Earth

Medicare's race, ethnic data often undercounts minority populations, study finds

The information critical to a nationwide priority of reducing health care disparities among minorities is incomplete and inaccurate, according to a new Rutgers study.

Published in Medical Care Research & Review and Medical Care, the study compared Medicare beneficiaries' race and ethnicity data from the two most widely-used administrative data sources, to data sources that include beneficiaries' self-reported race and ethnicity information and found that in 19 states the administrative data sources significantly undercount the proportion of people who are Hispanic. It discovered even more widespread undercounting of Asian American, Native Hawaiian, Pacific Islander, and American Indian populations.

The study was led by Olga Jarrín Montaner, assistant professor at Rutgers School of Nursing and Institute for Health, Health Care Policy, and Aging Research and Irina Grafova, assistant professor at Rutgers School of Public Health.

Since the United States' population of older adults is not only just rapidly growing but also becoming more racially and ethnically diverse, collecting and using accurate data on this population's race and ethnicity is needed to identify disparities in health care access and quality of care and is vital for identifying systemic barriers to improving minority health outcomes.

"The inaccuracy of state-level data on Medicare beneficiaries' race and ethnicity is staggering," said Grafova. "We found that, in 19 states, about 20 percent of Hispanic Medicare beneficiaries were misclassified as belonging to another ethnic group. In 24 states, more than 80 percent of American and Alaskan Native beneficiaries of Medicare were misclassified. And in the majority of states, at least one-fourth of Asian American and Pacific Islander beneficiaries were misclassified."

Medicare requires the collection of self-reported race and ethnicity data during standardized assessments in home health care and other care settings and should be used whenever possible by researchers who are documenting racial disparities and the impact of racism on healthcare use and outcomes, Jarrin said.

"The Centers for Medicare and Medicaid can incorporate our findings to improve the accuracy of racial and ethnic data used in the future to estimate minority health and health disparities within the U.S. Medicare population," she said. "By creating more accurate estimates of the demographic profile of older adults, we can inform future public health and policy, and better understand the magnitude of disparities in population health outcomes, such as those we are currently seeing with COVID-19,"

Credit: 
Rutgers University

'Pregnancy test for water' delivers fast, easy results on water quality

video: Professor Julius Lucks explains how to use ROSALIND.

Image: 
Northwestern University

New platform uses cell-free synthetic biology to test for 17 contaminants, including lead, copper, pharmaceuticals and cosmetics

Tests cost pennies to make and minutes to work

Researchers tested the platform in Paradise, California, where wildfires caused toxins to enter the water supply

EVANSTON, Ill. -- A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Likened to a pregnancy test, the handheld platform uses one sample to provide an easy-to-read positive or negative result. When the test detects a contaminant exceeding the EPA's standards, it glows green.

Led by researchers at Northwestern University, the tests can sense 17 different contaminants, including toxic metals such as lead and copper, pharmaceuticals, cosmetics and cleaning products. The platform -- which is powered by cell-free synthetic biology -- is so flexible that researchers can continually update it to sense more pollutants.

"Current water tests rely on a centralized laboratory that contains really expensive equipment and requires expertise to operate," said Northwestern's Julius Lucks, who led the study. "Sending in a sample can cost up to $150 and take several weeks to get results. We're offering a technology that enables anyone to directly test their own water and know if they have contamination within minutes. It's so simple to use that we can put it into the hands of the people who need it most."

The research will be published on July 6 in the journal Nature Biotechnology. Lucks is a professor of chemical and biological engineering in Northwestern's McCormick School of Engineering and a member of the Center for Synthetic Biology. Jaeyoung Jung and Khalid Alam, members of Lucks' laboratory, are co-first authors of the paper.

Molecular 'taste buds'

A major challenge of ensuring water quality is that people typically can't see or taste contaminants. Northwestern's platform uses synthetic biology to sense this unnoticeable contamination, filling in the gaps where human senses fall short.

In cell-free synthetic biology, researchers take the molecular machinery -- including DNA, RNA and proteins -- out of cells, and then reprogram that machinery to perform new tasks. The idea is akin to opening the hood of the car and removing the engine, which allows researchers to use the engine for different purposes, free from the constraints of the car. In this case, Lucks' team used molecular machinery from bacterial cells.

"Nature has already solved this problem," Alam said. "Biology has spent over three billion years evolving an elegant solution to detect contaminants."

"We found out how bacteria naturally taste things in their water," Lucks added. "They do so with little molecular-level 'taste buds'. Cell-free synthetic biology allows us to take those little molecular taste buds out and put them into a test tube. We can then 're-wire' them up to produce a visual signal. It glows to let the user quickly and easily see if there's a contaminant in their water."

These reprogramed "taste buds" are freeze-dried to become shelf-stable and put into test tubes. Adding a drop of water to the tube -- and then flicking it -- sets off a chemical reaction that causes the freeze-dried pellet to glow in the presence of a contaminant.

"The magic is in the tubes," Lucks said. "We compose everything and freeze dry it -- the same process as making astronaut ice cream."

Inspired by women in science

Lucks and his team call this testing platform "RNA output sensors activated by ligand induction." But his team has nicknamed it ROSALIND for short, in honor of famed chemist Rosalind Franklin, who discovered the DNA double helix alongside James Watson and Francis Crick. Franklin's 100th birthday would have been next month (July 25).

"Her work essentially eventually enabled us to learn how to reprogram DNA to act in our technology," Lucks said.

When starting this project, Lucks took inspiration from another woman scientist in his life: his wife, Northwestern anthropologist Sera Young, who studies global food and water security and the role of household water insecurity in societal well-being.

"Sera researches how poor water quality impacts people's daily lives," Lucks said. "People tend to go to the most convenient sources to get water. But if they knew that water was contaminated, they might choose to travel farther to find safer water. We want everyone to have the tools they need in order to make informed decisions."

ROSALIND in Paradise

To test the new platform in the field, Lucks, Jung, Alam and fellow Northwestern professor Jean-Francois Gaillard visited Paradise, California at the end of last year. One year earlier, a string of massive wildfires obliterated the northern California town, destroying nearly 19,000 buildings and displacing most of its population. Gaillard, a professor of environmental engineering, is an expert in the biogeochemical processes that affect metals in the aquatic system.

"Wildfires basically melted the town," Lucks said. "They burned down buildings and melted cars that released toxic metals into the environment."

