Earth

A cheaper drive to 'cool' fuels

University of Delaware chemist Joel Rosenthal is driven to succeed in the renewable energy arena.

Working in his lab in UD's Department of Chemistry and Biochemistry, Rosenthal and doctoral student John DiMeglio have developed an inexpensive catalyst that uses the electricity generated from solar energy to convert carbon dioxide, a major greenhouse gas, into synthetic fuels for powering cars, homes and businesses.

The research is published in the June 19 issue of the Journal of the American Chemical Society.

Geology: The deeper the rock the colder? Lava flow over snow? Plus other conundrums

Boulder, Colo., USA – These ten new Geology articles confront geologic conundrums and capture evidence toward answering even the most difficult questions on topics such as strain localization; atmospheric CO2; ultra-high pressure metamorphism; white chalk cliffs; lithospheric dripping; retreating trenches; microbial diversity beneath glaciers and ice-sheets; salt-marsh ecosystems; New Zealand glaciers -- biggest well before Europe's Little Ice Age; rock mechanics; tsunami hazards; and tracking the impact of the 2011 Tohoku-oki earthquake.

2-dimensional atomically-flat transistors show promise for next generation green electronics

Researchers at UC Santa Barbara, in collaboration with University of Notre Dame, have recently demonstrated the highest reported drive current on a transistor made of a monolayer of tungsten diselenide (WSe2), a 2-dimensional atomic crystal categorized as a transition metal dichalcogenide (TMD). The discovery is also the first demonstration of an "n-type" WSe2 field-effect-transistor (FET), showing the tremendous potential of this material for future low-power and high-performance integrated circuits.

Ups-and-downs of Indian monsoon rainfall likely to increase under warming

The Indian monsoon is a complex system which is likely to change under future global warming. While it is in the very nature of weather to vary, the question is how much and whether we can deal with it. Extreme rainfall, for example, bears the risk of flooding, and crop failure. Computer simulations with a comprehensive set of 20 state-of-the-art climate models now consistently show that Indian monsoon daily variability might increase, according to a study just published by scientists of the Potsdam Institute for Climate Impact Research.

Natural underwater springs show how coral reefs respond to ocean acidification

Ocean acidification due to rising carbon dioxide levels reduces the density of coral skeletons, making coral reefs more vulnerable to disruption and erosion.

The results are from a study of corals growing where underwater springs naturally lower the pH of seawater. (The lower the pH, the more acidic.)

The findings are published today in the journal Proceedings of the National Academy of Sciences and are the first to show that corals are not able to fully acclimate to low pH conditions in nature.

Unexpected behavior of well-known catalysts

Industrial palladium-copper catalysts change their structures before they get to work, already during the activation process. As a result, the reaction is catalysed by a catalyst that is different from the one originally prepared for it. This surprising discovery was made by researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.

Researchers report first entanglement between light and an optical atomic coherence

Using clouds of ultra-cold atoms and a pair of lasers operating at optical wavelengths, researchers have reached a quantum network milestone: entangling light with an optical atomic coherence composed of interacting atoms in two different states. The development could help pave the way for functional, multi-node quantum networks.

U-M researcher and colleagues predict possible record-setting Gulf of Mexico 'dead zone'

ANN ARBOR—Spring floods across the Midwest are expected to contribute to a very large and potentially record-setting 2013 Gulf of Mexico "dead zone," according to a University of Michigan ecologist and colleagues who released their annual forecast today, along with one for the Chesapeake Bay.

The Gulf forecast, one of two announced by the National Oceanic and Atmospheric Administration, calls for an oxygen-depleted, or hypoxic, region of between 7,286 and 8,561 square miles, which would place it among the 10 largest on record.

The contribution of particulate matter to forest decline

Air pollution is related to forest decline and also appears to attack the protecting wax on tree leaves and needles. Bonn University scientists have now discovered a responsible mechanism: particulate matter salt compounds that become deliquescent because of humidity and form a wick-like structure that removes water from leaves and promotes dehydration. These results are published in "Environmental Pollution".

Making memories: Practical quantum computing moves closer to reality

Researchers at the University of Sydney and Dartmouth College have developed a new way to design quantum memory, bringing quantum computers a step closer to reality. The results will appear June 19 in the journal Nature Communications.

Quantum computing may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like quantum memory, remains elusive.

NOAA, partners predict possible record-setting deadzone for Gulf of Mexico

Scientists are expecting a very large "dead zone" in the Gulf of Mexico and a smaller than average hypoxic level in the Chesapeake Bay this year, based on several NOAA-supported forecast models.

Brandeis scientist invents anti-cholesterol process

Senior Brandeis research scientist Daniel Perlman has discovered a way to make phytosterol molecules from plants dispersible in beverages and foods that are consumed by humans, potentially opening the way to dramatic reductions in human cholesterol levels.

A U.S. patent (#8,460,738) on the new process and composition was issued on June 11.

Seismic gap outside of Istanbul

Earthquake researchers have now identified a 30 kilometers long and ten kilometers deep area along the North Anatolian fault zone just south of Istanbul that could be the starting point for a strong earthquake. The group of seismologists including Professor Marco Bohnhoff of the GFZ German Research Centre for Geosciences reported in the current online issue of the scientific journal Nature (Nature Communications, DOI: 10.1038/ncomms2999) that this potential earthquake source is only 15 to 20 kilometers from the historic city center of Istanbul.

Working backward: Computer-aided design of zeolite templates

HOUSTON -- (June 17, 2013) -- Taking a page from computer-aided drug designers, Rice University researchers have developed a computational method that chemists can use to tailor the properties of zeolites, one of the world's most-used industrial minerals.

The research is available online and will be featured on the June 21 cover of the Royal Society of Chemistry's Journal of Materials Chemistry A. The method allows chemists to work backward by first considering the type of zeolite they want to make and then creating the organic template needed to produce it.

Which qubit my dear? New method to distinguish between neighbouring quantum bits

Sydney: Researchers at the University of New South Wales have proposed a new way to distinguish between quantum bits that are placed only a few nanometres apart in a silicon chip, taking them a step closer to the construction of a large-scale quantum computer.

Quantum bits, or qubits, are the basic building blocks of quantum computers - ultra-powerful devices that will offer enormous advantages for solving complex problems.