Tech

Artificial pancreas system upgraded with AI algorithm

image: Fully automated pancreas system using AI: AI algorithm used to fully automate insulin injection by adding a pharmacological concept to reinforcement learning

Image: 
POSTECH

Diabetes is on the rise worldwide. It is a permanent condition that requires care over a life time. To help manage it, an artificial pancreas system, which automatically measures blood sugar levels to infuse the appropriate amount of insulin into the blood, has now become smarter thanks to AI learning.

A research team, led by Professor Sung-Min Park and Ph.D. candidate Seunghyun Lee and M.S. candidate Jiwon Kim of POSTECH's Department of Convergence IT Engineering and Electrical Engineering, has newly developed a reinforcement learning (RL) based AI algorithm that calculates the amount of insulin needed for a diabetic patient and injects it automatically. These findings were published as a feature article in the latest issue of IEEE Journal of Biomedical and Health Informatics, an international journal on medical information science.

Patients with type 1 diabetes must inject insulin daily. One must check the amount of carbohydrates in the food ingested each time, calculate the proper amount of insulin, then inject the correct dosage before each meal. Though artificial pancreas systems on the market help with this process, there is still the hassle of having to input the meal intake in advance each time.

To eliminate this inconvenience, the research team added a pharmacological concept to reinforcement learning, widely known as the algorithm of AlphaGo. This method of AI algorithm achieved a mean glucose of 124.72 mg/dL and percentage time in the normal range of 89.56%. Even without inputting the meal intake, the policy showed performance comparable to that of conventional artificial pancreas.

"The fully automated artificial pancreas is like autonomous driving for the medical industry," explained Professor Sung-Min Park. "The newly developed AI algorithm enables fully automated blood sugar control without the hassle of inputting meal or exercise information." He added, "We expect this algorithm to be extended to other drug-based treatments."

Credit: 
Pohang University of Science & Technology (POSTECH)

Long-term exposure to low levels of air pollution increases risk of heart and lung disease

DALLAS, Feb. 22, 2021 -- Exposure to what is considered low levels of air pollution over a long period of time can increase the risk of heart attack, stroke, atrial fibrillation and pneumonia among people ages 65 and older, according to new research published today in the American Heart Association's flagship journal Circulation.

Air pollution can cause harm to the cardiovascular and respiratory systems due to its effect on inflammation in the heart and throughout the body. Newer studies on the impact of air pollution on health are focused on understanding the potential harm caused by long-term exposure and are researching the effects of multiple air pollutants simultaneously. Research on air pollution is critical to informing recommendations for national environmental and health guidelines.

"People should be conscious of the air quality in the region where they live to avoid harmful exposure over long periods of time, if possible," said Mahdieh Danesh Yazdi, Pharm.D., M.P.H., Ph.D., a post-doctoral research fellow at the Harvard T.H. Chan School of Public Health and lead author of the study. "Since our study found harmful effects at levels below current U.S. standards, air pollution should be considered as a risk factor for cardiovascular and respiratory disease by clinicians, and policy makers should reconsider current standards for air pollutants."

Researchers examined hospitalization records for more than 63 million Medicare enrollees in the contiguous Unites States from 2000 to 2016 to assess how long-term exposure to air pollution impacts hospital admissions for specific cardiovascular and respiratory issues. The study measured three components of air pollution: fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3). Using hundreds of predictors, including meteorological values, satellite measurements and land use to estimate daily levels of pollutants, researchers calculated the study participants' exposure to the pollutants based upon their residential zip code. Additional analysis included the impact of the average yearly amounts of each of the pollutants on hospitalization rates for non-fatal heart attacks, ischemic strokes, atrial fibrillation and flutter, and pneumonia.

Statistical analyses found thousands of hospital admissions were attributable to air pollution per year. Specifically:

The risks for heart attacks, strokes, atrial fibrillation and flutter, and pneumonia were associated with long-term exposure to particulate matter.

Data also showed there were surges in hospital admissions for all of the health outcomes studied with each additional unit of increase in particulate matter. Specifically, stroke rates increased by 2,536 for each additional ug/m3 (micrograms per cubic meter of air) increase in fine particulate matter each year.

There was an increased risk of stroke and atrial fibrillation associated with long-term exposure to nitrogen dioxide.

Pneumonia was the only health outcome in the study that seemed impacted by long-term exposure to ozone; however, researchers note there are currently no national guidelines denoting safe or unsafe long-term ozone levels.

"When we restricted our analyses to individuals who were only exposed to lower concentrations of air pollution, we still found increased risk of hospital admissions with all of the studied outcomes, even at concentration levels below current national standards," added Danesh Yazdi. "More than half of the study population is exposed to low levels of these pollutants, according to U.S. benchmarks, therefore, the long-term health impact of these pollutants should be a serious concern for all, including policymakers, clinicians and patients."

The researchers further stratified the analyses to calculate the cardiovascular and respiratory risks associated with each of the pollutants among patient subgroups including gender, race or ethnicity, age and socioeconomic factors, detailed in the study.

The causality in the study could only be interpreted and not proven definitively due to the limitations of the data available, which may have not included other known CVD risk factors. In addition, coding errors can occur in the Medicare database, which would impact the analyses.

Credit: 
American Heart Association

Cancer cell vulnerability points to potential treatment path for aggressive disease

image: Image of a triple negative breast cancer cell undergoing abnormal division after inhibition of KIF18A (red = microtubules; green = chromosomes; yellow = spindle poles).

