Burke, 865.414.6835, burkejj@ornl.gov

Image: https://www.ornl.gov/sites/default/files/2021-07/final_assembled_pole2.png

Image: https://www.ornl.gov/sites/default/files/2021-07/printedtubecropped.jpg

Caption: ORNL researchers demonstrated a 3D-printed power pole made of bioderived and recycled materials could be easily manufactured, transported and assembled, enabling the quick restoration of power after natural disasters. Credit: ORNL, U.S. Dept. of Energy

Wireless charging - Get on the bus

Oak Ridge National Laboratory researchers demonstrated their wireless charging technology on an autonomous electric vehicle for the first time in a project with Local Motors.

The charging system developed at ORNL was installed on Local Motors' autonomous shuttle, the Olli. The architecture includes both wireless and wired charging, so the bus can connect to either DC or AC power, respectively. The team demonstrated power transferring from a grid interface to the vehicle's battery across a 6-inch air gap at approximately 96% efficiency.

An equipped EV charges hands-free, safely and efficiently, while parked over a charging pad. The technology has also been demonstrated on a light-duty SUV and a medium-duty delivery truck.

"Our wireless charging technology has matured enough that we can design and install equipment for a custom environment such as on the Olli, to give vehicle manufacturers the flexibility they need to accelerate toward a decarbonized, electrified transportation future," ORNL's Madhu Chinthavali said.

Media contact: Stephanie Seay, 865.576.9894, seaysg@ornl.gov

Image: https://www.ornl.gov/sites/default/files/2021-07/2021-P03084_0.jpg

Image: https://www.ornl.gov/sites/default/files/2021-07/2021-P03084_0.jpg

Caption: ORNL researchers installed and demonstrated their wireless charging technology for the first time on an autonomous vehicle - the Local Motors Olli shuttle bus. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Image: https://www.ornl.gov/sites/default/files/2021-07/2021-P03075.jpg

Caption: From left, ORNL's Madhu Chinthavali and Steven Campbell with Local Motors' Johnny Scotello and Seth Schofill demonstrated the Olli autonomous bus, which is equipped with the lab's wireless charging technology. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Climate - Accelerating methane

Scientists studying a unique whole-ecosystem warming experiment in the Minnesota peatlands found that microorganisms are increasing methane production faster than carbon dioxide production. These results could mean a future with more methane, a greenhouse gas that is up to 30 times more potent than carbon dioxide.

A multi-institutional team examined extensive data from two years of above- and belowground warming at the Oak Ridge National Laboratory-led SPRUCE experiment, including analysis of the species' genome, proteins and metabolism.

"You couldn't see the trend with just the DNA data, but it was apparent when we used high-performance computing to analyze the datasets as a group," ORNL's Chris Schadt said. "Increases in plant productivity under warming and a shift in the vegetation from moss to more vascular plants are providing fuel for methanogenic activity."

The scientists' observations will inform climate models that predict the planet's future.

Media contact: Kim Askey, 865.576.2841, askeyka@ornl.gov

Image: https://www.ornl.gov/sites/default/files/2021-07/AP_20201004_SPRUCE_UAV_0050.jpeg

Caption: A team of scientists found that microbes at the SPRUCE experiment in the Minnesota peatlands are increasing production of methane under warming conditions. Credit: ORNL, U.S. Dept. of Energy

Fusion - Helping JET soar

Equipment and expertise from Oak Ridge National Laboratory will allow scientists studying fusion energy and technologies to acquire crucial data during landmark fusion experiments in Europe.

ORNL's Ted Biewer led a team that developed diagnostics equipment for JET, the Joint European Torus facility in the United Kingdom, which will allow scientists to better measure and understand the nuclear fusion process.

JET is a testbed for ITER, the international experiment under construction in France that will eventually use deuterium and tritium fuel to demonstrate fusion as a viable, carbon-free energy source.

Deuterium-tritium experiments have been rare in part because tritium is in short supply and challenging to handle. Fusion researchers will use this fuel for the first time in 25 years in JET to maximize fusion performance in anticipation of ITER.

