Earth

Distance wireless charging enhanced by magnetic metamaterials

Wireless charging of mobile devices is possibly one of the most desired technological milestones. Some devices can already be charged wirelessly by placing the mobile device on top of a charging base. The next step, charging devices without the need of taking them out of one's pocket, might be just around the corner.

Map of flow within the Earth's mantle finds the surface moving up and down 'like a yo-yo'

Researchers have compiled the first global set of observations of the movement of the Earth's mantle, the 3000-kilometre-thick layer of hot silicate rocks between the crust and the core, and have found that it looks very different to predictions made by geologists over the past 30 years.

Study shows 4 out of 5 British people are unaware of ocean acidification

A survey of 2,501 members of the public has revealed that just one in five people in Britain are aware of ocean acidification - a consequence of carbon emissions that poses serious risks to sea-life.

Furthermore, just 14% of the sample report that they have even basic knowledge about the subject.

The results of the public survey, which have been published today, 9 May, in the journal Nature Climate Change, are the first detailed assessment of the public's understanding of ocean acidification.

Novel functionalized nanomaterials for CO2 capture

Climate change due to excessive CO2 levels is one of the most serious problems mankind has ever faced. This has resulted in abrupt weather patterns such as flood and drought, which are extremely disruptive and detrimental to life, as we have been witnessing in India in recent years. Mitigating rising CO2 levels is of prime importance. In a new development, scientists at the Tata Institute of Fundamental Research, Mumbai, have developed a novel design of CO2 sorbents that show superior CO2 capture capacity and stability over conventional materials.

In cities, flooding and rainfall extremes to rise as climate changes

Cities face harsher, more concentrated rainfall as climate change not only intensifies storms, but draws them into narrower bands of more intense downpours, UNSW engineers have found. This has major implications for existing stormwater infrastructure, particularly in large cities, which face higher risks of flash flooding.

More than half of streamflow in the upper Colorado River basin originates as groundwater

More than half of the streamflow in the Upper Colorado River Basin originates as groundwater, according to a new U.S. Geological Survey study published today in the journal Water Resources Research.

First single-enzyme method to produce quantum dots revealed

Quantum dots (QDs) are semiconducting nanocrystals prized for their optical and electronic properties. The brilliant, pure colors produced by QDs when stimulated with ultraviolet light are ideal for use in flat screen displays, medical imaging devices, solar panels and LEDs. One obstacle to mass production and widespread use of these wonder particles is the difficulty and expense associated with current chemical manufacturing methods that often requiring heat, high pressure and toxic solvents.

Neutrons tap into magnetism in topological insulators at high temperatures

OAK RIDGE, Tenn., May 9, 2016 - A multi-institutional team of researchers has discovered novel magnetic behavior on the surface of a specialized material that holds promise for smaller, more efficient devices and other advanced technology.

Shellfish response to ocean acidification depends on other stressors

A study of California mussels, a key species in the rocky intertidal ecosystems of the West Coast, indicates that the effects of ocean acidification will vary from place to place along the coast depending on a range of interacting factors.

From the Himalaya to the Canadian Cordillera

Boulder, Colo., USA - GSA's newest journal, Lithosphere, has put together several articles touching on the evolution and nature of Earth's crust and upper mantle. Topics include mountain-building and metamorphism in the Canadian Cordillera; the deep roots of an ancient continental arc exposed in Fiordland, New Zealand; the Sevier hinterland plateau, USA; the geologic history of the central and northern Tibetan Plateau; and Quaternary river diversion in the eastern Himalaya.

Record of orogenic cyclicity in the Alberta foreland basin, Canadian Cordillera

A crack in the mystery of 'oobleck' -- friction thickens fluids

By revealing missing details behind the odd behavior of a science fair favorite -- a soupy mixture known as "oobleck" that switches back and forth between liquid and solid -- scientists from the National Institute of Standards and Technology (NIST) and Georgetown University could help to end a long-running scientific debate and improve processes ranging from pouring concrete to making better body armor.

New research by NIST and Georgetown scientists deciphers the mechanisms that cause the materials to switch between liquid and solid in response to stress.

Physics: From the atomic to the nuclear clock

Measuring time using oscillations of atomic nuclei might significantly improve precision beyond that of current atomic clocks. Physicists have now taken an important step toward this goal.

Study offers clues to better rainfall predictions

The saltiness, or salinity, of seawater depends largely on how much moisture is pulled into the air as evaporative winds sweep over the ocean. But pinpointing where the moisture rains back down is a complicated question scientists have long contended with.

Quantum chemical computations provide insight into liver toxicity

Balasubramanian and Basak have recently reported quantum chemical computations that enhance our understanding of mechanisms for the causes of liver toxicity. Hepatocellular carcinoma is one of the most common forms of cancer, and the primary cause has been attributed to liver fibrosis by chemical toxins, which is followed by liver cirrhosis. By employing high-level quantum chemical computations, the researchers have unraveled the underlying mechanism of hepatocellular toxicity as metabolic electron attachment to certain environmental toxins.

'Slow' NZ seabed quake sheds light on tsunami-earthquake mechanism

Slow earthquakes such as slow slips are drawing the attention of researchers due to their potential connection to tsunami earthquakes.

An international team of seismologists recorded a slow slip event in a shallow area of plate boundary at the Hikurangi margin off the northeast shore of New Zealand, showing for the first time that such slippage can occur near troughs. This implies that subduction plates may be accumulating much more stress and strain than previously believed --before they bounce back to set off tsunami earthquakes.