Earth

Vortex loops could untie knotty physics problems

University of Chicago physicists have succeeding in creating a vortex knot—a feat akin to tying a smoke ring into a knot. Linked and knotted vortex loops have existed in theory for more than a century, but creating them in the laboratory had previously eluded scientists.

Vortex knots should, in principle, be persistent, stable phenomena. "The unexpected thing is that they're not," said Dustin Kleckner, a postdoctoral scientist at UChicago's James Franck Institute. "They seem to break up in a particular way. They stretch themselves, which is a weird behavior."

Man-made material pushes the bounds of superconductivity

MADISON — A multi-university team of researchers has artificially engineered a unique multilayer material that could lead to breakthroughs in both superconductivity research and in real-world applications.

The researchers can tailor the material, which seamlessly alternates between metal and oxide layers, to achieve extraordinary superconducting properties — in particular, the ability to transport much more electrical current than non-engineered materials.

Sedimentological constraints on the evolution of the Cordilleran arc

The Sonsela Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona, USA, forms a distinctive part of an extensive ancient river system that once flowed, at least in part, from a major volcanic arc bordering the western margin of North America (Cordilleran magmatic arc).

The Sonsela Member is characterized as a relatively coarse-grained unit compared to other mudstone-dominated members of the Chinle Formation, and is therefore thought to reflect a unique period in the evolution of the basin.

Climatic and tectonic controls on sedimentation and erosion during the Pliocene-Quaternary in Qaidam Basin

The Pliocene-Quaternary boundary, approx. 2.6 million years ago (2.6 Ma), represents a time of rapid global climate change from warm and moist to cool and arid (i.e., glacial) conditions.

The influence of this climate change on both sedimentation and tectonics is preserved in strata within the Qaidam Basin, China. Overall, climate-controlled basin aridification initiated 3.1 million years ago and caused the gradual change from more humid lacustrine sedimentation to evaporite conditions by 2.6 Ma.

Improved synchronicity: Preventive care for the power grid

President Obama in this year's State of the Union address talked about the future of energy and mentioned "self-healing power grids" -- a grid that is able to keep itself stable during normal conditions and also to self-recover in the event of a disturbance caused, for example, by severe weather.

New study reveals how sensitive US East Coast regions may be to ocean acidification

A continental-scale chemical survey in the waters of the eastern U.S. and Gulf of Mexico is helping researchers determine how distinct bodies of water will resist changes in acidity. The study, which measures varying levels of carbon dioxide (CO2) and other forms of carbon in the ocean, was conducted by scientists from 11 institutions across the U.S. and was published in the journal Limnology and Oceanography.

Volcanic aerosols, not pollutants, tamped down recent Earth warming, says CU-Boulder study

A team led by the University of Colorado Boulder looking for clues about why Earth did not warm as much as scientists expected between 2000 and 2010 now thinks the culprits are hiding in plain sight -- dozens of volcanoes spewing sulfur dioxide.

Biological particles, dust from Sahara and Asia, love visiting California

A field study of aerosol impacts on clouds and precipitation in the Sierra Nevada mountains shows that dust and microorganisms transported from as far away as the Sahara desert help to spur the precipitation that California counts on for its water supply.

Space race under way to create quantum satellite

In this month's special edition of Physics World, focusing on quantum physics, Thomas Jennewein and Brendon Higgins from the Institute for Quantum Computing at the University of Waterloo, Canada, describe how a quantum space race is under way to create the world's first global quantum-communication network.

The field of quantum communication – the science of transmitting quantum states from one place to another – has received significant attention in the last few years owing to the discovery of quantum cryptography.

NOAA and NASA's next generation weather satellite may provide earlier warnings

A new satellite that will detect the lightning inside storm clouds may lead to valuable improvements in tornado detection. The GOES-R satellite is currently being built with new technology that may help provide earlier warnings for severe weather. The national average is a 14-minute lead time to warn residents of a tornado, but NASA and NOAA scientists are looking to improve severe weather detection to save lives and property.

Old records, new bees result in 'Science' paper for MSU ecologist

BOZEMAN, Mont. – Laura Burkle and her colleagues captured 2,778 bees while retracing the muddy steps of a scientist who studied the interactions between bees and flowering plants more than a century ago.

Occasionally stung, but considering herself lucky to have access to the rich historic records that guided her field work, the Montana State University ecologist and her collaborators have now published their results in "Science."

"It's exciting," Burkle said as the Feb. 28 publication date approached.

LSU researchers find new information about 'Snowball Earth' period

It is rather difficult to imagine, but approximately 635 million years ago, ice may have covered a vast portion of our planet in an event called "Snowball Earth." According to the Snowball Earth hypothesis, the massive ice age that occurred before animal life appeared, when Earth's landmasses were most likely clustered near the equator, precipitated relatively rapid changes in atmospheric conditions and a subsequent greenhouse heat wave.

Atoms with quantum memory

Ice cubes in a cocktail glass melt until an equilibrium state is reached in which the ice cubes are gone. After that, the geometric shape of the ice cubes is completely lost. The liquid does not contain any memory of their shape, the ordered ice crystal has turned into disordered water molecules. Ultra cold Bose-Einstein condensates behave differently; these highly ordered clouds of ultra cold particles also approach a disordered equilibrium state, but they retain some "memory" about their initial state for a remarkably long time.

Global tipping point not backed by science: Study

A group of international ecological scientists led by the University of Adelaide have rejected a doomsday-like scenario of sudden, irreversible change to the Earth's ecology.

In a paper published today in the journal Trends in Ecology and Evolution, the scientists from Australia, US and UK argue that global-scale ecological tipping points are unlikely and that ecological change over large areas seem to follow a more gradual, smooth pattern.

Neutron scattering provides data on adsorption of ions in microporous materials

The adsorption of ions in microporous materials governs the operation of technologies as diverse as water desalination, energy storage, sensing and mechanical actuation. Until now, however, researchers attempting to improve the performance of these technologies haven't been able to directly and unambiguously identify how factors such as pore size, pore surface chemistry and electrolyte properties affect the concentration of ions in these materials as a function of the applied potential.