"These JET experiments are historic. It's a rover-touching-down-on-Mars type thing for fusion," said Biewer. - Kristen Coyne

Media contact: Lynne Degitz, 865.466.6383, degitzlk@ornl.gov

Image: https://www.ornl.gov/sites/default/files/2021-07/JET1.jpg

Caption: This summer, supported by critical diagnostics equipment from ORNL, scientists at the Joint European Torus in the United Kingdom are slated to run their first fusion experiments using deuterium and tritium fuel in 25 years. Credit: EUROfusion

Image: https://www.ornl.gov/sites/default/files/2021-07/JET2.jpg

Caption: For the first time in 25 years, scientists will use deuterium and tritium to create a plasma inside the chamber of the Joint European Torus in the United Kingdom to study nuclear fusion. As in the earlier experiments, diagnostics systems developed by ORNL will play a key role in monitoring the plasma. Credit: EUROfusion

Electric vehicles - Charged-up planning

Researchers at Oak Ridge National Laboratory have developed a nationwide modeling tool to help infrastructure planners decide where and when to locate electric vehicle charging stations along interstate highways. The goal is to encourage the adoption of EVs for cross-country travel.

The free open-source software, called REVISE-II, takes into account EV growth forecasts, charging technology capabilities, intercity travel trends and driver demographics to help planners fill infrastructure gaps for charging facilities.

By inputting various assumptions, planners can generate scenarios for future charging infrastructure requirements to encourage acceptance of EVs and accommodate growth as more EVs are adopted.

"Providing infrastructure for intercity charging is a necessary step to make EVs fully competitive with conventional vehicles," ORNL's Fei Xie said. "This is a freely available planning tool that takes into account the complexity of intercity travel and helps decision makers more carefully plan these capital-intensive projects to support a nationwide, electrified future."

Media contact: Stephanie Seay, 865.576.9894, seaysg@ornl.gov

Image: https://www.ornl.gov/sites/default/files/2021-07/2011-P01916.jpg

Caption: The REVISE-II modeling tool developed at ORNL supports decision-making for electric vehicle charging infrastructure development along interstate highways in support of intercity travel. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Image: https://www.ornl.gov/sites/default/files/2021-07/REVISE-II%202020-2025%20png_0.png

Image: https://www.ornl.gov/sites/default/files/2021-07/REVISE-II%202035-2040%20png.png

Caption: These maps illustrate an estimate of projected EV charging infrastructure buildout through 2025 and 2040, respectively, using the REVISE-II software tool. Credit: Fei Xie/ORNL, U.S. Dept. of Energy

Energy - Building a better thermostat

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

The algorithm learns over time to keep the home at residents' desired temperature settings while minimizing energy costs and adjusting to environmental conditions, all with no existing knowledge of the building. Results suggest the algorithm could save homeowners as much as 25% on annual utility bills.

"We found it's not practical to try to create a different model for each individual building across a neighborhood or city," ORNL's Helia Zandi said.

"We wanted an algorithm we could apply to different buildings that would automatically learn the characteristics of the environment and how to minimize operating costs while maximizing comfort."

The team's goal is to make the model universal so it can adapt to any system with the least amount of data necessary. - Matt Lakin

Media contact: Scott Jones, 865.241.6491, jonesg@ornl.gov

Image: https://www.ornl.gov/sites/default/files/2021-07/2019-P07408.jpg

Caption: An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners' preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Credit: 
DOE/Oak Ridge National Laboratory

A new look at color displays

image: Magnus Jonsson, associate professor, and Shangzhi Chen, postdoc, at the Laboratory of Organic Electronics at Linköping University.

Image: 
Thor Balkhed

Researchers at Linköping University have developed a method that may lead to new types of displays based on structural colours. The discovery opens the way to cheap and energy-efficient colour displays and electronic labels. The study has been published in the scientific journal Advanced Materials.

We usually think of colours as created by pigments, which absorb light at certain wavelengths such that we perceive colour from other wavelengths that are scattered and reach our eyes. That's why leaves, for example, are green and tomatoes red. But colours can be created in other ways, and some materials appear coloured due to their structure. Structural colours can arise when light is internally reflected inside the material on a scale of nanometres. This is usually referred to as interference effects. An example found in nature are peacock feathers, which are fundamentally brown but acquire their characteristic blue-green sheen from small structural features.

Researchers at Linköping University have developed a new and simple method to create structural colours for use with reflective colour displays. The new method may enable manufacturing of thin and lightweight displays with high energy-efficiency for a broad range of applications.