Image: 
Cindy Fonseca, M.S., Stumpff Lab, UVM Larner College of Medicine

Unravelling the unique characteristics of cancer cells and finding less-harmful ways to stop their growth have long been a focus for cancer researchers worldwide. New findings, reported in Nature Communications, describe the discovery of a unique dependence of cancer cells on a particular protein, which could lead to desperately needed treatment for hard-to-treat cancers.

The publication caps off a series of groundbreaking studies appearing in Nature journals over the last month by members of a powerful international research collaboration.

Lead author and University of Vermont (UVM) Cancer Center researcher Jason Stumpff, Ph.D., has spent over two decades studying how cells divide and how mistakes in this process contribute to diseases, such as cancer. His recent work has enhanced understanding of the role of a protein called KIF18A in driving cell division. In these new studies, Stumpff's lab demonstrates that cancer cells, with the type of abnormalities seen in aggressive tumors, are more dependent on KIF18A for growth than normal cells. This vulnerability in the cancer cells could be a potential target for interrupting cancer cell growth, as the researchers demonstrated in triple negative breast cancer and colorectal cancer cells.

These findings mark a milestone step in a long research journey that began with support from an American Cancer Society Institutional Research Grant pilot award through the University of Vermont Cancer Center, and then led to Susan G. Komen and National Institutes of Health (NIH) funding. Stumpff, an associate professor of molecular physiology and biophysics at UVM's Larner College of Medicine, decided to publish his team's findings early, through an open access preprint. This led to an international collaboration with teams at the University of Tel Aviv, Israel, and Boston University School of Medicine. Each team was investigating genes required for growth by tumor cells containing abnormal numbers of chromosomes (the thread-like structures that carry a cell's genetic information) to identify novel therapeutic targets.

Stumpff is an expert in the mechanical control of cell division and the aspects of this process that contribute to the development of conditions like cancer. His colleagues at the University of Tel Aviv were studying aneuploidy - which occurs when one or more chromosomes are added or deleted after cell division - and partners at Boston University were focused on whole genome duplication, where a complete duplicate set of chromosomes is found in a daughter cell after division.

The role of KIF18A proved important in each team's work and contributed to a clearer, larger picture of its role and importance in interrupting the growth of abnormal tumor cells. Critical to the groups' series of discoveries was the early sharing of knowledge and unpublished data, as well as collective troubleshooting of questions and verifying findings. Their efforts yielded strong results - three publications across Nature and Nature Communications reporting breakthrough findings that could contribute to more targeted and less harmful drug treatments for some cancers.

A confluence of openly sharing data, engaging clinical experts and cancer patients, and harnessing a collaborative approach were key components of the success of this research, notes Stumpff.

"The collective impact of this research collaboration exemplifies the importance of sharing data and enhancing rigor of scientific studies to move fundamental science discovery effectively toward important progress in the fight against cancer," says Stumpff. "This work has the potential to improve approaches for patient treatment in the future - and we are excited to keep it moving."

Credit: 
Larner College of Medicine at the University of Vermont

New study on the forecasting of extreme rainfall events in Mediterranean countries

image: (a) Orography of studied area, (b) Intensity of extreme daily precipitation across the domain.

Image: 
Mastrantonas et al, 2020

Extreme rainfall has devastating consequences for societies and economies. Locations around the Mediterranean are frequently affected by such events, leading to landslides and floods. "It is, however, extremely challenging to forecast many days in advance when and where exactly heavy rainfall will occur. Thus, researchers strive to develop new tools to better predict extreme weather phenomena allowing for early warnings and adequate mitigation strategies", explains first author Nikolaos Mastrantonas, who has carried out the study as a PhD student within the EU-funded research project CAFE.

Learning from the past to shine a light on the future

The researchers analysed weather data from 1979 to today, grouping the daily weather into nine patterns of distinct atmospheric characteristics over the Mediterranean. The study shows that there is a strong relation between these nine patterns and the location of the extreme weather event. "We can now use the data to come up with a model that will help to better predict extreme rain in the Mediterranean", says Prof. Jörg Matschullat of TU Bergakademie Freiberg. The geoecologist supervises Nikolaos Mastrantonas' PhD and adds: "When it comes to climate, the Mediterranean Sea is a particularly interesting region as it is surrounded by large continents and mountain ranges. The regional climate of the area is also dependent on large-scale patterns over the Atlantic Ocean, the Balkans and the Black Sea".

Mountains create links across distant locations

According to the study, the nine patterns are associated with unstable low-pressure systems such as cut off lows and troughs, or with stable anticyclonic conditions, such as ridges, extending over hundreds of kilometres. "Such conditions lead to extreme precipitation events at different subregions of the Mediterranean", says Nikolaos Mastrantonas. To name one example: A low-pressure system centred over the Bay of Biscay increases the probability of extreme rainfall over mountainous and coastal regions in Spain, Morocco, Italy, and even in the West Balkans more than sixfold.

The team also found that mountains create a strong link between distant areas. In Central Western Italy, for example, three in every ten extremes happen simultaneously with extremes over Montenegro and Croatia, although almost 500 kilometres lie between these two areas. "This is a result of the Apennines that block a substantial part of the air flow, and frequently force the moisture to precipitate in the western part of Italy, and on the same day over Croatia", the young researcher explains.

New information helps to further develop forecasting models

According to the scientists, current weather forecasting models can already provide reliable information about large-scale weather variability up to three weeks in advance, a timeframe known as sub-seasonal scale. "As the next step of this work, we will quantify how reliable the state-of-the-art weather forecasting models are in predicting the identified nine patterns. Our intention is to incorporate such information into new forecasting products informing about extreme weather over the Mediterranean at sub-seasonal scales", Prof Jörg Matschullat clarifies.

