Earth

NTU study of ancient corals in Indonesia reveals slowest earthquake ever recorded

image: The NTU Asian School of the Environment team behind the study of ancient corals in Indonesia include (L-R): Associate Professor Emma Hill, PhD student Rishav Mallick and Assistant Professor Aron Meltzner.

Image: 
NTU Singapore

A 'slow-motion' earthquake lasting 32 years - the slowest ever recorded - eventually led to the catastrophic 1861 Sumatra earthquake, researchers at the Nanyang Technological University, Singapore (NTU Singapore) have found.

The NTU research team says their study highlights potential missing factors or mismodelling in global earthquake risk assessments today.

'Slow motion' earthquakes or 'slow slip events' refer to a type of long, drawn-out stress release phenomenon in which the Earth's tectonic plates slide against one another without causing major ground shaking or destruction. They typically involve movements of between a few cm/year to cm/day.

The NTU team made the surprise discovery while studying historic sea-levels using ancient corals called 'microatolls' at Simeulue Island, located off the coast of Sumatra. Growing both sideways and upwards, the disc-shaped coral microatolls are natural recorders of changes in sea level and land elevation, through their visible growth patterns.

Using data from the microatolls and combining them with simulations of the motion of the Earth's tectonic plates, the NTU team found that from 1829 until the Sumatra earthquake in 1861, south-eastern Simeulue Island was sinking faster than expected into the sea.

This slow slip event was a gradual process that relieved stress on the shallow part of where two tectonic plates met, said the NTU team. However, this stress was transferred to a neighbouring deeper segment, culminating in the massive 8.5 magnitude earthquake and tsunami in 1861 which led to enormous damage and loss of life.

The discovery marks the longest slow slip event ever recorded and will change global perspectives on the timespan and mechanisms of the phenomenon, says the NTU team. Scientists previously believed that slow slip events take place only over hours or months, but the NTU research shows that they could, in fact, go on for decades without triggering the disastrous shaking and tsunamis seen in historical records.

Lead author of the study, Rishav Mallick, a PhD student at the NTU Asian School of Environment, said, "It is interesting just how much we were able to discover from just a handful of ideally located coral sites. Thanks to the long timespans of the ancient corals, we were able to probe and find answers to secrets of the past. The method that we adopted in this paper will also be useful for future studies of other subduction zones - places that are prone to earthquakes, tsunamis, and volcanic eruptions. Our study can therefore contribute to better risk assessments in future."

Co-author Assistant Professor Aron Meltzner from the Earth Observatory of Singapore at NTU said, "When we first found these corals more than a decade ago, we knew from their growth patterns that something strange must have been going on while they grew. Now we finally have a viable explanation."

The findings, published in the peer-reviewed scientific journal Nature Geoscience in May, led the authors to suggest that current earthquake risk assessments may be overlooking ongoing slow slip events in the observations, and hence not properly considering the potential for slow slip events to trigger future earthquakes and tsunamis.

Possible 'slow motion' earthquake ongoing at Enggano Island

Located far from land below kilometres of water, the shallower part of the subduction zone is typically 'quieter' and does not produce as many earthquakes. Its distant location also makes it difficult for land-based scientific instruments to detect activities and for scientists to understand what is going on.

Many scientists have therefore tended to interpret the 'quietness' of the shallow part of the subduction zone to mean that the tectonic plates lying underneath to be sliding along steadily and harmlessly.

Though this might be correct in some cases, the NTU study found that this sliding is not as steady as assumed and can occur in slow slip events.

Elaborating on their findings, Rishav said, "Because such slow slip events are so slow, we might have been missing them as current instrumental records are generally only up to ten years long."

He added, "If similar behaviour is observed leading up to earthquakes elsewhere, this process might eventually be recognised as an earthquake precursor."

Tapping on their methodology in the research, the NTU team also highlighted a potential ongoing drawn-out slow slip event at Enggano Island, Indonesia, located at about 100 km (60 miles) southwest of Sumatra.

Asst Prof Meltzner said, "If our findings are correct, this would mean that the communities living nearby this Indonesian island are potentially facing higher risk of tsunami and earthquake than what was previously thought. This suggests that models of risk and mitigation strategies need updating."