Reflective colour displays differ from the colour displays we see in everyday life on devices such as mobile phones and computers. The latter consist of small light-emitting diodes of red, green and blue positioned close to each other such that they together create white light. The colour of each light-emitting diode depends on the molecules from which it is built, or in other words, its pigment. However, it is relatively expensive to manufacture light-emitting diodes, and the global use of emissive displays consumes a lot of energy. Another type of display, reflective displays, is therefore being explored for purposes such as tablet computers used as e-readers, and electronic labels. Reflective displays form images by controlling how incident light from the surroundings is reflected, which means that they do not need their own source of illumination. However, most reflective displays are intrinsically monochrome, and attempts to create colour versions have been rather complicated and have sometimes given poor results.

Shangzhi Chen is a newly promoted doctor at the Laboratory of Organic Electronics at Linköping University and principal author of an article that describes a new type of dynamic structural colour image, published in the scientific journal Advanced Materials.

"We have developed a simple method to produce structural colour images with electrically conducting plastics, or conducting polymers. The polymer is applied at nanoscale thicknesses onto a mirror by a technique known as vapour phase polymerisation, after the substrate has been illuminated with UV light. The stronger the UV illumination, the thicker the polymer film, and this allows us to control the structural colours that appear at different locations on the substrate", says Shangzhi Chen.

The method can produce all colours in the visible spectrum. Furthermore, the colours can be subsequently adjusted using electrochemical variation of the redox state of the polymer. This function has been popular for monochrome reflective displays, and the new study shows that the same materials can provide dynamic images in colour using optical interference effects combined with spatial control of nanoscale thicknesses. Magnus Jonsson, associate professor at the Laboratory of Organic Electronics at Linköping University, believes that the method has great potential, for example, for applications such as electronic labels in colour. Further research may also allow more advanced displays to be manufactured.

"We receive increasing amounts of information via digital displays, and if we can contribute to more people gaining access to information through cheap and energy-efficient displays, that would be a major benefit. But much research remains to be done, and new projects are already under way", says Magnus Jonsson.

Credit: 
Linköping University

Predicting the future of cod

image: Cod stocks will probably decrease in the future

Image: 
Photo: David Young via Fotolia

The future of cod stocks in the North Sea and the Barents Sea may be much easier to predict than before. This is the result of an international research project led by the Helmholtz-Zentrum Hereon and its Institute of Coastal Systems - Analysis and Modeling. For the first time, the team has succeeded in predicting the development of stocks for ten years in advance, taking into account both changes due to climate and fishing. Traditionally, fisheries experts provide catch recommendations for about a year in advance, on the basis of which fishing quotas are negotiated and set internationally. This involves first estimating the size of current cod stocks and then calculating how much cod can be caught in the coming year without endangering the stocks as well as harvesting the stock optimally. The climatic change, long-term changes in water temperature, circulation and mixing, which have a decisive influence on how well cod reproduce, are not included in this prediction, so that the development of stocks can only be predicted in the short term.

Warm North Sea causes stress

As the experts around climate modeler Vimal Koul und Corinna Schrum of Hereon now write in the journal Nature Communications Earth and Environment, they have taken temperature into account in their calculations. For the North Sea, the climate forecast continues to predict temperatures at a high level, so that cod stocks are unlikely to recover or reach earlier levels. As a result, catches are expected to remain low. Things look better for the Barents Sea, where stocks can be managed sustainably.

For the researchers, the challenge was that climate models cannot calculate how much fish there will be in the oceans in the future. They only provide information about expected temperatures. "So we first had to develop a program that translates water temperature into fish quantities," says Vimal Koul. Among other things, this took into account the ocean temperature in the North Atlantic. The researchers were then able to run their prediction model. The model starts with today's conditions - the current temperature conditions and the current carbon dioxide content of the atmosphere, and can then calculate how the situation will change as carbon dioxide concentrations increase. The future temperatures are then translated into expected fish abundance and stock sizes.

To test how reliably the model works, it was first compared with real fish data from the 1960s to the present. As it turned out, it was able to correctly estimate fish stocks for the ten-year periods since the early 1960s. In this respect, the researchers led by Vimal Koul can assume that the current view of the coming ten years is also correct.