Credit: 
University of Freiberg / TU Bergakademie Freiberg

Music is a must for young drivers, according to Ben-Gurion U. researchers

BEER-SHEVA, Israel...February 22, 2021 - A new study by Ben-Gurion University of the Negev (BGU) researchers resulted in a nearly unanimous response: driving is "absolutely impossible" without music.

"To young drivers 18-29, music in the car isn't just entertainment, it's part of their autosphere whether they're alone or not," says Prof. Warren Brodsky, director of the BGU Music Science Lab in the Department of the Arts. "They are so used to constant stimulation and absorbing great amounts of information throughout the day, that they don't question how the type of tunes they play might affect concentration, induce aggressive behavior, or cause them to miscalculate risky situations."

"As the fastest growing research university in Israel, BGU provides studies that give us great insight into the causes and effects of human behavior," says Doug Seserman, chief executive officer, American Associates, Ben-Gurion University of the Negev. "Music is an essential, universal language which we can all appreciate. Undoubtedly, though, the concerns that stem from the results of this study are worth considering."

According to the study published in APA's journal Psychomusicology: Music, Mind and Brain, 140 young adults responded to a 67-item questionnaire exploring how drivers engage with music while driving. Ironically, most of the respondents (80%) claimed it was not only "difficult," but sometimes "near impossible" to concentrate on traffic and road conditions without music playing. And once they arrive, most of the respondents will stay in their car at their destination until the song ends.

Almost all drivers (97%), report listening to many short songs on long trips, and 65% played "fast-paced" music while driving to work. More than two-thirds (76%) play more "liberating" dance songs when on vacation or a holiday outing, 90% play "upbeat" dance music on the way to a party.

"These young drivers believe that more stimulus actually helps their driving abilities," Brodsky says. "This could become more of an issue in the future, when it becomes critical to disengage from music and assume control in an autonomous vehicle."

Credit: 
American Associates, Ben-Gurion University of the Negev

Colorful connection found in coral's ability to survive higher temperatures

image: Acropora Tenuis is a common coral around Okinawa. It has three distinct color morphs - brown, yellow-green, and purple. Photo credit: Daisuke Kezuka.

Image: 
Daisuke Kezuka.

Coral within the family Acropora are fast growers and thus important for reef growth, island formation, and coastal protection but, due to global environmental pressures, are in decline

A species within this family has three different color morphs - brown, yellow-green, and purple, which appear to respond differently to high temperatures

Researchers looked at the different proteins expressed by the different color morphs, to see whether these were related to their resilience to a changing environment

The green variant was found to maintain high levels of green fluorescent proteins during summer heatwaves and was less likely to bleach than the other two morphs

This suggest that resistance to thermal stress is influenced by a coral's underlying genetics, which, coincidentally, also lead to the different color morphs

Anyone who visits the Great Barrier Reef in Australia, Southeast Asia's coral triangle, or the reefs of Central America, will surely speak of how stunning and vibrant these environments are. Indeed, coral reefs are believed to house more biodiversity than any other ecosystem on the planet, with the coral providing protection and shelter for hundreds of species of fish and crustaceans.

But these ecosystems are under threat. Global pressures, such as rising ocean temperatures, are causing coral to turn ghostly white, a phenomenon called bleaching, and die. One family of coral - Acropora - seems to be particularly susceptible and its numbers are expected to decline in the future. This is especially concerning as these corals are fast growers and thus structurally important for the reefs. Researchers took a close look at Acropora tenuis, a species within this family, which is known to have three color morphs - brown, purple, and yellow-green. Their new study, published in G3: Genes|Genomes|Genetics, indicates that these color morphs speak of the coral's resilience to high temperatures, and found the underlying genetic factors that seem to be responsible for this.

"Coral reefs are very beautiful and have a whole variety of different colors," said Professor Noriyuki Satoh, who leads the Marine Genomics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST). "When we started looking at the different color morphs of A. tenuis we noticed that some morphs bleach more readily and die more frequently than others. During the summer of 2017, we saw that many of the brown and purple morphs bleached, with the brown morph dying at a higher rate, but the yellow-green morph seemed to show resilience to the summer temperatures."

The Unit worked with several individuals from the Okinawan community, including Koji Kinjo from Sea Seed, who directs a private aquarium where the different color morphs have been grown for around 20 years. This aquarium was instrumental for the researchers to observe the coral over the last two decades and to determine how resilient this species is to climate change, and the underlying causes.

In 2020, Professor Satoh and his collaborators decoded the genome of A. tenuis, which provided them with the toolkit for this research, allowing them to look at the genetic foundations that cause the different morphs.

"At first, we thought the difference in resilience might be linked to the corals housing different kinds of symbiotic algae, which photosynthesize for the coral and thus provide the coral with energy. Previous research has shown that some symbiotic algae are more resilient to climate change than others. But when we looked at the three-color morphs, we found that they all housed very similar algae," explained Professor Satoh.

With this in mind, the research group instead focused the expression levels of the proteins that are thought responsible for the coral's color. There are four different groups of these proteins - green fluorescent proteins (GFP), red fluorescent proteins (RFP), cyan fluorescent proteins (CFP), and non-fluorescent blue/purple chromoproteins (ChrP). The researchers looked at the gene expression levels of five types of GFP, three types of RFP, two types of CFP and seven types of ChrP in several coral in each morph.

As can be expected, they found that the green morph expressed high quantities of FGPs, but the researchers found that two of the five were expressed at particularly high levels. More surprising was that these two proteins were expressed at even higher levels during summer, which indicates that they help the coral to withstand warmer temperatures. Specifically, these proteins seemed to protect the symbiotic algae, which meant that this color morph experienced very little bleaching.

