Earth

Study helps unlock mystery of high-temp superconductors

A Binghamton University physicist and his colleagues say they have unlocked one key mystery surrounding high-temperature superconductivity. Their research, published this week in the Proceedings of the National Academy of Sciences, found a remarkable phenomenon in copper-oxide (cuprate) high-temperature superconductors.

'Molecular movies' will enable extraordinary gains in bioimaging, health research

CORVALLIS, Ore. – Researchers today announced the creation of an imaging technology more powerful than anything that has existed before, and is fast enough to observe life processes as they actually happen at the molecular level.

Chemical and biological actions can now be measured as they are occurring or, in old-fashioned movie parlance, one frame at a time. This will allow creation of improved biosensors to study everything from nerve impulses to cancer metastasis as it occurs.

With climate change, heat more than natural disasters will drive people away

Although scenes of people fleeing from dramatic displays of Mother Nature's power dominate the news, gradual increases in an area's overall temperature — and to a lesser extent precipitation — actually lead more often to permanent population shifts, according to Princeton University research.

The chemistry of fireworks: Fourth of July science

WASHINGTON, June 30, 2014 — The Fourth of July is just days away, and that means millions of Americans will soon enjoy eye-popping fireworks displays around the country.

These dazzling light shows are actually carefully crafted chemical reactions.

This week's ACS Reactions episode features John Conkling, Ph.D., the professor who literally wrote the book on pyrotechnics.

In the video, Conkling explains the chemistry that creates those amazing fireworks displays..

Interlayer distance in graphite oxide gradually changes when water is added

Physicists from Umeå University and Humboldt University in Berlin have solved a mystery that has puzzled scientists for half a century. They show with the help of powerful microscopes that the distance between graphite oxide layers gradually increases when water molecules are added. That is because the surface of graphite oxide is not flat, but varies in thickness with "hills" and "valleys" of nanosize. The new findings are published in the scientific journal Nano Letters.

Scientists develop force sensor from carbon nanotubes

A group of researchers from Russia, Belarus and Spain, including Moscow Institute of Physics and Technology professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device is described in an article published in the journal Computational Materials Science and is also available as a preprint.

A first: Scientists show bacteria can evolve a biological timer to survive antibiotics

The ability of microorganisms to overcome antibiotic treatments is one of the top concerns of modern medicine. The effectiveness of many antibiotics has been reduced by bacteria's ability to rapidly evolve and develop strategies to resist antibiotics. Bacteria achieve this by specific mechanisms that are tailored to the molecular structure or function of a particular antibiotic. For example, bacteria would typically develop drug resistance by evolving a mutation that breaks down the drug.

Researchers create quantum dots with single-atom precision

A team of physicists from the Paul-Drude-Institut für Festkörperelektronik (PDI) in Berlin, Germany, NTT Basic Research Laboratories in Atsugi, Japan, and the U.S. Naval Research Laboratory (NRL) has used a scanning tunneling microscope to create quantum dots with identical, deterministic sizes. The perfect reproducibility of these dots opens the door to quantum dot architectures completely free of uncontrolled variations, an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies.

Insights from nature for more efficient water splitting

Water splitting is one of the critical reactions that sustain life on earth, and could be a key to the creation of future fuels. It is a key in the process of photosynthesis, through which plants produce glucose and oxygen from water and carbon dioxide, using sunlight as energy. However, there are still significant mysteries about the process.

High CO2 levels cause warming in the tropics

The impact of the greenhouse gas CO2 on the Earth's temperature is well established by climate models and temperature records over the past 100 years, as well as coupled records of carbon dioxide concentration and temperature throughout Earth history. However, past temperature records have suggested that warming is largely confined to mid-to-high latitudes, especially the poles, whereas tropical temperatures appear to be relatively stable: the tropical thermostat model.

Study finds Emperor penguin in peril

An international team of scientists studying Emperor penguin populations across Antarctica finds the iconic animals in danger of dramatic declines by the end of the century due to climate change. Their study, published today in Nature Climate Change, finds the Emperor penguin "fully deserving of endangered status due to climate change."

The Emperor penguin is currently under consideration for inclusion under the US Endangered Species Act. Criteria to classify species by their extinction risk are based on the global population dynamics.

Fiat drives forward ‘wonder material’ to revolutionize automotive industry

A pioneering research project to develop lighter, stronger, more energy-efficient, and safe vehicles using ‘wonder material’ graphene is being led by the University of Sunderland and could potentially revolutionise the global automotive industry.

Graphene is a material made from a single layer of carbon atoms, which is stronger than diamond, lightweight and flexible, first discovered during experiments by Professors Kostya Novoselov and Andrew Geim, who were awarded the Nobel Prize for Physics in 2010.

Improved method for isotope enrichment could secure a vital global commodity

AUSTIN, Texas — Researchers at The University of Texas at Austin have devised a new method for enriching a group of the world's most expensive chemical commodities, stable isotopes, which are vital to medical imaging and nuclear power, as reported this week in the journal Nature Physics. For many isotopes, the new method is cheaper than existing methods. For others, it is more environmentally friendly.

Study: To address climate change, nothing substitutes for reducing CO2 emissions

The politically expedient way to mitigate climate change is essentially no way at all, according to a comprehensive new study by University of Chicago climatologist Raymond Pierrehumbert.

'Compressive sensing' provides new approach to measuring a quantum system

In quantum physics, momentum and position are an example of conjugate variables. This means they are connected by Heisenberg's Uncertainty Principle, which says that both quantities cannot be simultaneously measured precisely. Recently, researchers have been developing novel techniques, such as "weak measurement," to measure both at the same time. Now University of Rochester physicists have shown that a technique called compressive sensing also offers a way to measure both variables at the same time, without violating the Uncertainty Principle.