Fishing intensity taken into account

Another interesting aspect of the study is that the team of climate modelers, fisheries biologists and oceanographers took four different fishing scenarios into account. This allowed them to determine how cod stocks would fare if they were fished at different levels - from intensive to sustainable. In this respect, the results of the current study are very practical. "The 10-year estimates will help the fishing industry better plan catches in the future - so that cod stocks are fished sustainably and gently despite changes in climate," says Vimal Koul. The new 10-year calculation model could also help fishing companies in their strategic planning - by providing a secure basis for investments in new vessels or processing facilities.

Credit: 
Helmholtz-Zentrum Hereon

Ultrathin semiconductors electrically connected to superconductors for the first time

video: For the first time, SNI researchers (University of Basel) have equipped an atomically thin semiconductor with superconducting contacts. In this video, they show the elaborate fabrication process.

Image: 
C. Möller and M. Ramezani, Swiss Nanoscience Institute, University of Basel

For the first time, University of Basel researchers have equipped an ultrathin semiconductor with superconducting contacts. These extremely thin materials with novel electronic and optical properties could pave the way for previously unimagined applications. Combined with superconductors, they are expected to give rise to new quantum phenomena and find use in quantum technology.

Whether in smartphones, televisions or building technology, semiconductors play a central role in electronics and therefore in our everyday lives. In contrast to metals, it is possible to adjust their electrical conductivity by applying a voltage and hence to switch the current flow on and off.

With a view to future applications in electronics and quantum technology, researchers are focusing on the development of new components that consist of a single layer (monolayer) of a semiconducting material. Some naturally occurring materials with semiconducting properties feature monolayers of this kind, stacked to form a three-dimensional crystal. In the laboratory, researchers can separate these layers - which are no thicker than a single molecule - and use them to build electronic components.

New properties and phenomena

These ultrathin semiconductors promise to deliver unique characteristics that are otherwise very difficult to control, such as the use of electric fields to influence the magnetic moments of the electrons. In addition, complex quantum mechanical phenomena take place in these semiconducting monolayers that may have applications in quantum technology.

Scientists worldwide are investigating how these thin semiconductors can be stacked to form new synthetic materials, known as van der Waals heterostructures. However, until now, they have not succeeded in combining such a monolayer with superconducting contacts in order to dig deeper into the properties and peculiarities of the new materials.

Superconducting contacts

A team of physicists, led by Dr. Andreas Baumgartner in the research group of Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics of the University of Basel, has now fitted a monolayer of the semiconductor molybdenum disulfide with superconducting contacts for the first time. (see box)

The reason why this combination of semiconductor and superconductor is so interesting is that the experts expect components of this kind to exhibit new properties and physical phenomena. "In a superconductor, the electrons arrange themselves into pairs, like partners in a dance - with weird and wonderful consequences, such as the flow of the electrical current without a resistance," explains Baumgartner, the project manager of the study. "In the semiconductor molybdenum disulfide, on the other hand, the electrons perform a completely different dance, a strange solo routine that also incorporates their magnetic moments. Now we would like to find out which new and exotic dances the electrons agree upon if we combine these materials."

Suitable for use as a platform

The electrical measurements at the low temperatures required for superconductivity - just above absolute zero (-273.15°C) - show clearly the effects caused by the superconductor; for example, at certain energies, single electrons are no longer allowed. Moreover, the researchers found indications of a strong coupling between the semiconductor layer and the superconductor.

"Strong coupling is a key element in the new and exciting physical phenomena that we expect to see in such van der Waals heterostructures, but were never able to demonstrate," says Mehdi Ramezani, lead author of the study.

"And, of course, we always hope for new applications in electronics and quantum technology," says Baumgartner. "In principle, the vertical contacts we've developed for the semiconductor layers can be applied to a large number of semiconductors. Our measurements show that these hybrid monolayer semiconductor components are indeed possible -perhaps even with other, more exotic contact materials that would pave the way for further insights," he adds.

Elaborate fabrication process

The fabrication of the new component in a type of sandwich made of different materials requires a large number of different steps. In each step, it is important to avoid contaminations, as they seriously impair the transport of electrical charges.