In contrast, the corals with the brown color morph, which express much lower quantities of these two proteins, bleached by around 50% over July and August 2017.

The purple morph was different again. It expressed very little of any of the fluorescent proteins, but much higher levels of Chrp. The corals with this color morph bleached at levels in between that seen in corals with the brown morph and that seen in corals with the green morph.

"Coral reefs are so important for biodiversity," concluded Professor Satoh. "Finding out more about them will help us to conserve them. Right now, we cannot help so much about the coral reef situation but gathering this fundamental knowledge, understanding how corals work, is very important for long-term conservation."

This research has showcased that the color morphology of coral is very much involved in its response to high temperatures. The underlying reasons behind this, such as exactly how the green fluorescent protein protects the symbiosis, will no doubt be the topic of research in the future.

Credit: 
Okinawa Institute of Science and Technology (OIST) Graduate University

Psychological 'signature' for the extremist mind uncovered by Cambridge researchers

Researchers have mapped an underlying "psychological signature" for people who are predisposed to holding extreme social, political or religious attitudes, and support violence in the name of ideology.

A new study suggests that a particular mix of personality traits and unconscious cognition - the ways our brains take in basic information - is a strong predictor for extremist views across a range of beliefs, including nationalism and religious fervour.

These mental characteristics include poorer working memory and slower "perceptual strategies" - the unconscious processing of changing stimuli, such as shape and colour - as well as tendencies towards impulsivity and sensation seeking.

This combination of cognitive and emotional attributes predicts the endorsement of violence in support of a person's ideological "group", according to findings published today in Philosophical Transactions of the Royal Society B.

The study also maps the psychological signatures that underpin fierce political conservatism, as well as "dogmatism": people who have a fixed worldview and are resistant to evidence.

Psychologists found that conservatism is linked to cognitive "caution": slow-and-accurate unconscious decision-making, compared to the fast-and-imprecise "perceptual strategies" found in more liberal minds.

Brains of more dogmatic people are slower to process perceptual evidence, but they are more impulsive personality-wise. The mental signature for extremism across the board is a blend of conservative and dogmatic psychologies.

Researchers from the University of Cambridge say that, while still in early stages, this research could help to better identify and support people most vulnerable to radicalisation across the political and religious spectrum.

Approaches to radicalisation policy mainly rely on basic demographic information such as age, race and gender. By adding cognitive and personality assessments, the psychologists created a statistical model that is between four and fifteen times more powerful at predicting ideological worldviews than demographics alone.

"I'm interested in the role that hidden cognitive functions play in sculpting ideological thinking," said Dr Leor Zmigrod, lead author from Cambridge's Department of Psychology.

"Many people will know those in their communities who have become radicalised or adopted increasingly extreme political views, whether on the left or right. We want to know why particular individuals are more susceptible."

"By examining 'hot' emotional cognition alongside the 'cold' unconscious cognition of basic information processing we can see a psychological signature for those at risk of engaging with an ideology in an extreme way," Zmigrod said.

"Subtle difficulties with complex mental processing may subconsciously push people towards extreme doctrines that provide clearer, more defined explanations of the world, making them susceptible to toxic forms of dogmatic and authoritarian ideologies."

The research is published as part of a special issue of the Royal Society journal dedicated to "the political brain" compiled and co-edited by Zmigrod.

It is the latest in a series of studies by Zmigrod investigating the relationship between ideology and cognition. She has previously published findings on links between cognitive "inflexibility" and religious extremism, willingness to self-sacrifice for a cause, and a vote for Brexit.

A 2019 study by Zmigrod showed that this cognitive inflexibility is found in those with extreme attitudes on both the far right and far left of the political divide.

The latest research builds on work from Stanford University in which hundreds of study participants performed 37 different cognitive tasks and took 22 different personality surveys in 2016 and 2017.

Zmigrod and colleagues, including Cambridge psychologist Professor Trevor Robbins, conducted a series of follow-up tests in 2018 on 334 of the original participants, using a further 16 surveys to determine attitudes and strength of feeling towards various ideologies.

Political conservatism and nationalism was related to "caution" in unconscious decision-making, as well as "temporal discounting" - when rewards are seen to lose value if delayed - and slightly reduced strategic information processing in the cognitive domain.

Personality traits for conservatism and nationalism included greater goal-directedness, impulsivity and reward sensitivity, and reduced social risk-taking. Demographics alone had a predictive power of less than 8% for these ideologies, but adding the psychological signature boosted it to 32.5%.

Dogmatism was linked to reduced speed of perceptual "evidence accumulation", and reduced social risk-taking and agreeableness but heightened impulsivity and ethical risk-taking in the personality domain. Religiosity was cognitively similar to conservatism, but with higher levels of agreeableness and "risk perception".

Adding the psychological signatures to demographics increased the predictive power for dogmatism from 1.53% to 23.6%, and religiosity from 2.9% to 23.4%.

Across all ideologies investigated by the researchers, people who endorsed "extreme pro-group action", including ideologically-motivated violence against others, had a surprisingly consistent psychological profile.

The extremist mind - a mixture of conservative and dogmatic psychological signatures - is cognitively cautious, slower at perceptual processing and has a weaker working memory. This is combined with impulsive personality traits that seek sensation and risky experiences.

Added Zmigrod: "There appear to be hidden similarities in the minds of those most willing to take extreme measures to support their ideological doctrines. Understanding this could help us to support those individuals vulnerable to extremism, and foster social understanding across ideological divides."