Lucks, Gaillard and their teams tested ROSALIND alongside gold-standard water tests and discovered that ROSALIND was able to identify the presence of elevated toxic metals in the water supply. It also provided much faster and less expensive results.

Lucks and his team envision that ROSALIND could help recovery efforts like the one in Paradise, in which residents needed to perform tens of thousands of tests in order to know if their community was safe to re-enter.

"Laboratory testing doesn't scale," Alam said. "It shouldn't take days to get an answer to the simple question: 'Is my water safe to drink?'"

Difficulties of testing at home

Disasters, of course, aren't the only causes of unsafe water. Heavy metals, such as copper and lead, that are naturally found in the environment can leech into pipes, contaminating household water taps and school drinking fountains. Personal care products, such as sunscreens and lotions, wash off people's skin and end up in waterways. Unused pharmaceuticals and agricultural herbicides, too, run off into our water and end up in our sinks.

But, unless we can directly -- and regularly -- test for these pollutants, there's no way to maintain a peace of mind.

When testing water in their own home in Evanston, Illinois, Lucks and Young noted several difficulties. Consuming high levels of copper over many months or years can lead to liver damage and even death. With this concern, Lucks decided to check the copper levels in their household water. It cost $150 and took a month to receive the results.

"This is a one-time test," Lucks said. "It doesn't allow for checking levels from different taps in the house or temporal testing over time."

Testing for lead wasn't much easier. Lead-testing kits are available at most hardware stores. But after filling a tube with water, it still must be mailed to a centralized facility. It still costs up to $150 per test and takes weeks for results. And if people want to check their water for other contaminants, such as antibiotics, tests simply do not exist for consumers.

"There has been a lot of advances in developing point-of-use diagnostics for monitoring pathogens," Jung said. "But not nearly enough effort for detecting chemical contaminants."

"To ensure access to safe and clean drinking water, we need technologies that will allow easy monitoring of water quality," Lucks said. "With a simple, easy-to-use, handheld device like ROSALIND, you can test the water in your home or out in the field -- where you would want to use it most."

Credit: 
Northwestern University

Light a critical factor in limiting carbon uptake, especially in the north

image: Boreal tundra at Denali National Park, a northern high latitude region that, as temperatures rise, will not become more conducive to vegetation growth—light is still essential to end of season photosynthesis.

Image: 
Luke Schiferl

New York, NY--July 6, 2020--Most projections about climate change assume that, as temperatures rise, regions in the north high latitudes may become more suitable for the growth of vegetation, turning into cropland to feed increasing populations while also fixing more carbon dioxide (CO2) and slowing down climate change. Plants require appropriate temperature, water, and light conditions for photosynthesis and growth, so it seems logical that as temperatures increase in the northern high latitudes, plant photosynthesis, which uses CO2 to release oxygen, should also increase. At the same time, plant respiration, which uses oxygen to release CO2 and is also highly dependent on temperature, is expected to increase, too. The critical question still under debate is whether autumn warming might lead to an increase in carbon uptake, i.e., the difference between photosynthesis and respiration.

A new Columbia Engineering study demonstrates that even when temperatures warm and cold stress is limited, light is still a major factor in limiting carbon uptake of northern high latitudes. The team, led by Pierre Gentine, associate professor of earth and environmental engineering, analyzed satellite observations, field measurements, and model simulations and showed that there is a prevalent radiation limitation on carbon uptake in northern ecosystems, especially in autumn. Using a new dataset, Gentine's group developed an algorithm to map global plant photosynthesis and then developed a framework to quantify the limitation of light on photosynthesis. The study is published today in Nature Climate Change.

"Previous studies have made different conclusions of whether autumn warming would fix or release more carbon," says Yao Zhang, the study's lead author who designed the new algorithm and is now a postdoc scholar at Lawrence Berkeley National Laboratory. "Our paper shows how to use a combination of remote sensing and in situ observations to resolve a controversy on carbon uptake."

Gentine's team found that, at northern latitudes that are more than 30N, the end-of-season photosynthesis response to warming is mostly dictated by light. In some of those regions in the fall, the length of daily light shortens very quickly. Less light leads to weaker photosynthesis, which in turn cannot offset the increased respiration induced by global warming. Because northern high latitudes have stronger light limitation, their vegetation will release more carbon in the fall if warming continues.

In the future, light limitation will increase as the vegetation growing season lengthens due to global warming. Earlier starts of the season in spring and later ends of the season in fall correspond to shorter day lengths and less solar radiation, posing a stronger light limit on vegetation photosynthesis.

"This light limitation increase will lower the potential ability of northern ecosystems to act as a continuous carbon sink," says Zhang. "Our study highlights the important role of solar radiation, which is usually ignored in climate change studies."

Discussing the new paper, Philippe Ciais, associate director of the Laboratoire des Sciences du Climat et de l'Environnement and an expert on the carbon cycle who was not involved with the study, emphasizes: "This is a very interesting study that demonstrates how the radiation, commonly regarded as static, will have a changing effect on carbon cycle along with global warming."

Credit: 
Columbia University School of Engineering and Applied Science

New study resolves mystery surrounding unique light-harvesting structures in algae

image: This study is the first to reveal details regarding the structure of the PSI-FCPI supercomplex, which could have various implications in plant biochemistry.

Image: 
2020 Okayama University

Organisms capable of photosynthesis--a biochemical process that converts solar energy into chemical energy--consist of special assemblies of proteins and pigments that capture the light energy efficiently. These assemblies are known as "light-harvesting complexes" (LHCs). They not only capture the sunlight but also initiate a series of events wherein energy is transmitted from one molecular complex to another, ultimately "trapping" the energy in the form of chemical bonds in organic compounds. Moreover, LHCs take part in the dissipation or "quenching" of excess energy under strong light, to protect the cells from light-induced damage, called photodamage. The conversion of light energy to chemical energy takes place in two distinct photosystems, photosystem I and II (PSI and PSII). The intriguing features of LHCs, including their structures and relationship with other molecules in the photosystems, have remained poorly understood.

Recently, researchers in Japan, led by Associate Professor Fusamichi Akita from Okayama University, have published a promising study in Nature Communications that revealed new structural details of the LHCI-PSI complex of an aquatic microorganism. Dr Akita explains, "To gain more insights into the process of photosynthesis, it is imperative to reveal the structural details of the proteins involved."