Credit: 
Nanyang Technological University

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research

image: Modelling highlights the reliance on controversial carbon dioxide removal or CCS (size of circle) of various growth pathways to limit global warming, compared to 'degrowth' , which is on track to achieve climate targets under historical trends, i.e. minimal technological changes (small black dots near zero).
Scenarios include: Negative Emissions Technologies (NETs); Full NETs; No Net Negative Emissions (NoNNE) where only residual emissions from cement and flaring are removed; increased renewable energy (RE); energy efficiency/GDP decoupling (Dec); ClimateAnalytics assumptions and Utopian technology transformation.

Image: 
Lorenz Keyßer

The first comprehensive comparison of 'degrowth' scenarios with established pathways to limit climate change highlights the risk of over-reliance on carbon dioxide removal, renewable energy and energy efficiency to support continued global growth - which is assumed in established global climate modelling.

Degrowth focuses on the global North and is defined as an equitable, democratic reduction in energy and material use while maintaining wellbeing. A decline in GDP is accepted as a likely outcome of this transition.

The new modelling by the University of Sydney and ETH Zürich includes high growth/technological change and scenarios summarised by the Intergovernmental Panel on Climate Change (IPCC) as a comparison to degrowth pathways. It shows that by combining far-reaching social change focused on sufficiency as well as technological improvements, net-zero carbon emissions can be more easily achieved technologically.

The findings published today in Nature Communications.

Currently the IPCC and the established modelling community, integrated assessment model (IAM), does not consider degrowth scenarios where reduced production and consumption in the global North is combined with maintaining wellbeing and achieving climate goals. In contrast, established scenarios rely on combinations of unprecedented carbon dioxide removal from the atmosphere and other far-reaching technological changes.

The results show the international targets of capping global warming to 1.5C-2C above pre-Industrial levels can be achieved more easily in key dimensions, for example:

1. Degrowth in the global North/high-income countries results in 0.5% annual decline of global GDP. However, a substantially increased uptake of renewable energy coupled with negative emissions remains necessary, albeit significantly less than in established pathways.

2. Capping warming to the upper limit of 2C can be achieved with 0 percent growth, while being consistent with low levels of carbon dioxide removal (i.e. from tree planting) and increases in renewable energy as well as energy efficiency.

Lead author, Mr Lorenz Keyßer, from ETH Zürich whose Master's thesis is on degrowth, carried out the research in Australia under supervision of global leader in carbon footprinting Professor Manfred Lenzen, from the University of Sydney's centre for Integrated Sustainability Analysis (ISA) in the School of Physics.

Mr Keyßer said he was surprised by the clarity of the results: "Our simple model shows degrowth pathways have clear advantages in many of the central categories; it appears to be a significant oversight that degrowth is not even considered in the conventional climate modelling community.

"The over-reliance on unprecedented carbon dioxide removal and energy efficiency gains means we risk catastrophic climate change if one of the assumptions does not materialise; additionally, carbon dioxide removal shows high potential for severe side-effects, for instance for biodiversity and food security, if done using biomass. It thus remains a risky bet.

"Our study also analysed the other key assumption upon which the modelling of the IPCC and others is based: continued growth of global production and consumption."

The senior author Professor Lenzen said the technological transformation is particularly extraordinary given the scale of carbon dioxide removal assumed in the IPCC Special Report, Global warming of 1.5C, of between 100-1000 billion tonnes (mostly over 600 GtCO2) by 2100; in large part through bioenergy to carbon capture and storage (BECCS) as well as through afforestation and reforestation (AR).

"Deployment of controversial 'negative emissions' future technologies to try to remove several hundred gigatonnes [hundreds of billion tonnes] of carbon dioxide assumed in the IPCC scenarios to meet the 1.5C target faces substantial uncertainty," Professor Lenzen says.

"Carbon dioxide removal (including carbon capture and storage or CCS) is in its infancy and has never been deployed at scale."

WHAT DEGROWTH MIGHT LOOK LIKE

The new modelling was undertaken pre-COVID-19 but the degrowth pathways are based on a fraction of global GDP shrinkage of some 4.2% experienced in the first six months of the pandemic. Degrowth also focuses on structural social change to make wellbeing independent from economic growth.

"We can still satisfy peoples' needs, maintain employment and reduce inequality with degrowth, which is what distinguishes this pathway from recession," Mr Keyßer says.

"However, a just, democratic and orderly degrowth transition would involve reducing the gap between the haves and have-nots, with more equitable distribution from affluent nations to nations where human needs are still unmet - something that is yet to be fully explored."