To protect the semiconductor, the researchers pack a monolayer of molybdenum disulfide between two thin layers of boron nitride, through which they have previously etched the contacts vertically using electron-beam lithography and ion etching. They then deposit a thin layer of molybdenum rhenium as a contact material - a material that retains its superconducting properties even in the presence of strong magnetic fields.

Working under a protective nitrogen atmosphere in a glove box, the researchers stack the boron nitride layer onto the molybdenum disulfide layer and combine the underside with a further layer of boron nitride as well as a layer of graphene for electrical control. The researchers then place this elaborate van der Waals heterostructure on top of a silicon/silicon-dioxide wafer.

Credit: 
Swiss Nanoscience Institute, University of Basel

Work like a dream: new anticholinergic drug keeps PTSD flashbacks and nightmares away

Post-traumatic stress disorder (PTSD) rings a bell for many, due to its rampant references in pop culture, and more, importantly, its prevalence in today's society. It is only probable that this disorder, which develops after shocking or dangerous events, would unfortunately affect the lives of many people. Medical researchers have been hard at work trying to come up with solutions to combat this condition and its manifestations effectively. Unfortunately, the neurological mechanisms of PTSD aren't clear, and without knowing this exactly, trying to find a cure is a shot in the dark.

Fortunately, a group of Japanese researchers from the Sogo PTSD Institute, Medical Corporation Sogokai, Japan led by Dr. Masanobu Sogo appear to have made a breakthrough in PTSD treatment! They have identified a drug called trihexyphenidyl, that can significantly reduce the flashbacks and nightmares experienced by patients with PTSD, according to a study published in Brain and Behavior, a sister open access journal to ACTA J.

Trihexyphenidyl is a central anticholinergic drug used to manage disorders like parkinsonism, and alleviate several side-effects induced by drugs acting on the central nervous system (CNS). It acts by blocking the activity of a neurotransmitter, acetylcholine, in the CNS. Interestingly, it has been available for therapeutic use for around 66 years.

So, what inspired the researchers to pick up this drug? In 2009, they encountered a patient who suffered severe PTSD-related flashbacks and nightmares for 9 years, was diagnosed with bacterial diarrhea at another hospital, and administered a drip infusion containing antibiotics and scopolamine butyl bromide (SB), which is a peripheral anticholinergic that doesn't cross the blood-brain barrier (BBB, penetration rate 0.01%). Twenty minutes after the infusion, the patient's flashbacks completely disappeared!

Since SB is a "peripheral" anticholinergic agent, it shouldn't be able to cross the BBB, but it is probable that the patient's brain was in a state of severe brain excitement due to PTSD. There are eight acetylcholine basal ganglia in the brain, of which the largest, the Meynert nucleus, is closely associated with BBB permeability. The researchers hypothesized that due to abnormal excitement of the Meynert basal ganglia, SB enters the brain and activates anticholinergic action to suppress abnormal acetylcholine secretion of acetylcholine-memory-related circuits centered on the Meynert basal ganglia, eliminating the flashbacks.

From this valuable clinical experience, they figured that PTSD is generated through an acetylcholine-memory-related-circuit centered on Meynert. Based on this, Dr. Sogo and his team considered the use of a central anticholinergic agent: trihexyphenidyl.

Excited at the discovery, the researchers went on to devise an exploratory study, to check if trihexyphenidyl is effective against similar symptoms in other patients with PTSD. They administered trihexyphenidyl in 34 patients with PTSD, who had previously received psychiatric treatment for several years without therapeutic benefits, and determined its effect through interviews.

A significant 88% of the analyzed patients reported mild to no PTSD-related nightmares. Similarly, 79% of the analyzed patients reported similar responses for PTSD-related flashbacks. Notably, the researchers found that trihexyphenidyl has efficacy and a rapid onset (1-2 days) in the treatment of PTSD-related nightmares and flashbacks. Clearly, trihexyphenidyl is the elusive silver bullet against PTSD!

Dr. Sogo states, "To the best of our knowledge, this is the first pharmacological report describing the novel use of trihexyphenidyl for PTSD-related nightmares, which doesn't respond to conventional psychiatric treatment." While further studies are needed to prove the mechanism of PTSD, repurposing trihexyphenidyl to treat PTSD would be a promising turn of events, since the drug is inexpensive, and has no adverse effects. Here's to hope for patients suffering from PTSD, with the discovery of trihexyphenidyl!