These scientists focused on a type of diatom, which is a photosynthetic organism prevalent in aquatic environments. These organisms are a unique type of algae--they produce almost 20% of Earth's oxygen as a by-product of their photosynthesis process and have developed different pigment molecules as part of their LHCs to absorb sunlight in different conditions. Diatoms are one of the major groups of the red lineage organisms, and their LHC proteins are also called fucoxanthin-chlorophyll a/c-binding proteins or FCPs, as they bind pigments "fucoxanthin" and chlorophyll a/c. But, how FCPs fit into the overall structure of the diatom PSI and take part in the energy flow is not very clear.

The scientists focused on understanding the structure of a specific FCP, called FCPI. To begin with, Dr Akita and his team captured high-resolution images of the FCPI-PSI macromolecular assembly using a technique called cryo-electron microscopy. They found that this complex has 16 subunits of FCPI surrounding the core of PSI. This discovery was exciting, as this was the largest number of LHC molecules ever reported to form a complex with PSI. They also found that while 9 of the subunits formed an inner ring that was connected to the core, 7 subunits formed an outer ring that had no direct interaction with the core. Further analysis of the structures and placement of the subunits led the scientists to gain additional insight: two unique FCP subunits were identified in the FCPI-PSI of the diatom, which had no counterpart in other algae or higher plants. The scientists could also trace the pathways by which energy transfers from one unit to another in the complex. It was revealed that the pigment molecules present among FCPI subunits not only transfer energy but also play a role in the quenching of excess energy. Dr Akita explains, "The unique structural formation of a large number of FCPI subunits in diatom PSI gives them special capabilities of light harvesting and energy quenching in the aquatic environment, where light is often limited and highly fluctuating in their intensity.''

Understanding the details of these unique photosynthetic complexes has important implications in the development of advanced solar devices. Dr Akita concludes, "Our research reveals the structural basis of an efficient energy harvesting and transfer process. The detailed mechanisms of light energy harvesting and utilization in photosynthesis could serve as models for the development of novel, efficient solar-energy utilization devices.''

Credit: 
Okayama University

Low-threshold topological nanolasers based on the second-order corner state

image: a, Scanning electron microscopy image of a fabricated 2D topological photonic crystal cavity in a square shape. The inset on the right shows an enlarged image around the corner. The scale bar is 1 μm. The topological nanocavity consists of two topologically distinct photonic crystals, which are indicated by the red and blue areas. They have different unit cells, as shown in the insets. d and D are the lengths of the squares in the blue and red unit cells, in which D = 2d. b, Electric field profile of the topological corner state.

Image: 
by Weixuan Zhang, Xin Xie, Huiming Hao, Jianchen Dang, Shan Xiao, Shushu Shi, Haiqiao Ni, Zhichuan Niu, Can Wang, Kuijuan Jin, Xiangdong Zhang and Xiulai Xu

The applications of topological photonics have been intensively investigated, including one-way waveguide and topological lasers. Especially, the topological lasers have attracted broad attention in recent years, which have been proposed and demonstrated in various systems, including 1D edge state in 2D systems, 0D boundary state in 1D lattice and topological bulk state around band edge. Most of them are at microscale. The topological nanolaser with small footprint, low threshold and high energy-efficiency has yet to be explored. Recently, a new type of higher-order topological insulators which have lower dimensional boundary state has been proposed and demonstrated in many systems, including 2D photonic crystal. In the second-order 2D topological photonic crystal slab, there exist the gapped 1D edge states and mid-gap 0D corner state. This localized corner state provides a new platform to realize topological nanolaser.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Xiulai Xu from Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, China, and collaborators have demonstrated a low-threshold topological nanolaser in 2D topological photonic crystal nanocavity. Based on the second-order corner state, a topological nanocavity is designed and fabricated. The quality factor (Q) is further optimized with a theoretical maximum of 50,000. The corner state is demonstrated to be robust against defects in bulk photonic crystal. A lasing behaviour with low threshold and high spontaneous emission coupling factor (β) is observed. The performance is comparable with that of conventional semiconductor lasers, indicating the great prospect in a wide range of applications for topological nanophotonic circuitry.

The topological nanocavity consists of two kinds of photonic crystal structure with the common bandstructure and different topologies which are characterized by 2D Zak phase. According to the bulk-edge-corner correspondence, the mid-gap 0D corner state can be induced by the quantized edge dipole polarization, which is highly localized at the intersection of two boundaries. The Q is optimized with smoother spatial distribution of corner state by adjusting the gap distance (g) between the trivial and nontrival photonic crystal slabs.

The designed topological nanocavities with different parameters are fabricated into GaAs slabs with a high density of InGaAs quantum dots. The trend of Q with g agrees well with the theoretical prediction, while the values are approximately an order of magnitude lower than the theoretical prediction due to the fabrication imperfection. Although the Q and resonance wavelength of the corner state are susceptible to disorder around the corner, the corner state is topologically protected by the nontrivial 2D Zak phases of the bulk band and robust against to the defects in bulk photonic crystal, which has been demonstrated experimentally.

A lasing behavior with high performance is observed at 4.2 K with quantum dots as the gain medium. The lasing threshold is about 1 μW and β is about 0.25. The performance is much better than that of topological edge lasers, especially the threshold which is about three orders of magnitude lower than most of the topological edge lasers. The high performance results from the strong optical confinement in the cavity due to the small mode volume and high Q.

This result downscales the applications of topological photonics into nanoscale, which will be of great significance to the development of topological nanophotonic circuitry. Furthermore, the topological nanocavity can greatly enhance light-matter interaction, therefore enabling the investigation of cavity quantum electrodynamics and the further potential applications in topological nanophotonic devices.

Credit: 
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

New vitamin K-based drug shows promise against medication-resistant epilepsy

image: Dr. James Chou (left) and Dr. Sherine Chan (right) of the Medical University of South Carolina.

Image: 
Sarah Pack, Medical University of South Carolina

In the cover article of the June 11 issue of the Journal of Medicinal Chemistry, a team of researchers at the Medical University of South Carolina, led by Sherine Chan, Ph.D., and James Chou, Ph.D., reports that a new vitamin K-based drug has proved effective in mouse models of medication-resistant seizures.