Credit: 
University of Cambridge

Mental health, substance use, suicidal ideation during COVID-19 pandemic

What The Study Did: This survey study compared patterns of mental health concerns, substance use and suicidal ideation during June and September of the COVID-19 pandemic and examined at-risk demographic groups.

Authors: Mark É. Czeisler, A.B., Monash University in Clayton, Victoria, Australia, is the corresponding author.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamanetworkopen.2020.37665)

Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.

Credit: 
JAMA Network

Study reveals energy sources supporting coral reef predators

image: Plankton-feeding fishes often dominate the fish assemblage on oceanic coral reefs.

Image: 
Dr Christina Skinner

Since Charles Darwin's day, the abundance of life on coral reefs has been puzzling, given that most oceanic surface waters in the tropics are low in nutrients and unproductive.

But now research, led by Newcastle University and published in in the journal Science Advances, has confirmed that the food web of a coral reef in the Maldives relies heavily on what comes in from the open ocean.

The team found that these offshore resources contribute to more than 70% of reef predator diets, the rest being derived from reef associated sources.

Led by Dr Christina Skinner, now based at the Hong Kong University of Science and Technology, the researchers included collaborators from Woods Hole Oceanographic Institution (USA), Banyan Tree Marine Lab (Maldives) and the University of Bristol (UK).

The team used advanced stable isotope techniques to show that four species of grouper near the top of the food web all rely on offshore resources; this didn't change between species and was the case on the outside of an atoll and also inside the lagoon, suggesting that the oceanic subsidy is system-wide.

The scientists believe that this offshore energy may be entering the food web through lower-level plankton feeding fish that the groupers are then feeding on. This is likely to be supported by inputs of nutrient-rich deep water, which are little understood.

The findings help explain how coral reefs maintain high productivity in apparently nutrient-poor tropical settings, but also emphasise their susceptibility to future fluctuations of ocean productivity which have been predicted in many climate-change models.

Dr Skinner said: "The study provides key insights into the nutrition of coral reef ecosystems, especially their dependence on offshore production. Detailed knowledge of food web dynamics is crucial to understand the impacts of anthropogenic and climate-induced change in marine ecosystems.

"The results force us to reconsider how we view coral reefs, and they highlight the extent of the connectivity with the surrounding ocean. If these groupers are mostly reliant on offshore energy to support their feeding, then maybe they won't be so impacted by the loss of live coral, as many fishery studies have predicted; they may be more resilient.

"On the other hand though, some studies have predicted that ocean production will decline in the future from climate change. If that is the case, and these groupers are reliant on that open ocean energy, they will be impacted by those changes."

Study co-author, Professor Nick Polunin, from Newcastle University's School of Natural and Environmental Sciences, added: "Coral reefs are really suffering across the tropics from climate-related disturbances, particularly oceanic warming.

"In spite of its tiny area, this ecosystem is a massive contributor to marine biodiversity and this study highlights how little we know about the food web sources sustaining that exceptional wealth of species it sustains."

Credit: 
Newcastle University

Turbocharging the killing power of immune cells against cancer

image: Princess Margaret Senior Scientist Dr. Daniel De Carvalho and team transformed immune killer T-cells into "super soldiers" by boosting their ability to kill cancer cells.

Image: 
UHN StRIDe Team

Creating "super soldiers" of specific white blood cells to boost an anti-tumour response has been shown in a series of elegant experiments by Princess Margaret researchers.

Research led by Ph.D. candidate Helen Loo Yau, Post-doctoral fellow Dr. Emma Bell and Senior Scientist Dr. Daniel D. De Carvalho describes a DNA modifying epigenetic therapy that can transform immune killer T-cells into "super soldiers" by boosting their ability to kill cancer cells.

Their findings could potentially enhance immunotherapy, a new paradigm in cancer treatment currently effective for a minority of cancer patients. Some patients respond well to immunotherapy, with their tumours drastically shrinking in size, but others respond only partially or not at all. Clinicians and scientists around the world are working to understand why immunotherapy only helps some patients.

The research is published in Molecular Cell, Feb 19, 2021.

"Our goal for the future is to use this strategy combined with other immunotherapies to enhance anti-tumor immunity," says Dr. De Carvalho, Associate Professor, Department of Medical Biophysics, University of Toronto. "We imagine a future clinical trial where we collect T-cells from the patient for treatment with epigenetic therapy in the lab. This could expand the army of cancer killing cells effectively creating an 'army of super soldiers'. These cells can then be re-infused into the patient, to potentially enhance their built-in immune response to the tumour."

Dr. De Carvalho's lab first observed an increase in T-cell infiltration in mouse tumours treated with epigenetic therapy. When they removed the T-cells, the therapy stopped working, suggesting that the T-cells were contributing to the treatment success.

Intrigued by this finding, the researchers set out to apply this epigenetic DNA modifying therapy directly to T-cells in the laboratory. They isolated T-cells from healthy human donors, as well as from patients with melanoma, breast, ovarian and colorectal cancer. Their results proved that the epigenetic therapy enhanced the T-cells cancer killing ability.

Epigenetics works through addition or removal of chemical 'tags' to DNA. Much like detachable post-it notes, these tags help to specify which genes can be turned on or off. Simply, you can change the function of a cell using drugs that change these epigenetic tags.

In essence, the researchers found that an available chemotherapy drug removed specific epigenetic tags that were keeping genes off in a subset of key genes in T-cells. Removing these tags turned these genes back on, and acted to "turbocharge" the T-cells to become more effective killing machines.

The researchers discovered two specific genes that were activated by the epigenetic therapy and which were responsible for the T-cells to become better at killing the cancer cells.