Credit: 
Cactus Communications

Do heart medications affect COVID-19 outcomes?

Cardiovascular drugs do not affect COVID-19 outcomes--such as disease severity, hospitalizations, or deaths--according to an analysis of all relevant studies published as of November 2020. The findings are published in the British Journal of Clinical Pharmacology.

Investigators included 429 studies in a qualitative analysis and 390 in a quantitative analysis.

The results indicate that patients at risk of or with confirmed COVID-19 should continue taking cardiovascular drugs as prescribed.

"This is the most comprehensive analysis of the extensive amount of data published in this area," said senior author Munir Pirmohamed, MBChB, PhD, of the University of Liverpool, in the UK. "Given that we are still in the midst of a pandemic, the evidence base will continue to build, and we will therefore update our analysis."

Credit: 
Wiley

What to do with food waste? Well, that depends

The expected decline in the number of landfills across the United States coupled with bans on disposing large amounts of organic waste in landfills that have been enacted in multiple states has prompted researchers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to examine other ways to grapple with the issue of food waste disposal.

The researchers determined no single solution exists in the United States for dealing with food waste disposal. NREL researchers Alex Badgett a­­nd Anelia Milbrandt came to that conclusion after examining the economics involved in five different ways to handle disposing of food waste, including tossing it into a landfill. Both researchers are part of NREL's Strategic Energy Analysis Center.

"If we are trying to develop an optimized waste management system in the U.S. that diverts all food waste from landfills, there is not necessarily any one technology that will work for all areas of the country," Badgett said. "An optimized system would likely use different technologies in different locations and at different sizes."

Badgett and Milbrandt are coauthors of a newly published paper titled "Food waste disposal and utilization in the United States: A spatial cost benefit analysis," which appears in Journal of Cleaner Production.

About 75% of food waste winds up in landfills. But many landfills are running close to capacity and a significant number are scheduled to close by 2050, the researchers found. Although sufficient land is available for new landfills in rural America, residents in more-populated regions will be forced to transport waste long distances for disposal. Secondly, organic waste disposal bans enacted in several states require disposal of food waste in facilities other than landfills. Given a need for investment in new waste management facilities, an opportunity exists for innovative and improved pathways for waste streams. Badgett and Milbrandt examined five options for what to do with food waste, including the continued dumping into landfills. The other four options are:

Anaerobic digestion, in which microorganisms break down biodegradable material in the absence of oxygen

Composting, a biological process involving decomposition of organic matter in a controlled environment to produce compost

Incineration, where trash is burned for heat and/or power

Hydrothermal liquefaction, in which wet organic material is converted into biocrude.

Incineration has fallen out of favor because of increased environmental regulations and public opposition to the construction of new facilities. Hydrothermal liquefaction remains in the pilot stage.

The researchers examined the economics of operating various types of facilities, considering how much revenue each brings in from users or from the sale of products. They modeled the financial viability of the technologies, considering capital and operating costs of the facilities; revenue from the sale of power, heat, fuels, and other products; and production credits such as Renewable Identification Number (RIN) credits under the Renewable Fuel Standard for the generation and use of biogas as vehicle fuel.

All of the ways to handle food waste exhibit some economy of scale (where costs decrease when facilities are built at larger sizes), but the researchers found the rate at which financial viability changes with size of the facility is not consistent. For example, landfills and incinerators designed to treat bulk municipal solid waste, which includes food waste, must be constructed at large sizes in order to leverage economies of scale for these pathways, while digesters and composters can be built at smaller scales and still provide a profitable alternative for food waste disposal.

All the different types of facilities would benefit from developing technologies to produce biogas or related products, but benefits are greatest for those operating at medium to large scales. Facilities that currently accept food waste in large amounts are better suited to maximize the economic benefits associated with producing fuels, power, or products since they have a supply of feedstock readily available.

Waste management facilities charge users a gate fee to offset operating and capital costs. If a facility can produce enough biogas to reduce its dependence on fees, it either becomes more profitable or can reduce those fees to become more competitive.

The location of a facility plays an important role in determining its profitability, the researchers found. For example, states along the East and West coasts have the highest gate fees and are therefore more economically favorable.