Chan and Chou, both associate professors in the Department of Drug Discovery and Biomedical Sciences in MUSC's College of Pharmacy, are two of the co-founders of Neuroene Therapeutics, a startup company with the mission of developing therapies for medication-resistant conditions, such as epilepsy, caused by mitochondrial dysfunction.

Of the 3.4 million patients with epilepsy in the U.S., about one-third live with medication-resistant epilepsy, meaning that their seizures cannot be controlled. Uncontrolled seizures can occur suddenly, without warning, putting patients at higher risk for injury and reducing quality of life. These patients are in urgent need of new treatment options.

The compound developed by Chan and Chou, a modified form of naturally occurring vitamin K, completely eliminated seizure activity in the mouse models.

"The cool thing about our drug is that it is orally bioavailable, has excellent brain penetration, is rapidly distributed in the central nervous system and is well-tolerated in mice and rats," said Chan.

"It's so exciting because it's a new class of anti-seizure drug compound, and it's literally vitamins," said Chou. "It is structurally unique and unlike a lot of compounds out there."

The successful vitamin K analog was developed along with 22 other compounds, all of which were modifications of the naturally occurring vitamin K molecule. All candidates were tested for their effectiveness in controlling seizures in different epilepsy types in mice. The authors believe it is the unique structure they have designed for this particular molecule that makes it effective in controlling medication-resistant, or refractory, seizures.

Epilepsy can be caused by mitochondrial dysfunction in brain cells that affects their ability to produce energy. Chan and Chou have a long history of working on conditions caused by mitochondrial dysfunction, and, since starting at MUSC in 2009, they have been working together to develop treatments for mitochondrial dysfunction.

"Mitochondria produce most of the energy for the cell," explained Chan. "When mitochondria are damaged, cells have a tough time producing sufficient energy. Brain cells require a significant amount of energy, and so mitochondrial dysfunction affects their function. This dysfunction is an underlying cause of many neurological diseases, including epilepsy, Parkinson's disease and rare mitochondrial disorders."

Treatment with the compound increased the brain cells' ability to produce energy, the study showed. The researchers believe this could be the key to figuring out the mechanism by which the vitamin K analog actually works to control seizures.

The study tested the drug in mouse brain cells, followed by a widely used zebra fish seizure model and finally multiple mouse seizure models representing different types of epilepsy. After obtaining promising results in brain cells and zebra fish, the team was thrilled to see that they could eliminate seizure activity in all mice tested, said Chou.

Few treatment options are currently available for those with medication-resistant epilepsy, according to Chan. "Treatments include going on a ketogenic diet, implanting a responsive neurostimulation device in the brain, vagus nerve stimulation (through an implant in the brain) and epilepsy surgery," she added.

Apart from being invasive, these treatments are not 100% effective. They are also usually coupled with other broad-spectrum anti-seizure medications. The use of implants in the brain also comes with the risk of infection and surgical complications.

The 25 or so anti-seizure drugs currently on the market are used for a variety of seizure types. Many of these drugs are used in combination, and many can have toxic side effects, said Chan, particularly for patients with mitochondrial dysfunction. In contrast, the new vitamin K analog remains non-toxic up to a dose of 800 mg/kg and protects mitochondrial health.

Chou emphasized that there is still a long way to go before patients can benefit from this new compound in the clinic. The next step for Neuroene is to secure federal funding and/or private investment to take the compound through the Investigational New Drug Application with the Food and Drug Administration. This is a crucial preclinical step in determining the safety and effectiveness of the compound before it is tested in human clinical trials. If funding is available, Chou predicts that the compound could be in clinical trial within two years.

Chan and Chou are optimistic that this new class of drugs will be an important new treatment option, not only for epilepsy but also for other mitochondrial dysfunction disorders such as Parkinson's disease.

"We are targeting a new mechanism of action -- mitochondrial dysfunction -- that's a big underlying cause for neurological disease," said Chan. "If you are able to protect your mitochondria and help them function well and make enough energy, then you will help your brain cells to stay alive and do their job. That's how we believe this compound is helping with neurological diseases."

Credit: 
Medical University of South Carolina

High-order synthetic dimensions in waveguide photonic lattices

image: Discrete diffraction and Bloch oscillations in abstract Fock-space that emerge from a simple two-waveguide beam splitter system excited by the ten-photon state.

Image: 
MBI

In physics, a very intuitive way of describing the evolution of a system proceeds via the specification of functions of the spatiotemporal coordinates. Yet, there often exist other degrees of freedom in terms of which the physical entities pertaining to a variety of structures can be seen to evolve and that are not amenable to a description via spatial coordinates.

This is precisely the idea of synthetic dimensions: coexisting frameworks in which a wavefunction, defined in specific degrees of freedom, takes another form that "lives" in a domain with much higher dimensions than what the structures' (apparent) geometry would suggest. This approach is rather appealing as it can be used to access and probe dimensions beyond our 3-dimensional world, e.g. 5-dimensional or 8-dimensional, etc.

In our recent work we have shown that a multitude of high-dimensional synthetic lattices naturally emerge in (abstract) photon-number space when a multiport photonic lattice is excited by N indistinguishable photons (see Fig. 1). More precisely, the Fock-representation of N-photon states in systems composed of M evanescently coupled single-mode waveguides yields to a new layer of abstraction, where the associated states can be visualized as the energy levels of a synthetic atom. In full analogy with ordinary atoms, such synthetic atoms feature allowed and disallowed transitions between its energy levels.

These concepts have far-reaching implications as they open a route to the simultaneous realization of, in principle, an infinite number of lattices and graphs with different numbers of nodes and many dimensions. This possibility is rather appealing for realizing parallel quantum random walks where the corresponding walkers can perform different numbers of steps on different, planar and nonplanar, multidimensional graphs that depend on the number of photons involved in each process. These quantum walks can be implemented, for instance, by exciting a simple four-waveguide system with a standard quantum light source comprising infinite coherent superpositions of states, e.g. a coherent state |α>(Fig. 1). Similarly, the symmetric excitation of a two-waveguide system with identical photons, when properly viewed in abstract space, feature the phenomena of discrete diffraction and Bloch oscillations (Fig. 2).

Credit: 
Forschungsverbund Berlin

Order from noise: How randomness and collective dynamics define a stem cell

image: Five consecutive microscopic images of the mammary gland, taken over 8 hours, show the random movement of stem cells that make the cells spread through the tissue. All cells of the same lineage are marked.

