Earth

Piezoelectricity in a 2-D semiconductor

A door has been opened to low-power off/on switches in micro-electro-mechanical systems (MEMS) and nanoelectronic devices, as well as ultrasensitive bio-sensors, with the first observation of piezoelectricity in a free standing two-dimensional semiconductor by a team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab).

Long-term link between Pacific winds and global climate - the coral story

New research indicates that shifts in Pacific trade winds played a key role in twentieth century climate variation, a sign that they may again be influencing global temperatures.

The study, led by scientists at the National Center for Atmospheric Research (NCAR) and the University of Arizona (UA), uses a novel method of analyzing chemical changes in coral to show that weak tropical Pacific trade winds coincided with globally warming temperatures early in the twentieth century. When the natural pattern shifted and winds began to strengthen after 1940, the warming slowed.

Kara Sea: Methane is leaking from permafrost offshore Siberia

Yamal Peninsula in Siberia has recently become world famous. Spectacular sinkholes, appeared as out of nowhere in the permafrost of the area, sparking the speculations of significant release of greenhouse gas methane into the atmosphere.

Finland: Average temperature has risen by more than two degrees

According to a recent University of Eastern Finland and Finnish Meteorological Institute study, the rise in the temperature has been especially fast over the past 40 years, with the temperature rising by more than 0.2 degrees per decade. "The biggest temperature rise has coincided with November, December and January. Temperatures have also risen faster than the annual average in the spring months, i.e., March, April and May.

First successful vaccination against 'mad cow'-like wasting disease in deer

(Photo Credit: ) (Photo Credit: )Source:

Atom-thick CCD could capture images

HOUSTON - (Dec. 19, 2014) - An atomically thin material developed at Rice University may lead to the thinnest-ever imaging platform.

Synthetic two-dimensional materials based on metal chalcogenide compounds could be the basis for superthin devices, according to Rice researchers. One such material, molybdenum disulfide, is being widely studied for its light-detecting properties, but copper indium selenide (CIS) also shows extraordinary promise.

Yellowstone's thermal springs -- their colors unveiled

WASHINGTON D.C., December 19, 2014 - Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of Yellowstone National Park's hot springs and can visually recreate how they appeared years ago, before decades of tourists contaminated the pools with make-a-wish coins and other detritus.

The model, and stunning pictures of the springs, appear today in the journal Applied Optics, which is published by The Optical Society (OSA).

Quantum physics just got less complicated

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct are different manifestations of the same thing. The result is published 19 December in Nature Communications.

NOAA establishes 'tipping points' for sea level rise related flooding

By 2050, a majority of U.S. coastal areas are likely to be threatened by 30 or more days of flooding each year due to dramatically accelerating impacts from sea level rise, according to a new NOAA study, published today in the American Geophysical Union's online peer-reviewed journal Earth's Future.

Instant-start computers possible with new breakthrough

ITHACA, N.Y. - To encode data, today's computer memory technology uses electric currents - a major limiting factor for reliability and shrinkability, and the source of significant power consumption. If data could instead be encoded without current - for example, by an electric field applied across an insulator - it would require much less energy, and make things like low-power, instant-on computing a ubiquitous reality.

New, tighter timeline confirms ancient volcanism aligned with dinosaurs' extinction

A definitive geological timeline shows that a series of massive volcanic explosions 66 million years ago spewed enormous amounts of climate-altering gases into the atmosphere immediately before and during the extinction event that claimed Earth's non-avian dinosaurs, according to new research from Princeton University.

Mutations need help from aging tissue to cause leukemia

Source:

How will climate change transform agriculture?

Climate change impacts will require major but very uncertain transformations of global agriculture systems by mid-century, according to new research from the International Institute for Applied Systems Analysis.

Stunning zinc fireworks when egg meets sperm

EVANSTON, Ill. -- Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, found a Northwestern University-led interdisciplinary research team that includes experts from the U.S. Department of Energy's Advanced Photon Source at Argonne National Laboratory.

Improving forecasts for rain-on-snow flooding

Many of the worst West Coast winter floods pack a double punch. Heavy rains and melting snow wash down the mountains together to breach riverbanks, wash out roads and flood buildings.

These events are unpredictable and difficult to forecast. Yet they will become more common as the planet warms and more winter precipitation falls as rain rather than snow.

University of Washington mountain hydrology experts are using the physics behind these events to better predict the risks.