DOE's Bioenergy Technologies Office funded the research.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

Credit: 
DOE/National Renewable Energy Laboratory

Secret to weathering climate change lies at our feet

image: Drought-stricken farmland in New Mexico

Image: 
Richard Wellenberger/iStock/Getty Images Plus

AMHERST, Mass. - Researchers at the University of Massachusetts Amherst recently discovered that the ability of agricultural grasses to withstand drought is directly related to the health of the microbial community living on their stems, leaves and seeds.

"Microbes do an enormous amount for the grasses that drive the world's agriculture," says Emily Bechtold, a graduate student in UMass Amherst's microbiology department and lead author of the paper recently published in Applied and Environmental Microbiology. "They protect from pathogens, provide the grass with nutrients such as nitrogen, supply hormones to bolster the plant's health and growth, protect from UV radiation and help the grass manage drought." Yet, the increased severity and longevity of climate-change-driven drought conditions across the world is sapping the ability of the microbiome to thrive.

Since 60% of all agriculture is grass-related - think of the cows, sheep and other grass-munching livestock that provide meat, milk, cheese, leather, wool and other staples - the bacteria living on grass touches every aspect of our lives, from what we eat for breakfast to food security, economics and international development.

The new research, which is the first of its kind, focuses on two different types of grasses: those that make up the majority of grasslands in temperate zones and those that predominate in tropical regions. "The goal of this research," says Klaus Nüsslein, professor of microbiology at UMass Amherst, and the paper's senior author, "is to be able to manage the interactions between plants and the bacteria they host in order to support a truly sustainable agriculture." Until now, however, it was largely unknown how grass and its microbiome supported one another, and what effects drought might have on the bacterial communities.

The researchers, whose work was supported by the Lotta M. Crabtree Foundation and the National Science Foundation, grew their temperate and tropical grasses in two different greenhouses. Each greenhouse's climate was controlled to mimic natural climactic conditions. Once the grasses reached maturity, the researchers further divided each group into three sub-groups. The first, the control group, maintained optimum climactic conditions. A second sub-group had its climate altered to mimic mild drought conditions, while the third was subjected to severe drought conditions. Over the course of a month, the researchers counted, gathered, and sequenced the DNA of the bacteria across all the groups of grasses and compared the results.

What they found was that when the bacteria showed signs of drought-induced stress, so did the plants. As expected, the tropical grasses were better able to withstand drought than the temperate grasses, but there were significant shifts in the microbiomes of all the grasses under severe drought conditions. Not only were there fewer total bacteria, but the microbial communities became less diverse, and so less resilient to environmental stress. In some cases, there was an increase in the count of bacteria that can prove harmful to grass.

However, there is hope. A few potentially beneficial bacteria were shown to thrive under mild drought conditions. More research needs to be done, but, says Bechtold, their research indicates that plans to actively support and biofertilize with these beneficial bacteria could be the key to weathering the drought conditions that will only become more widespread in the era of global warming.

Credit: 
University of Massachusetts Amherst

Seabird colony creates 'halo' of depleted fish stocks

image: Ascension frigate

Image: 
Sam Weber

A vast seabird colony on Ascension Island creates a "halo" in which fewer fish live, new research shows.

Ascension, a UK Overseas Territory, is home to tens of thousands of seabirds - of various species - whose prey incudes flying fish.

The new study, by the University of Exeter and the Ascension Island Government, finds reduced flying fish numbers up to 150km (more than 90 miles) from the island - which could only be explained by the foraging of seabirds.

The findings - which provide rare evidence for a long-standing theory first proposed at Ascension - show how food-limited seabird populations naturally are, and why they are often so sensitive to competition with human fishers.

"This study tells us a lot about large colonies of animals and how their numbers are limited," said Dr Sam Weber, of the Centre for Ecology and Conservation on Exeter's Penryn Campus in Cornwall.

"These birds are concentrated at Ascension Island during the breeding season, and the intensity of their foraging is naturally highest near the island.

"As they use up the most accessible prey located near to the island, they have to travel increasingly long distances to feed, causing the 'halo' to expand outwards.

"Once individuals can't find enough food to break even with the energy they expend finding it, the colony stops growing.

"Human impacts such as fisheries can interfere with this natural balance and have negative effects on populations of marine top predators like seabirds, even if they don't directly harm the birds.