Image: 
Colinda Scheele / Oncode Institute

Stem cells are central to organ development and renewal. In most organs, stem cells are located in specific regions and, in some cases, can be identified through several intrinsic properties, like molecular markers. They can differentiate into various types of cells and divide indefinitely to produce more stem cells. However, does this mean the stem cell at the top is immortal? Or can any cell overthrow this? The scientific community is in an open debate whether stem cells actually arise from intrinsic cell properties or from the collective dynamics of the tissue itself. In this second scenario, potential stem cells are in constant competition to sit in certain "niche" regions. Each cell wants to overtake its neighbor by replication and, therefore, continuously pushes them. The functional stem cell will be the one that wins this competition, while losers will be pushed away from the niche, differentiate, and ultimately die.

Here, the Hannezo group at IST Austria looked at the mechanism to overcome such pushing forces away from the niche, in collaboration with researchers from the National Cancer Institute of Netherlands and the University of Cambridge. They used a live-imaging microscope to record stem cell movements in the breast, intestine, and kidney tissue. The team found that in addition to constant flow and pushing forces, many random movements were observed. Why would those be important? "A famous saying in real estate business is "location, location, location." In the case of stem cells, this saying transfers to a location determining stemness (rather than the other way around). Then, random movements become key, as they allow you to get to the right location even if you started in the wrong one." summarizes Edouard Hannezo.

Under that framework, the tissues look like the exit of the subway station in the rush hour, with some people able to randomly turn back against the drift of the mass, trying to take the subway again. Under this metaphor, random movements are key to allow cells away from the stem cell niche to eventually go back to it. "We wanted to know what defines the number and dynamics of the stem cells, and to what extent this could be answered by mathematically exploring only the movements of the cells and the geometry of the organs," says Bernat Corominas-Murtra, the leading scientist in this study. They then mathematically mapped this noisy cell dynamics into the geometry of the organs and could predict, among others, the number of functional stem cells (the ones that can get to the right location in time, given the amount of noise/mobility in the system). They found that during tissue renewal or growth, stem cell regions developed naturally, without needing to make assumptions on the molecular nature of the cells. Therefore, the scientists showed that the dynamics and geometry alone play an essential role.

Bernat Corominas-Murtra describes their results: "You would expect that the randomness of cell movements blurs the properties of the system or makes it more unstable. Instead, it is key for the emergence of robust, complex patterns like the stem cell region, which remarkably coincides with the one previously identified using biomolecular markers of individual cells." These results contribute to the open debate on the nature of stem cells in tissues and potentially opens a new dimension in the understanding of organ renewal.

Credit: 
Institute of Science and Technology Austria

Cranfield academics call for 'Five Capitals' approach to global resilience

Writing in the leading academic journal, Nature, Cranfield academics are calling for global resilience to be shaped around the 'Five Capitals' - natural, human, social, built and financial. The academics believe that too often silos exist within Government and within organisations and businesses that mean risks are not anticipated quickly enough or prepared for well enough.

Crucially, connections are not made between different parts of society. A recent example of this was illustrated in when two Permanent Secretaries in the UK Government revealed that previous exercises to tackle pandemics had not included any economic planning.

Professor Jim Harris, Professor of Environmental Technology at Cranfield University, and lead author of the published letter in Nature, said: "Too often risks are identified in isolation and opportunities are missed because Government and organisations are too siloed. Take climate change that is not just an environmental issue it effects all parts of society and contains threats to the global economy and our health and wellbeing. A 'Five Capitals' approach to resilience would enable us to examine interconnected risks and their interdependencies."

Professor David Denyer, who leads on resilience for Cranfield University, said: "Investment to often made in resilience far too late, usually just at the start of a crisis. If you look at Covid-19, the Government had identified a similar pandemic risk on the national risk register but the resources needed to prepare for the threat across society had not been deployed.

"At Cranfield, we are working across academic disciplines to shape an approach to resilience that draws on the expertise of colleagues in management, environmental science and engineering, aviation, defence and security and many other areas of the university. We believe this approach is one that other organisations should draw on as they look to identify future risks and prepare for the future."

Credit: 
Cranfield University

Age-related impairments reversed in animal model

image: With age the frequency of adipose tissue eosinophils decreases gradually. This leads to the production of inflammatory mediators, which promote age-related impairments (e.g. frailty and immunosenescence). Eosinophil cell transfers increase the frequency of these cells in adipose tissue and dampen age-related chronic low-grade inflammation. This results in systemic rejuvenation of the aged organism.

Image: 
DBMR, University of Bern, D. Brigger

Elderly people are more prone to infectious diseases as the function of their immune system continuously declines with progression of age. This becomes especially apparent during seasonal influenza outbreaks or the occurrence of other viral diseases such as COVID-19. As the efficacy of vaccination in the elderly is strongly reduced, this age group is particularly vulnerable to such infectious pathogens and often shows the highest mortality rate. In addition to the age-related immune decline aged individuals are commonly affected by frailty that negatively impacts quality-of-life. Even though the average life-expectancy for humans continuous to rise, living longer is often associated with age-related health issues.

Important role of belly fat in aging processes identified

Researchers from the Department for BioMedical Reserarch (DBMR) and the Institute of Pathology at the University of Bern as well as the University Hospital Bern (Inselspital) have set out to identify new approaches to improve health-span in a fast-growing aging population. For many years scientists speculated that chronic low-grade inflammation accelerates aging processes and the development of age-related disorders. An international team of researchers under Bernese guidance has now demonstrated that visceral adipose tissue, known as belly fat, crucially contributes to the development of chronic low-grade inflammation. Scientist around Dr. Mario Noti, formerly at the Institute of Pathology of the University of Bern and Dr. Alexander Eggel from the Department for BioMedical Research (DBMR) of the Universität of Bern reported that certain immune cells in the belly fat play and an essential role in regulating chronic low-grade inflammation and downstream aging processes. They could show, that these immune cells may be used to reverse such processes. The findings of this study have been published in the scientific journal &laquoNature Metabolism»and were further highlighted by a News and Views editorial article.