High-dimensional, single-cell mass cytometry analyses - a next generation technology, which profiles single cells and drug response - revealed an increase in the numbers of granzyme and perforin proteins, which T-cells use to carry out their killing function. When unleashed, like a lethal swat team, perforins are able to punch holes in a cell's membrane to allow granzymes to enter into an infected or cancerous cell to finish the job of killing it.

"The T-cells became sort of 'super soldiers', with highly activated molecules - with bigger and better weapons - to destroy the cancer cells," explains Dr. De Carvalho, adding the paper describes in detail the molecular mechanism of how the process occurs.

A key novelty in the paper is using epigenetic therapy to influence the behaviour of genes in the T-cell. Most research on epigenetic therapies focuses on their effect on cancer cells. However, this paper looks at how our immune cells respond, giving insight into how we can boost the anti-tumour activity of our immune systems.

The emerging field of epigenetic therapy seeks to influence genetic activity without actually modifying the sequence of DNA - making this an exciting therapeutic avenue of cancer research.

"Genetic manipulation of immune cells for treatment is not trivial experimentally. It's even more complicated and expensive in clinical implementation," says Dr. De Carvalho, "Our work sets the stage for clinical investigations combining epigenetics with other immunotherapy strategies."

Credit: 
University Health Network

Artificial intelligence predicts nonlinear ultrafast dynamics in optics

Researchers at Tampere University have successfully used artificial intelligence to predict nonlinear dynamics that take place when ultrashort light pulses interact with matter. This novel solution can be used for efficient and fast numerical modelling, for example, in imaging, manufacturing and surgery. The findings were published in the prestigious Nature Machine Intelligence journal.

Artificial intelligence can distinguish different types of laser pulse propagation, just as it recognizes subtle differences of expression in facial recognition. The newly found solution can make it simpler to design experiments in fundamental research and will allow algorithms to be embedded in the next generation of laser systems to ensure real-time optimization. This can be utilised for example in manufacturing and surgery where the pulse properties are perturbed by a target environment.

Nonlinear ultrafast light-matter interactions are something that researchers have struggled to understand for decades. The field of study is of vital importance in many areas of research, ranging from the use of spectroscopic tools in drug development to the precision machining of technological materials and remote sensing to high-resolution imaging.

Neural networks can be trained to recognize patterns

When a high-power ultrashort pulse of light interacts with a glass optical fibre, a range of highly nonlinear interactions take place that cause complex changes in both the temporal and spectral (color) properties of the injected light. Up to now, the study of these nonlinear and multidimensional interactions has been based on nonlinear Schro?dinger equation, a slow and computationally demanding method that has limited dramatically the use of numerical techniques to design or optimize experiments in real-time.

"This problem has now been solved by using artificial intelligence. Our team has been able to train a neural network to recognize the patterns inherent in such complex evolution. Significantly, once trained, the network is also able to predict nonlinear evolution for a previously unknown scenario, and can do so essentially instantaneously," says professor Goëry Genty, the leader of the research group at Tampere University and the Director of the national Flagship for Photonics Research and Innovation.

This research uses a specialized architecture known as the 'recurrent neural network' that possesses an internal memory. Such a network can not only recognize specific patterns associated with nonlinear dynamics, but it can also learn how such patterns evolve in both the temporal and spectral domains over an extended distance.

The neural network can predict an evolution in milliseconds. The novel solution will lead to more efficient and faster numerical modelling of all systems where nonlinearity influences propagation, improving the design of devices used in telecommunications, manufacturing, and imaging.

New applications available in photonics

The study reports two cases of highly significant interest in photonics: extreme pulse compression and ultrabroadband laser source development.

"The approach using a neural network with internal memory allows us to bypass the conventional approach of solving an underlying mathematical model, which is very time consuming and requires sometimes prohibitive memory resources" explains Genty.

With the rapid growth of machine learning applications in all fields of science, Genty anticipates that neural networks will very soon become an important and standard tool for analyzing complex nonlinear dynamics, for optimizing the generation of broadband sources and frequency combs, as well as for designing ultrafast optics experiments.

Credit: 
Tampere University

Amination strategy improves efficiency of CO2 electrocatalytic reduction

image: (a) Schematic of the synthesis process for Ni-N4/C-NH2, (b) Schematic of a gas-fed flow cell configuration, (c) electrocatalytic activity of Ni-N4/C-NH2 in flow cell

Image: 
CHEN Zhipeng

Carbon dioxide (CO2) electrocatalytic reduction driven by renewable electricity can solve the problem of excessive CO2 emissions. Since CO2 is thermodynamically stable, efficient catalysts are needed to reduce the energy consumption in the process.

The single-atom catalysts immobilized on nitrogen-doped carbon supports (M-N/C) have been widely used for CO2 electrocatalytic reduction reaction due to their high atom utilization efficiency.

Recently, a research team led by Prof. LIU Licheng from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) proposed a two-step amination strategy to regulate the electronic structure of M-N/C catalysts (M=Ni, Fe, Zn) and enhance the intrinsic activity of CO2 electrocatalytic reduction.

In the strategy, the M-N4/C was aminated by annealing with carbamide in NH3, impregnation and hydrothermal reaction in ammonia water to synthesize final M-N4/C-NH2 catalysts.

Although M-N/C catalysts are widely used, they demonstrate a poor reaction current density, which is much worse than the current density of industrial level.

In the study, the researchers used gas diffusion electrodes to create a reactive three-phase interface in a flow electrolyzer to increase the current density for CO production to industrial application level.

The aminated Ni single-atom catalyst demonstrated a remarkable current density of >400 mA cm-2 with a nearly 90% Faraday efficiency for CO production, which is 1.8 times of that before amination.

