Earth

Calving sand dunes, stress fields in Southern California, and Devonian black shale

Boulder, Colo., USA – New Geology postings discuss a vanished link between Antarctica and Australia; the West Salton Detachment fault in California, USA; chemical interaction between peridotite and intruding melts in the Northern Apennines, Italy; calving barchan dunes; the nature of black shale in the Late Devonian Appalachian Basin; the August 2008 avulsion belt of the Kosi River, India; reef island formation; and a one-year record of eight quakes within dune deposits of the Navajo Sandstone, Utah, USA.

Erin weakens to a tropical depression over eastern Atlantic

Tropical Storm Erin ran into cooler waters and dry, stable air over the Eastern Atlantic that sapped its strength and weakening the storm to depression status. NOAA's GOES-East satellite showed the storm waning today.

CCNY chemists devise new way to prepare molecules for drug testing

James Bond had his reasons for ordering his martinis "shaken, not stirred." Similarly, drug manufacturers need to make sure the molecules in a new drug are arranged in an exact manner, lest there be dire consequences. Specifically, they need to be wary of enantiomers, mirror-image molecules composed of the same atoms, but arranged differently.

Slow earthquakes may foretell larger events

Monitoring slow earthquakes may provide a basis for reliable prediction in areas where slow quakes trigger normal earthquakes, according to Penn State geoscientists.

"We currently don't have any way to remotely monitor when land faults are about to move," said Chris Marone, professor of geophysics. "This has the potential to change the game for earthquake monitoring and prediction, because if it is right and you can make the right predictions, it could be big."

Try clapping your wet hands; a physics lesson from Virginia Tech engineers

Sunny Jung continues to redefine the views on the laws of physics, and in doing so, impacts the research on topics as varied as drug delivery methods to fuel efficiency.

Rice technique expands options for molecular imaging

HOUSTON -- (Aug. 15, 2013) -- A Rice University laboratory has improved upon its ability to determine molecular structures in three dimensions in ways that challenge long-used standards.

By measuring the vibrations between atoms using femtosecond-long laser pulses, the Rice lab of chemist Junrong Zheng is able to discern the positions of atoms within molecules without the restrictions imposed by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) imaging.

Growth of disorder of electrons measured in dual temperature system

Researchers at Aalto University, Finland and the University of Tokyo have succeeded for the first time in experimentally measuring a probability distribution for entropy production of electrons. Entropy production means an increase in disorder when electrons are moved individually between two microscopic conductors of differing temperatures.

Graphene nanoscrolls are formed by decoration of magnetic nanoparticles

Researchers at Umeå University, together with researchers at Uppsala University and Stockholm University, show in a new study how nitrogen doped graphene can be rolled into perfect Archimedean nano scrolls by adhering magnetic iron oxide nanoparticles on the surface of the graphene sheets. The new material may have very good properties for application as electrodes in for example Li-ion batteries.

Heat waves to become more frequent and severe

Climate change is set to trigger more frequent and severe heat waves in the next 30 years regardless of the amount of carbon dioxide (CO2) we emit into the atmosphere, a new study has shown.

Extreme heat waves such as those that hit the US in 2012 and Australia in 2009 -- dubbed three-sigma events by the researchers -- are projected to cover double the amount of global land by 2020 and quadruple by 2040.

Multifold increase in heat extremes by 2040

Extremes such as the severe heat wave last year in the US or the one 2010 in Russia are likely to be seen much more often in the near future. A few decades ago, they were practically absent. Today, due to man-made climate change monthly heat extremes in summer are already observed on 5 percent of the land area. This is projected to double by 2020 and quadruple by 2040, according to a study by scientists of the Potsdam Institute for Climate Impact Research (PIK) and the Universidad Complutense de Madrid (UCM).

Around the world in 4 days: NASA tracks Chelyabinsk meteor plume

Atmospheric physicist Nick Gorkavyi missed witnessing an event of the century last winter when a meteor exploded over his hometown of Chelyabinsk, Russia. From Greenbelt, Md., however, NASA's Gorkavyi and colleagues witnessed a never-before-seen view of the atmospheric aftermath of the explosion.

Using fire to manage fire-prone regions around the world

The Ecological Society of America's first online-only Special Issue of Frontiers in Ecology and the Environment showcases prescribed burns around the globe, some of them drawing on historical practices to manage forests and grasslands in fire-prone regions.

This image shows a prescribed burn in Klamath National Forest, CA.

(Photo Credit: E. Knapp)

Earth orbit changes key to Antarctic warming that ended last ice age

For more than a century scientists have known that Earth's ice ages are caused by the wobbling of the planet's orbit, which changes its orientation to the sun and affects the amount of sunlight reaching higher latitudes, particularly the polar regions.

The Northern Hemisphere's last ice age ended about 20,000 years ago, and most evidence has indicated that the ice age in the Southern Hemisphere ended about 2,000 years later, suggesting that the south was responding to warming in the north.

Extreme weather events fuel climate change

When the carbon dioxide content of the atmosphere rises, the Earth not only heats up, but extreme weather events, such as lengthy droughts, heat waves, heavy rain and violent storms, may become more frequent.

Whether these extreme climate events result in the release of more CO2 from terrestrial ecosystems and thus reinforce climate change has been one of the major unanswered questions in climate research. It has now been addressed by an international team of researchers working with Markus Reichstein, Director at the Max Planck Institute for Biogeochemistry in Jena.

Teleported by electronic circuit

ETH-researchers cannot "beam" objects or humans of flesh and blood through space yet, a feat sometimes alluded to in science fiction movies. They managed, however, to teleport information from A to B – for the first time in an electronic circuit, similar to a computer chip.