Belly fat as a source of chronic inflammation

The team around Dr. Noti and Dr. Eggel could demonstrated that a certain kind of immune cells, known as eosinophils, which are predominantly found in the blood circulation, are also present in belly fat of both humans and mice. Although classically known to provide protection from parasite infection and to promote allergic airway disease, eosinophils located in belly fat are responsible to maintain local immune homeostasis. With increasing age the frequency of eosinophils in belly fat declines, while the number of pro-inflammatory macrophages increases. Owing to this immune cell dysbalance, belly fat turns into a source of pro-inflammatory mediators accumulating systemically in old age.

Eosinophil cell therapy promotes rejuvenation

In a next step, the researchers investigated the possibility to reverse age-related impairments by restoring the immune cell balance in visceral adipose tissue. "In different experimental approaches, we were able to show that transfers of eosinophils from young mice into aged recipients resolved not only local but also systemic low-grade inflammation", says Dr. Eggel. "In these experiments, we observed that transferred eosinophils were selectively homing into adipose tissue", adds Dr. Noti. This approach had a rejuvenating effect on the aged organism. As a consequence, aged animals showed significant improvements in physical fitness as assessed by endurance and grip strength tests. Moreover, the therapy had a rejuvenating effect on the immune system manifesting in improved vaccination responses of aged mice.

Translating findings into clinics

"Our results indicate that the biological processes of aging and the associated functional impairments are more plastic than previously assumed", states Dr. Noti. Importantly, the observed age-related changes in adipose immune cell distribution in mice were also confirmed in humans. "A future direction of our research will be to now leverage the gained knowledge for the establishment of targeted therapeutic approaches to promote and sustain healthy aging in humans", says Dr. Eggel.

Credit: 
University of Bern

Innovations for sustainability in a post-pandemic future

The COVID-19 pandemic has thrust the world into turmoil and disrupted the status quo, but it is also providing opportunities for innovation in the way we live and work. According to the latest report released by The World in 2050 (TWI2050) initiative, the crisis can provide an opportunity to create sustainable societies with higher levels of wellbeing for all.

The third report released by the TWI2050 initiative titled, Innovations for Sustainability: Pathways to an efficient and sufficient post-pandemic future, assesses the positive potential benefits innovation brings to sustainable development for all, while also highlighting the potential negative impacts and challenges going forward. The document outlines strategies to harness innovation for sustainability by focusing on efficiency and sufficiency in providing services to people, with a particular focus on human wellbeing.

"The transformation to a sustainable future is achievable--we have the knowledge, means, and capacity, despite the magnitude of the challenge and the current unsustainable direction of development, additionally impacted by the COVID-19 pandemic. We believe that this report will provide policy- and decision makers around the world with invaluable new knowledge to inform action and commitment toward achieving the Sustainable Development Goals (SDGs) in these interesting and challenging times," explains Director of TWI2050 and IIASA Emeritus Research Scholar Nebojsa Nakicenovic.

According to the authors, with only 10 years left until 2030, there is a general lack of political will on the part of many governments across the globe to mobilize the necessary resources and make the required policy and structural changes to achieve the goals set out in the UN's 2030 Agenda and its 17 SDGs. The level of global commitment and cooperation displayed during the development of the 2030 Agenda, however, needs to continue and deepen during this critical implementation phase. In this regard, the report aims to provide a way forward toward a sustainable future in a 'new' post COVID-19 world that will divert from the 'old' alternatives that both transcend the planetary boundaries and leave billions behind.

The new report highlights the need for better governance for integrated SDG implementation, inclusive political institutions, and the importance of science, technology, and innovation in providing possible solutions for achieving a sustainable future for people and the planet. In this regard, the authors for instance, point out that small-scale, granular innovations can be expected to have faster adoption and diffusion, lower investment risk, faster learning, more opportunities to escape lock-in, more equitable access, higher job creation, and larger social returns on innovation investment, which are all advantages that could enable rapid change. The six transformations required for sustainable development laid out in the initiative's 2018 report, Transformations to Achieve the Sustainable Development Goals, namely human capacity, demography and health; consumption and production; decarbonization and energy; food, biosphere, and water; smart cities; and the digital revolution, are also reiterated.

"The current rate and direction of innovation is insufficient, in part due to a relatively narrow focus on technology innovation without also addressing societal, institutional, cultural, and governance innovation. It is time to rebalance, so that all dimensions of innovation are promoted simultaneously, while also addressing inequities. In light of the current crisis the world finds itself in as a result of the COVID-19 pandemic, the launch of this report during the UN High-level Political Forum, is timely," comments Johan Rockström, Director of the Potsdam Institute for Climate Impact Research (PIK).

The report further states that transforming service-provisioning systems is about safeguarding human needs and sharing available resources fairly within planetary boundaries. The central question is which types of technological and social innovations can contribute to decreasing inequalities, increasing resilience and society's collective ability to deal with crises, while also decreasing the pressures on natural resources.

"Achieving accelerated change will depend on the world moving away from a supply-driven model of development to one that is low-demand and services-driven, based on efficiency and sufficiency, while also focused on providing wellbeing and decent living standards for all," says IIASA Emeritus Research Scholar Arnulf Grubler.

The COVID-19 pandemic has demonstrated system-wide weaknesses in implementing an early and effective global response. However, if the right lessons are learned, it provides significant opportunities to accelerate the societal consensus and political reforms needed to achieve the transformation toward sustainability.

"We highlight the prioritization and renewal of the science-policy-society interface for evidence-based transformations built on a culture of trust, academic freedom, communication of accurate information, and a reinvigoration of global science organizations, highlighting that transnational crises require global context-sensitive responses. In this regard, investing financial resources and nonmonetary support to assist local and municipal actors and international organizations is key," concludes Julia Leininger, head of the department "Transformation of Political (Dis-)order" at the German Development Institute / Deutsches Institut für Entwicklungspolitik (DIE).

The report is based on the voluntary and collaborative effort of more than 60 authors and contributors from around 20 institutions globally, who met virtually to develop science-based strategies and pathways toward achieving the SDGs. The report will be launched during a virtual side event of the UN High-level Political Forum 2020 on Tuesday, 7 July 2020 from 14:00 to 15:00 CET. Please register to join the event virtually: https://www.viennaenergyforum.org/content/hlpf-2020-side-event-registration

Credit: 
International Institute for Applied Systems Analysis

NASA finds wind shear battering tropical storm Edouard

image: On July 6 at 1:45 a.m. EDT (0545 UTC), the MODIS instrument aboard NASA's Aqua satellite gathered temperature information about Tropical Storm Edouard's cloud tops. MODIS found a small area of powerful thunderstorms (red) where temperatures were as cold as or colder than minus 70 degrees Fahrenheit (minus 56.6 Celsius). MODIS also showed westerly wind shear was pushing the bulk of clouds northeast of the storm's center.