A 'degrowth' society could include:

· A shorter working week, resulting in reduced unemployment alongside increasing productivity and stable economic output.

· Universal basic services independent of income, for necessities i.e. food, health care, transport.

· Limits on maximum income and wealth, enabling a universal basic income to be increased and reducing inequality, rather than increasing inequality as is the current global trend.

Among the 1.5C degrowth pathways explored in the new research, the Decent Living Energy (DLE) scenario is closest to historical trends for renewable energy and negligible 'negative emissions'. Mr Keyßer says the International Energy Agency projections for renewables growth to 2050 based on past trends are roughly equivalent to the DLE pathway modelled.

"That non-fossil energy sources could meet 'decent living energy' requirements while achieving 1.5C - under conditions close to business-as-usual - is highly significant.

"However it is clear that the DLE pathway remains extremely challenging due to the substantial reduction in energy use as well as the connected deep social changes required," Mr Keyßer says.

MODELLING CLIMATE PATHWAYS

For the study, a simplified quantitative representation of the fuel-energy-emissions nexus was used as a first step to overcome what the authors believe is an absence of comprehensive modelling of degrowth scenarios in mainstream circles like the IAM community and IPCC. The model is accessible in open access via the paper online.

A total of 18 scenarios were modelled under three main categories to reach 1.5C-2C:

1. Degrowth and 'decent living energy', looking at low energy-GDP decoupling.

2. Medium energy-GDP decoupling including approximated IPCC scenarios.

3. High energy-GDP decoupling (strong-to-extreme technology pathways/energy efficiency driving separation between economic growth and emissions).

Mr Keyßer says: "This study demonstrates the viability of degrowth in minimising several key feasibility risks associated with technology-driven pathways, so it represents an important first step in exploring degrowth climate scenarios."

Professor Lenzen concludes: "A precautionary approach would suggest degrowth should be considered, and debated, at least as seriously as risky technology-driven pathways upon which the conventional climate policies have relied."

Credit: 
University of Sydney

Lichens slow to return after wildfire

image: Lichen drape off a branch in old-growth chaparral shrubland at the Quail Ridge Reserve in Northern California.

Image: 
Jesse Miller

Lichen communities may take decades -- and in some cases up to a century -- to fully return to chaparral ecosystems after wildfire, finds a study from the University of California, Davis, and Stanford University.

The study, published today in the journal Diversity and Distributions, is the most comprehensive to date of long-term lichen recolonization after fire.

Unlike conifer forests, chaparral systems in California are historically adapted to high-intensity fires -- they burn hot, fast and tend to regenerate quickly. However, with more frequent fires predicted under a drier, warming climate and more ignitions occurring amid a growing human population in these areas, the study indicates that lichen communities may not receive the window of opportunity they need to return to chaparral shrublands after wildfire.

"In chaparral systems, lichens can come back 20 to 30 years after fire, but if you get into more frequent burning several times in a short time period, it may be there isn't a place for these lichens," said co-leading author Alexandra Weill, who conducted the research while a graduate student researcher in the UC Davis Department of Plant Sciences.

OVERLOOKED AND ALL AROUND

Lichens are complex organisms born from a symbiosis of fungi and algae. Overlooked and yet all around, they present a variety of colorful and intricate shapes and patterns along the rocks, branches and floor of forests and other biomes. They not only provide food for wildlife, they also help retain moisture in their environments -- an increasingly important service in dry chaparral systems.

"There's also value to biodiversity itself," said co-leading author Jesse Miller, a UC Davis postdoctoral researcher at the time of the study and currently a lecturer at Stanford. "In our study, plant diversity was low under the dense shrub canopy. But we could find dozens of lichen species in the same area. If we lose these lichens, we're losing a lot of the actual biodiversity that's there."

NOT 'LICHEN' FREQUENT FIRE

To test how lichens recolonized in chaparral systems after fire, the scientists in 2018 sampled lichen communities at two UC Davis natural reserves -- Quail Ridge and nearby Stebbins Cold Canyon in Napa and Solano counties. Using records from CAL FIRE and Quail Ridge Reserve, they identified fire boundaries that occurred within the reserves since 1950. They sampled five fires: the 1953 T. Viue Fire, 1988 Resort Fire, 2005 Pleasure Fire, an unnamed 1996 fire and the 2015 Wragg Fire.

