Earth

From separation to transformation: Metal-organic framework shows new talent

This gift from science just keeps on giving. Measurements taken at the National Institute of Standards and Technology (NIST) show why a material already known to be good at separating components of natural gas also can do something trickier: help convert one chemical to another, a process called catalysis. The discovery is a rare example of a laboratory-made material easily performing a task that biology usually requires a complex series of steps to accomplish.

NIST chip produces and detects specialized gas for biomedical analysis

A chip-scale device that both produces and detects a specialized gas used in biomedical analysis and medical imaging has been built and demonstrated at the National Institute of Standards and Technology (NIST). Described in Nature Communications,* the new microfluidic chip produces polarized (or magnetized) xenon gas and then detects even the faintest magnetic signals from the gas.

NCNR neutrons highlight possible battery candidate

Analysis of a manganese-based crystal by scientists at the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) has produced the first clear picture of its molecular structure. The findings could help explain the magnetic and electronic behavior of the whole family of crystals, many of which have potential for use in batteries.

Eumelanin's secrets

CAMBRIDGE, Mass-- Melanin — and specifically, the form called eumelanin — is the primary pigment that gives humans the coloring of their skin, hair, and eyes. It protects the body from the hazards of ultraviolet and other radiation that can damage cells and lead to skin cancer, but the exact reason why the compound is so effective at blocking such a broad spectrum of sunlight has remained something of a mystery.

Bending helps to control nanomaterials

A new remedy has been found to tackle the difficulty of controlling layered nanomaterials. Control can be improved by simply bending the material.

The mechanism was observed by Academy Research Fellow Pekka Koskinen from the Nanoscience Center of the University of Jyväskylä together with his colleagues from the University of Massachusetts Amherst in the US. Bending decreases interaction between layers, making the material merely a stack of independent atomic layers.

On quantification of the growth of compressible mixing layer

CML has been a research topic for more than five decades, due to its wide applications in propulsion design. Mixing in CML is controlled by the compressibility effects of velocity and density variations over the mixing layer, and quantified by the growth rate of CML. However, the lack of understanding of various definitions of mixing thicknesses has yielded scatter in analyzing experimental data. Prof.

Stanford research shows importance of European farmers adapting to climate change

A new Stanford study finds that due to an average 3.5 degrees Fahrenheit of warming expected by 2040, yields of wheat and barley across Europe will drop more than 20 percent.

New Stanford research reveals that farmers in Europe will see crop yields affected as global temperatures rise, but that adaptation can help slow the decline for some crops.

Ka'ena Volcano: First building block for O'ahu discovered

Boulder, Colo., USA – Researcher John Sinton of the University of Hawai'i along with colleagues from the Monterrey Bay Aquarium and the French National Center for Scientific Research have announced the discovery of an ancient Hawaiian volcano. Now located in a region of shallow bathymetry extending about 100 km WNW from Ka'ena Point at the western tip of O'ahu, this volcano, which they have named Ka'ena, would have risen about 1,000 meters above sea level 3.5 million years ago.

Dryland ecosystems emerge as driver in global carbon cycle

BOZEMAN, Mont. – Dryland ecosystems, which include deserts to dry-shrublands, play a more important role in the global carbon cycle than previously thought. In fact, they have emerged as one of its drivers, says Montana State University faculty member Ben Poulter.

A faster track to the tools that track disease

Radioactivity is usually associated with nuclear fallout or comic-book spider bites, but in very small amounts it can be a useful tool for diagnosing diseases.

Small molecules containing a radioactive isotope of fluorine called "18F radiotracers" are used to detect and track certain diseases in patients. Once injected into the body, these molecules accumulate in specific targets, such as tumors, and can be visualized by their radioactive tag on a positron emission tomography (PET) scan. The 18F tags quickly decay so no radioactivity remains after about a day.

Shattering past of the 'island of glass'

A tiny Mediterranean island visited by the likes of Madonna, Sting, Julia Roberts and Sharon Stone is now the focus of a ground-breaking study by University of Leicester geologists.

Pantelleria, a little-known island between Sicily and Tunisia, is a volcano with a remarkable past: 45 thousand years ago, the entire island was covered in a searing-hot layer of green glass.

Volcanologists Drs Mike Branney, Rebecca Williams and colleagues at the University of Leicester Department of Geology have been uncovering previously unknown facts about the island's physical history.

Researcher aids understanding of collective excitations in MoS2

Dr. Željana Bonačić Lošić from the Department of Physics, Faculty of Science at the University of Split, Croatia, has studied the coupling of plasmon and dipolar collective modes in a monolayer of molybdenum disulfide. Collective excitations play a key role in describing any many-body quantum system. A monolayer of molybdenum disulfide is a promising two-dimensional material that has attracted much attention lately because of its potential applications. In this sense, the investigation of its electronic properties is of special interest.

Study shows iron from melting ice sheets may help buffer global warming

A newly-discovered source of oceanic bioavailable iron could have a major impact our understanding of marine food chains and global warming. A UK team has discovered that summer meltwaters from ice sheets are rich in iron, which will have important implications on phytoplankton growth. The findings are reported in the journal Nature Communications on 21st May, 2014*.

Public interest in climate change unshaken by scandal, but unstirred by science

The good news for any passionate supporter of climate-change science is that negative media reports seem to have only a passing effect on public opinion, according to Princeton University and University of Oxford researchers. The bad news is that positive stories don't appear to possess much staying power, either. This dynamic suggests that climate scientists should reexamine how to effectively and more regularly engage the public, the researchers write.

Climate change brings mostly bad news for Ohio

COLUMBUS, Ohio— Scientists delivered a mostly negative forecast for how climate change will affect Ohioans during the next year or so, and well beyond.