Image: 
NASA/NRL

The latest tropical storm in the Atlantic Ocean formed one day ago and was already being battered by wind shear. NASA's Aqua satellite imagery revealed Tropical Storm Edouard's strongest storms were being displaced by strong southwesterly winds.

Born on the fourth of July, the fifth tropical depression of the Atlantic Ocean hurricane season strengthened into a tropical storm and was renamed.  At 11 p.m. EDT on July 5 (0300 UTC, July 6), Tropical Depression 5 strengthened into Tropical Storm Edouard.

On July 6 at 1:45 a.m. EDT (0545 UTC), the MODIS instrument aboard NASA's Aqua satellite analyzed Tropical Storm Edouard's cloud tops in infrared light. Infrared data provides temperature information, and the strongest thunderstorms that reach high into the atmosphere have the coldest cloud top temperatures.

The Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite found a small area of powerful thunderstorms northeast of the center of circulation, where temperatures were as cold as or colder than minus 70 degrees Fahrenheit (minus 56.6 Celsius). Cloud top temperatures that cold indicate strong storms with the potential to generate heavy rainfall. Southwesterly wind shear was pushing the strongest storms northeast of the tropical cyclone's center. Satellite imagery indicates that the rest of Edouard was comprised of an exposed swirl of low- to mid-level clouds.

In general, wind shear is a measure of how the speed and direction of winds change with altitude. Tropical cyclones are like rotating cylinders of winds. Each level needs to be stacked on top each other vertically in order for the storm to maintain strength or intensify. Wind shear occurs when winds at different levels of the atmosphere push against the rotating cylinder of winds, weakening the rotation by pushing it apart at different levels. Winds from the west were displacing the bulk of clouds and showers from Edouard and pushing them to the east.

At 5 a.m. EDT (0900 UTC) on July 6, the center of Tropical Storm Edouard was located near latitude 39.0 degrees north and longitude 53.6 degrees west. It was centered about 530 miles (855 km) south of Cape Race, Newfoundland, Canada. Maximum sustained winds were near 40 mph (65 kph) with higher gusts. The estimated minimum central pressure is 1008 millibars.

Little significant change in strength is forecast before Edouard becomes post-tropical later in the day. Edouard was moving toward the northeast near 36 mph (57 kph) and this motion is expected to continue for the next couple of days, as it tracks toward the United Kingdom.

National Hurricane Center forecaster Jack Beven noted, "The cyclone is located in a region of strong southwesterly vertical wind shear, is heading for colder water, and is approaching a frontal system.  This combination should lead to extratropical transition between 12 to 24 hours, and it is possible that Edouard could strengthen a little as transition occurs.  After transition, the extratropical low should persist for another 24 hours or so before the circulation dissipates."

Typhoons/hurricanes are the most powerful weather events on Earth. NASA's expertise in space and scientific exploration contributes to essential services provided to the American people by other federal agencies, such as hurricane weather forecasting.

Credit: 
NASA/Goddard Space Flight Center

How does Earth sustain its magnetic field?

Washington, DC-- How did the chemical makeup of our planet's core shape its geologic history and habitability?

Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles from the solar wind and more far-flung cosmic rays. It is continuously generated by the motion of liquid iron in Earth's outer core, a phenomenon called the geodynamo.

Despite its fundamental importance, many questions remain unanswered about the geodynamo's origin and the energy sources that have sustained it over the millennia.

New work from an international team of researchers, including current and former Carnegie scientists Alexander Goncharov, Nicholas Holtgrewe, Sergey Lobanov, and Irina Chuvashova examines how the presence of lighter elements in the predominately iron core could affect the geodynamo's genesis and sustainability. Their findings are published by Nature Communications.

Our planet accreted from the disk of dust and gas that surrounded our Sun in its youth. Eventually, the densest material sank inward in the forming planet, creating the layers that exist today--core, mantle, and crust. Although, the core is predominately iron, seismic data indicates that some lighter elements like oxygen, silicon, sulfur, carbon, and hydrogen, were dissolved into it during the differentiation process.

Over time, the inner core crystallized and has been continuously cooling since then. On its own, could heat flowing out of the core and into the mantle drive the geodynamo? Or does this thermal convection need an extra boost from the buoyancy of light elements, not just heat, moving out of a condensing inner core?

Understanding the specifics of the core's chemical composition can help answer this question.

Silicates are predominant in the mantle, and after oxygen and iron, silicon is the third-most-abundant element in the Earth, so it is a likely option for one of the main lighter elements that could be alloyed with iron in the core. Led by Wen-Pin Hsieh of Academia Sinica and National Taiwan University, the researchers used lab-based mimicry of deep Earth conditions to simulate how the presence of silicon would affect the transmission of heat from the planet's iron core out into the mantle.

"The less thermally conductive the core material is, the lower the threshold needed to generate the geodynamo," Goncharov explained. "With a low enough threshold, the heat flux out of the core could be driven entirely by the thermal convection, with no need for the additional movement of material to make it work."

The team found that a concentration of about 8 weight percent silicon in their simulated inner core, the geodynamo could have functioned on heat transmission alone for the planet's entire history.

Looking forward, they want to expand their efforts to understand how the presence of oxygen, sulfur, and carbon in the core would influence this convection process.

Credit: 
Carnegie Institution for Science

Epigenetics: What the embryo can teach us about cell reprogramming

image: Heterochromatin in the early embryo.

Image: 
Helmholtz Zentrum München

Prof. Maria-Elena Torres-Padilla, Director of the Institute of Epigenetics and Stem Cells at Helmholtz Zentrum München and her colleague Dr. Adam Burton are doing pioneering work in this field.

Why would we want to reprogram cells?

Maria-Elena: Can you imagine being able to artificially generate cells that can develop into any cell type? That would be really fantastic! We call this ability 'totipotency' and it is the highest level of cellular plasticity. When you think about using healthy cells to replace sick cells, for example in regeneration and replacement therapies, you need to think about how to generate those 'new' healthy cells. For that, you often need to 'reprogram' other cells, that means, to be able to change one cell into the cell type of interest.