Credit: 
Chinese Academy of Sciences Headquarters

Oregon experiments find that electrical sparks are possible on Mars

EUGENE, Ore. -- Feb. 19, 2021 -- Friction caused by dry Martian dust particles making contact with each other may produce electrical discharge at the surface and in the planet's atmosphere, according University of Oregon researchers.

However, such sparks are likely to be small and pose little danger to future robotic or human missions to the red planet, they report in a paper published online and scheduled to appear in the March 15 print issue of the journal Icarus.

Viking landers in the 1970s and orbiters since then detected silts, clays, wind-blown bedforms and dust devils on Mars, raising questions about potential electrical activity.

Scientists have sought to determine experimentally if large electrical storms and lightning were possible and whether static electricity generated by particles of the planet's mostly basaltic rock striking vehicles or, eventually, visiting humans in protective gear would pose hazards.

Using volcanic ash as a stand-in for Martian dust, researchers in the lab of UO volcanologist Josef Dufek found that electrical discharges in Martian dust devils and storms are indeed possible. However, the discharges would likely be small given weak electrical fields, close to 20 thousand volts per meter, supported by the Martian atmosphere.

Earth's atmosphere, by comparison, can withstand electrical fields reaching 3 megavolts per meter, producing spectacular thunderous lightning storms common and sometimes deadly in the southeast United States, said Joshua Méndez Harper, a research engineer in the Oregon Center for Volcanology in the Department of Earth Sciences.

"Our experiments, and those of others before us, suggest that on Mars it is easy to get sparks when you agitate sand or dust," Méndez Harper said. "However, it may be difficult, even in large dust storms or within dust devils, to get very large discharges or conventional lightning because the Martian atmosphere is bad at storing charge."

Such anticipated triboelectric or frictional processes are experienced often on Earth by way of socks sliding across carpeting and then touching a doorknob or sticking a balloon on a window after rubbing it on human hair.

Martian dust devils, he said, may appear to sparkle, crackle or faintly glow as they roll across Mars' desiccated landscape but with discharges probably so small that they may not be visible except through detection of their radio waves.

Previous experiments to determine if spark discharges could occur were inconclusive because particles were swirled in a way that put them in contact with the walls of the testing enclosures. Some experiments used particles of materials not found on Mars. These contacts may have led to charging not characteristic of a Martian dust storm.

"We set out to determine whether the sparks observed in previous works were representative of Mars or merely experimental artifacts," Méndez Harper said.

At the UO, Méndez Harper, Dufek and George McDonald, a postdoctoral researcher at Rutgers University, got around the wall-exposure limitation using a vertical glass tube comparable in size to a water bottle measuring some 4 inches in diameter and 8 inches in length.

They created triboelectric charging by colliding particles of basaltic ash from Mexico's Xitle volcanic eruption about 2,000 years ago.

Collisions in the sealed tubes occurred at frictional velocities expected to occur during a light Martian breeze, without the particles touching the outer walls and in a pressurized, atmospheric pressure of 8 millibars of carbon dioxide, similar to that found on the Martin surface.

The Mexican basalt used in the project is similar to Martian basalt, as detected by rovers in the Pathfinder and Mars Exploration Rover missions and the dust analogs developed by NASA's Jet Propulsion Laboratory.

As a comparison, the research team conducted experiments in which the particles were allowed to make contact with surfaces foreign to anticipated conditions on Mars. Sparks occurred in both sets of experiments, but the addition of an artificial wall changed the polarity of the discharges.

"We were interested in pursuing this work because of the number of new missions to Mars and the potential of constraining observations," said Dufek, a professor in the Department of Earth Sciences and director of the Oregon Center for Volcanology. "Quantifying charging and discharging behavior has a bearing on the transport of dust in the atmosphere and has long been studied in relation to modulating chemical reactions, including synthesizing organic compounds."

NASA's Mars mission that landed Feb. 18 includes the Perseverance rover and Ingenuity robotic helicopter.

The low energy of discharge on Mars as indicated by the new experiments means these effects are unlikely to impact mechanical operations, Dufek said.

Nevertheless, Jezero crater, the landing site for Perseverance, seems to regularly experience dust storms in the autumn and winter. That, McDonald said, may provide opportunities for rudimentary observations of electrostatic phenomena.

One of the objectives of the Perseverance mission is to assess past environmental conditions. Evidence for a more substantial atmosphere in the past would have a bearing on the planet's electrical environment and how it has changed over time.

"The big takeaway from this study is that Mars may be an electrically active place, although in ways quite different than the Earth," Dufek said. "The fact that analog Mars dust readily charges up to the point of discharge even when grains did not rub against other surfaces suggests that future colonists may find a world modified by static electricity in subtle ways."

Credit: 
University of Oregon

Northern Hemisphere cold surges result of Arctic and tropical Pacific synergistic effects

image: Left: Frozen waterfall in a rural area west of Beijing, China (photo taken by Fei Zheng on Feb 17); Right: A snow-capped car in Austin, Texas USA (photo taken by Zong-Liang Yang on Feb 15).

Image: 
Fei Zheng/ Zong-Liang Yang

China is just one of many countries in the Northern Hemisphere having what researchers are calling an "extremely cold winter," due in part to both the tropical Pacific and the Arctic, according to an analysis of temperatures from Dec. 1, 2020, to mid-January of 2021. A country-specific case study, the investigation potentially has far-reaching implications for predictions and early warnings to protect against harmful impacts, researchers said.

The results were published online, ahead of print, on Feb. 12 in Advances in Atmospheric Sciences.

