Earth

University of Toronto-led research suggests some major changes to geology textbooks

TORONTO, ON - Super-computer modelling of Earth's crust and upper-mantle suggests that ancient geologic events may have left deep 'scars' that can come to life to play a role in earthquakes, mountain formation, and other ongoing processes on our planet.

This changes the widespread view that only interactions at the boundaries between continent-sized tectonic plates could be responsible for such events.

In a first, Iceland power plant turns carbon emissions to stone

Scientists and engineers working at a major power plant in Iceland have shown for the first time that carbon dioxide emissions can be pumped into the earth and changed chemically to a solid within months--radically faster than anyone had predicted. The finding may help address a fear that so far has plagued the idea of capturing and storing CO2 underground: that emissions could seep back into the air or even explode out. A study describing the method appears this week in the leading journal Science.

Basaltic rocks in Iceland effective sinks for atmospheric carbon dioxide

Atmospheric carbon dioxide injected into volcanic rock as part of a pilot project in Iceland was almost completely mineralized, or converted to carbonate minerals, in less than two years, a new study shows. The results suggest that basaltic rocks may be effective sinks for storing carbon dioxide removed from the atmosphere. Atmospheric carbon dioxide can be sequestered by injecting it into rocks deep underground.

Climate change mitigation: Turning CO2 into rock

An international team of scientists have found a potentially viable way to remove anthropogenic (caused or influenced by humans) carbon dioxide emissions from the atmosphere - turn it into rock.

The study, published today in Science, has shown for the first time that the greenhouse gas carbon dioxide (CO2) can be permanently and rapidly locked away from the atmosphere, by injecting it into volcanic bedrock. The CO2 reacts with the surrounding rock, forming environmentally benign minerals.

Ancient ants leaving a modern trail

It is thought that ants evolved about 150 million years ago and have risen to dominance in the past 60 million years. They are now everywhere and while they are not always welcome on your kitchen counter, they are critical to ecosystems around the world for many roles, including seed dispersal and decomposition. There are a variety of factors that can impact diversity in geographically-clustered ant communities, but it can be difficult to decipher the most important biogeographic influences on these ant populations. Patricia Wepfer, Dr.

UQ research accelerates next-generation ultra-precise sensing technology

The mining, navigation, minerals exploration and environmental hydrology sectors are set to benefit from new University of Queensland research into quantum technology.

UQ School of Mathematics and Physics theoretical physicist Dr Simon Haine has demonstrated a technique that can be universally applied to theoretical calculations of matter-wave dynamics and used to improve the sensitivity of measurement devices.

New molecules identified that could help in the fight to prevent cystic fibrosis

New research has identified new molecules that could help in the fight to prevent diseases caused by faulty ion channels, such as cystic fibrosis.

Ion channels are proteins found in a cell's membrane, which create tiny openings in the membrane that regulate the movement of specific ions. Defective ion channels are the underlying cause of many diseases, notably cystic fibrosis, in which the transport of chloride ions is impaired.

Controlling quantum states atom by atom

An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small.

The Texas butterfly effect

EAST LANSING, Mich. - How can scientists better understand summer monarch butterfly populations in the Midwest? Check spring weather in Texas.

This information is just one of many insights that researchers from Michigan State University gleaned from developing a new model to forecast ecological responses to climate change. The model, featured in the current issue of Global Ecology and Biogeography, focuses on estimating monarch populations in Ohio and Illinois via their migration through Texas.

Stanford researchers calculate groundwater levels from satellite data

A new computer algorithm developed at Stanford University is enabling scientists to use satellite data to determine groundwater levels across larger areas than ever before.

The technique, detailed in the June issue of the journal Water Resources Research, could lead to better models of groundwater flow. "It could be especially useful in agricultural regions, where groundwater pumping is common and aquifer depletion is a concern," said study coauthor Rosemary Knight, a professor of geophysics in the Stanford School of Earth, Energy & Environmental Sciences.

'Weather@Home' offers precise new insights into climate change in the West

CORVALLIS, Ore. - Tens of thousands of "citizen scientists" have volunteered some use of their personal computer time to help researchers create one of the most detailed, high resolution simulations of weather ever done in the Western United States.

Tunneling ionization helps scientists to track ultrafast changes in molecules

Using tunneling ionization and ultrashort laser pulses, scientists have been able to observe the structure of a molecule and the changes that take place within billionths of a billionth of a second when it is excited by an electron impact.

Rust under pressure could explain deep Earth anomalies

Washington, DC-- Using laboratory techniques to mimic the conditions found deep inside the Earth, a team of Carnegie scientists led by Ho-Kwang "Dave" Mao has identified a form of iron oxide that they believe could explain seismic and geothermal signatures in the deep mantle. Their work is published in Nature.

Iron and oxygen are two of the most geochemically important elements on Earth. The core is rich in iron and the atmosphere is rich in oxygen, and between them is the entire range of pressures and temperatures on the planet.

Tropical Depression 1E dissipates

Tropical Depression 1E or TD1E didn't get far from the time it was born to the time it weakened to a remnant low pressure area along the southwestern coast of Mexico. NOAA's GOES-West satellite captured an image of it remnant clouds.

NASA sees Colin come calling on the US Southeast

Tropical Storm Colin moved fast after making landfall in northwestern Florida on June 6 and by the morning of June 7, 2016 it was centered off the coast of North and South Carolina. NASA's Terra and Aqua satellites and NOAA's GOES-East satellite provided a look at the storm before and after landfall in Florida.