"What was particularly surprising is the large scale of the footprint we found.

"It shows that Marine Protected Areas may need to be very large because some predators rely on prey stocks across a huge area."

The pattern of prey depletion revealed by the study is known as "Ashmole's halo", after British ornithologist Philip Ashmole, who first proposed it about 60 years ago after a visit to Ascension Island.

For the study, the researchers counted flying fish, tracked seabirds' foraging trips and examined their regurgitated food.

The nesting seabird species on Ascension that prey on flying fish include frigatebirds, masked boobies and brown boobies.

Credit: 
University of Exeter

Nanomaterials shape and form influences their ability to cross the blood brain barrier

Nanomaterials found in consumer and health-care products can pass from the bloodstream to the brain side of a blood-brain barrier model with varying ease depending on their shape - creating potential neurological impacts that could be both positive and negative, a new study reveals.

Scientists found that metal-based nanomaterials such as silver and zinc oxide can cross an in vitro model of the 'blood brain barrier' (BBB) as both particles and dissolved ions - adversely affecting the health of astrocyte cells, which control neurological responses.

But the researchers also believe that their discovery will help to design safer nanomaterials and could open up new ways of targeting hard-to-reach locations when treating brain disease.

Publishing its findings today in PNAS, an international team of researchers discovered that the physiochemical properties of metallic nanomaterials influence how effective they are at penetrating the in vitro model of the blood brain barrier and their potential levels of toxicity in the brain.

Higher concentration of certain shapes of silver nanomaterials and zinc oxide may impair cell growth and cause increased permeability of the BBB, which can lead to the BBB allowing easier brain access to these compounds.

The BBB plays a vital role in brain health by restricting the passage of various chemical substances and foreign molecules into the brain from surrounding blood vessels.

Impaired BBB integrity compromises the health of the central nervous system and increased permeability to foreign substances may eventually cause damage to the brain (neurotoxicity).

Study co-author Iseult Lynch, Professor of Environmental Nanosciences at the University of Birmingham, commented: "We found that silver and zinc oxide nanomaterials, which are widely used in various daily consumer and health-care products, passed through our in vitro BBB model, in the form of both particles and dissolved ions.

"Variation in shape, size and chemical composition can dramatically influence nanomaterials penetration through the (in vitro) blood brain barrier. This is of paramount importance for tailored medical application of nanomaterials - for example targeted delivery systems, bioimaging and assessing possible risks associated with each type of metallic nanomaterial."

The BBB is a physical barrier composed of a tightly packed layer of endothelial cells surrounding the brain which separates the blood from the cerebrospinal fluid allowing the transfer of oxygen and essential nutrients but preventing the access of most molecules.

Recent studies found nanomaterials such as zinc oxide can accumulate on the brain side of the in vitro BBB in altered states which can affect neurological activity and brain health. Inhaled, ingested, and dermally-applied nanomaterials can reach the blood stream and a small fraction of these may cross the BBB - impacting on the central nervous system.

The researchers synthesised a library of metallic nanomaterials with different particle compositions, sizes, and shapes - evaluating their ability to penetrate the BBB using an in vitro BBB model, followed by assessment of their behaviour and fate in and beyond the model BBB.

Co-author Zhiling Guo, a Research Fellow at the University of Birmingham, commented: ""Understanding these materials' behaviour once past the blood brain barrier is vital for evaluating the neurological effects arising from their unintentional entry into the brain. Neurotoxicity potential is greater in some materials than others, due to the different ways their shapes allow them to move and be transported."

The research team tested varied sizes of cerium oxide and iron oxide, along with zinc oxide and four different shapes of silver - spherical (Ag NS), disc-like (Ag ND), rod-shaped (Ag NR) and nanowires (Ag NW).

Zinc oxide slipped through the in vitro BBB with the greatest ease. The researchers found spherical and disc-like silver nanomaterials underwent different dissolution regimes - gradually transforming to silver-sulfur compounds within the BBB, creating 'easier' entry pathways.

Zinc oxide is used as a bulking agent and a colorant. In over-the-counter drug products, it is used as a skin protectant and a sunscreen - reflecting and scattering UV radiation to help reduce or prevent sunburn and premature aging of the skin. Silver is used in cosmetic and skincare products such as anti-aging creams.

Credit: 
University of Birmingham