"We are trying to explain why the countries in the Northern Hemisphere more frequently encounter the extremely cold events against a global warming background, and we chose the 2020-21 extremely cold winter in China as a case study," said co-first author Fei Zheng, International Center for Climate and Environment Science (ICCES), the Institute of Atmospheric Physics (IAP) at the Chinese Academy of Sciences (CAS).

Since Dec. 1, 2020, the lowest temperatures in 58 cities, including Shanghai and Beijing, either broke or set records. On average, temperatures are at least one to two degrees Celsius below normal across the country, with some areas reporting temperatures as much as four degrees Celsius below average.

According to Zheng, two events thousands of miles from China are responsible: warming in the Arctic and cooling in the tropical Pacific, near the equator. Arctic warming results in melting ice, disrupting surface and ocean temperatures. La Niña, the cool phase of the tropical Pacific's extreme climate cycles, drops ocean temperatures to -5 degrees Celsius and displaces atmospheric and global wind circulation.

"The synergistic effect of the warm Arctic, mostly induced by global warming, and the cold tropical Pacific, caused by La Niña, intensified the intrusions of cold air from polar regions into mid-high latitudes, which further influenced the cold conditions in China during the first half of winter 2020-21," Zheng said. "This synergistic effect can be regarded as a necessary background for triggering the cold surges invading most countries in East Asia and North America."

To forecast the evolution of La Niña in particular, the researchers used the ensemble prediction system developed at IAP, CAS. The system assesses the last 20 years of a selected climate event and offers a prediction of up to a year on how that event might evolve.

"The most recent ensemble forecast suggests that there is at least a 95% chance that La Niña will persist through the 2020-21 winter, with a potential transition to a neutral standing during the spring," Zheng said, noting that there is still some uncertainty when it comes to winter predictions. "People should focus on weather forecasts and the latest predictions for atmospheric circulations to obtain the necessary date information and early warnings. We still need to pay attention to the possible large temperature fluctuations and increased snow and rainfall in China during the late winter."

Researchers plan to further study the synergistic effect of extreme climate events through observation, climate simulation and data assimilation with the ultimate goal of improving seasonal predictions for countries in the Northern Hemisphere.

Credit: 
Institute of Atmospheric Physics, Chinese Academy of Sciences

Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system

video: Video recording of the spontaneous contractions of a lymph vessel during perfusion with MWCNTs. The spontaneous contraction of the vessel wall during perfusion with MWCNTs (1.0 mg/mL) is in synchrony with the flow of black MWCNT nanoparticles. The MWCNTs in the vessel move faster in the front and back of the valve with vessel contraction, and particles flow beyond the valve during dilation. In both cases, the valve was observed to move across the center of the lymph vessel.

Image: 
Copyright © 2021 Elsevier B.V.

Nanoparticles used in drug delivery systems, bioimaging, and regenerative medicine migrate from tissues to lymphatic vessels after entering the body, so it is necessary to clarify the interaction between nanoparticles and lymphatic vessels. Although technology to observe the flow of nanoparticles through lymphatic vessels in vivo has been developed, there has been no method to evaluate the flow of nanoparticles in a more detailed and quantitative manner ex vivo. Thus, research was conducted to develop an ex vivo lymphatic vessel lumen perfusion system to determine how nanoparticles move in lymphatic vessels and how they affect the physiological movement of lymphatic vessels.

Nanoparticles introduced into the body enter the lymphatic vessels, which spontaneously contract and dilate to transport lymph fluid throughout the organism. A research group led by Professor Naoto Saito, Director of the Institute for Biomedical Sciences, and Chika Kuroda, a third-year student at Yamaguchi University Faculty of Medicine and Health Sciences and graduate of the Master's Program at Shinshu University Graduate School of Medicine, have developed a new isolated lymphatic vessel lumen perfusion system that can move carbon nanotubes and other nanoparticles into surgically removed lymphatic vessels to visually evaluate their properties. The group succeeded in developing a novel experimental system to evaluate how nanoparticles move in lymphatic vessels and how they affect the physiological movement of lymphatic vessels. The experimental system developed in this study has made it possible to visually and quantitatively elucidate the interaction between nanoparticles and lymphatic vessels and to evaluate the biological safety of nanoparticles.

This is the first time that an ex vivo perfusion system has been created to assess the effects and kinetics of nanoparticles in lymphatic vessels during spontaneous vessel contraction and expansion. Compared with in vivo examinations, the perfusion system permits higher-resolution and more detailed observation of nanomaterial movements along with associated lymphatic vessel reactions. Furthermore, the new system enables both quantitative and histological assessments of a single lymphatic vessel's physiological reaction to nanomaterials. By using this experimental system to evaluate specific nanoparticles, the physiological and histological effects of the nanoparticles on the lymphatic vessels can be clarified, and the clinical application of nanoparticles can be achieved more safely by evaluating their biological safety in combination with cell and animal experiments.

Nanoparticles are considered to be useful options for drug delivery and cancer imaging. After entering the body, they are known to enter lymphatic vessels and accumulate in lymph nodes, although the precise interactions between nanoparticles and lymphatic vessels remain unclear. The new perfusion system enables detailed examinations, safety, and the elucidation of pharmacokinetics for future clinical nanoparticle applications. In the future, the group plans to examine the effects of various nanoparticles on lymphatic vessels depending on their concentration and time with the aim of applying nanoparticles to medicine. In addition, the research group plans to verify the safety of nanoparticles for clinical applications by combining them with cell and animal experiments. Ultimately, they would like to use this system to clinically apply particles whose safety has been confirmed in a wide range of fields such as DDS and imaging, and to elucidate the effects of nanoparticles on the lymphatic system.

Credit: 
Shinshu University