In nature, cellular reprogramming happens in the early embryo at fertilization. It is a purely epigenetic process since the DNA content of the embryo's cells does not change, only the genes they express. Epigenetics mediates changes in gene expression meaning the way our genes are 'read' from our genetic makeup, which is largely imposed by chromatin. Chromatin is the structure, in which the DNA of a cell is packed into, so that it can fit into the tiny nucleus of a cell, and heterochromatin refers to the part of our DNA that is tightly packed and not accessible.

Heterochromatin is known to be a major bottleneck for artificial cell reprogramming. In embryos, however, the process of cell reprogramming is extremely efficient, some people even think that it is 100% efficient. Therefore, we wanted to understand how the embryo 'keeps heterochromatin in check' so that reprogramming can occur. Adopting strategies for reprogramming based on our knowledge of how the embryo does it, is very promising. These strategies can help us to increase the efficiency of reprogramming for regenerative medicine - an outstanding opportunity and research priority of the years to come.

How does the embryo deal with heterochromatin?

Adam: Heterochromatin is tightly controlled in the embryo from early on. In a mouse model, we saw that the histone* modification H3K9me3, which is the classical marker of heterochromatin, is in fact present in the embryo from early on. Usually, H3K9me3 correlates strongly with gene silencing, meaning that the genes cannot be 'read' from our genetic makeup. However, we observed that in the very early embryo, this is surprisingly not the case and that H3K9me3 is compatible with gene expression! One of our major findings was to discover that the enzyme, which adds the H3K9me3 mark to the histone, is inhibited by a non-coding RNA, that means there is an active process in the early embryo that counteracts the establishment of fully functional heterochromatin. Globally, we concluded that heterochromatin in the early mammalian embryo is immature because it cannot fulfill its typical function. This is probably due to the absence of other critical heterochromatic factors, which we are now also currently investigating.

How could we use this new knowledge for artificial cell reprogramming?

Maria-Elena: Essentially, what our work documents is a potential way to 'tune' down heterochromatin. These findings will provide us with the factors that we can manipulate for making artificial cell reprogramming more efficient and achieve higher cell conversion rates. The key take-home message is that we can learn from the epigenetic remodeling that occurs during the natural process of reprogramming in embryos at fertilization and can transfer this knowledge to improve currently inefficient artificial reprogramming strategies. In fact, learning lessons from the embryo will enable the more efficient and timely generation of high-quality, fully reprogrammed stem cells, which are vital for the full implementation of regenerative medicine approaches in the clinic.

*Histones are basic proteins that are important for the packaging of the DNA into chromatin. The DNA wraps around a histone octamer and this structure is known as nucleosome. Generally, chromatin consists of arrays of nucleosomes and under the microscope this structure looks like beads-on-a-string.

Credit: 
Helmholtz Munich (Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH))

Flashes bright when squeezed tight: How single-celled organisms light up the oceans

video: Short clip of the bioluminescent dinoflagellate Pyrocystis lunula.

Image: 
Maziyar Jalaal/University of Cambridge

Research explains how a unicellular marine organism generates light as a response to mechanical stimulation, lighting up breaking waves at night.

Every few years, a bloom of microscopic organisms called dinoflagellates transforms the coasts around the world by endowing breaking waves with an eerie blue glow. This year's spectacular bloom in southern California was a particularly striking example. In a new study published in the journal Physical Review Letters, researchers have identified the underlying physics that results in light production in one species of these organisms.

The international team, led by the University of Cambridge, developed unique experimental tools based on micromanipulation and high-speed imaging to visualize light production on the single-cell level. They showed how a single-celled organism of the species Pyrocystis lunula produces a flash of light when its cell wall is deformed by mechanical forces. Through systematic experimentation, they found that the brightness of the flash depends both on the depth of the deformation and the rate at which it is imposed.

Known as a 'viscoelastic' response, this behavior is found in many complex materials such as fluids with suspended polymers. In the case of organisms like Pyrocystis lunula, known as dinoflagellates, this mechanism is most likely related to ion channels, which are specialized proteins distributed on the cell membrane. When the membrane is stressed, these channels open up, allowing calcium to move between compartments in the cell, triggering a biochemical cascade that produces light.

"Despite decades of scientific research, primarily within the field of biochemistry, the physical mechanism by which fluid flow triggers light production has remained unclear," said Professor Raymond E. Goldstein, the Schlumberger Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics, who led the research.

"Our findings reveal the physical mechanism by which the fluid flow triggers light production and show how elegant decision-making can be on a single-cell level," said Dr Maziyar Jalaal, the paper's first author.

Bioluminescence has been of interest to humankind for thousands of years, as it is visible as the glow of night-time breaking waves in the ocean or the spark of fireflies in the forest. Many authors and philosophers have written about bioluminescence, from Aristotle to Shakespeare, who in Hamlet wrote about the 'uneffectual fire' of the glow-worm; a reference to the production of light without heat:

"...

To prick and sting her. Fare thee well at once.

The glowworm shows the matin to be near,

And 'gins to pale his uneffectual fire.

Adieu, adieu, adieu. Remember me."

The bioluminescence in the ocean is, however, not 'uneffectual.' In contrast, it is used for defense, offense, and mating. In the case of dinoflagellates, they use light production to scare off predators.

The results of the current study show that when the deformation of the cell wall is small, the light intensity is small no matter how rapidly the indentation is made, and it is also small when the indentation is large but applied slowly. Only when both the amplitude and rate are large is the light intensity maximized. The group developed a mathematical model that was able to explain these observations quantitatively, and they suggest that this behavior can act as a filter to avoid spurious light flashes from being triggered.

In the meantime, the researchers plan to analyze more quantitatively the distribution of forces over the entire cells in the fluid flow, a step towards understanding the light prediction in a marine context.

Other members of the research team were postdoctoral researcher Hélène de Maleprade, visiting students Nico Schramma from the Max-Planck Institute for Dynamics and Self-Organization in Göttingen, Germany and Antoine Dode from the Ècole Polytechnique in France, and visiting professor Christophe Raufaste from the Institut de Physique de Nice, France.

The work was supported by the Marine Microbiology Initiative of the Gordon and Betty Moore Foundation, the Schlumberger Chair Fund, the French National Research Agency, and the Wellcome Trust.

Credit: 
University of Cambridge