After identifying plots to survey at these locations, they crawled under the chaparral to document every lichen species they could find and its abundance.

They found that fire-intolerant species like lichens may be slow to recolonize landscapes after high-severity fire. Most chaparral lichen taxa could be lost if fire intervals shorten to less than 20 years, which has already occurred in some parts of California, the study said.

OLD-GROWTH CHAPARRAL

The researchers also compared the species richness of lichens found in these previously burned areas to old-growth chaparral sites with no recorded fire history. They found such old-growth vegetation may promote biodiversity, and the study highlights its value.

"Old-growth chaparral doesn't have the charisma of a redwood forest," Miller said. "Most people wouldn't recognize it as a 100-year-old plus mini-forest if they walk by. But all ecosystems have old-growth states of unique species that don't occur in areas of recent disturbance. Our study builds on the idea that we need to recognize the value of communities that take a long time to form."

MANAGEMENT STRATEGY

The study suggests a land management strategy that aims for "a well-maintained mosaic of land types," including areas of old-growth chaparral and areas that are managed with prescribed fire. Such a strategy, when paired with prevention and home protection efforts, could help reduce fire risk while maximizing cultural and ecological value.

"For most Californians, chaparral shrublands are the closest and most accessible ecosystems we have," said Weill. "If you're going to Mt. Tam, you're hiking in chaparral. If you're hiking in LA, you're in chaparral. For the average Californian, this is what's most likely in your backyard. But that's also what makes it an issue because these are the fires threatening your home."

Credit: 
University of California - Davis

New mothers twice as likely to have post-natal depression in lockdown

Almost half (47.5%) of women with babies aged six months or younger met the threshold for postnatal depression during the first COVID-19 lockdown, more than double average rates for Europe before the pandemic (23%), finds a new study led by UCL researchers.

Women described feelings of isolation, exhaustion, worry, inadequacy, guilt, and increased stress. Many grieved for what they felt were lost opportunities for them and their baby, and worried about the developmental impact of social isolation on their new little one.

Those whose partners were unable or unavailable to help with parenting and domestic tasks, particularly where they were also dealing with the demands of home schooling, felt the negative impacts of lockdown most acutely.

Researchers surveyed 162 mums in London between May and June 2020 using a unique social network survey designed in response to lockdown. Participants listed up to 25 people who were important to them and shared who they had interacted with and how, whether in person, by phone, video call or messaging on social media.

The women also reported on their well-being with researchers basing depression ratings on the Edinburgh Postnatal Depression Scale, the most commonly used tool. This allowed them to capture the full range of mothers' social interactions, as well as their mental health.

The findings are published today (11 May 2021) in the journal Frontiers in Psychology.

The more contact new mums had with people, either remotely or face-to-face, the fewer depressive symptoms they reported, suggesting reduced social contact during lockdown may have increased the risk of postnatal depression.

However, where women had maintained some face-to-face contact with family members, they were actually more likely to have depressive symptoms than women who saw fewer of their relatives. Researchers think this reflects family responding to mums who were struggling with their mental health, potentially breaking lockdown rules to help them.

Many mothers felt that lockdown created a 'burden of constant mothering' without anyone around to help, and that while virtual contact (video calls/phone calls/texts/social media messages) helped, it was still inadequate. Virtual contact meant women had to actively ask for help, because friends and family couldn't see them struggling, which they felt amplified the stresses of motherhood.

Dr Sarah Myers (UCL Anthropology) said: "Caring for a new baby is challenging and all new mothers suffer some level of mental, physical and emotional exhaustion. Low social support is one of the key risk factors for developing postnatal depression. Social distancing measures during lockdown created so many barriers to having practical help and meaningful support from others in the weeks and months after their baby's arrival, leading many new mothers to feel totally overwhelmed.

"It really does take a village to raise a child, especially in a crisis when everyone is dealing with increased demands, stresses and significant life events. Our survey shows that lockdowns leave new mothers more vulnerable to postnatal depression, and that digital solutions might help but they are not the answer. Policy makers must take this into account as we continue to deal with COVID-19, for the sake of mums, babies and whole families."

Not everything new mums experienced as a result of lockdown was negative. Some felt it 'protected' family time, leading to better bonding. Other benefits included partners being around more to co-parent and help out than if the UK had not been in lockdown.

Dr Emily Emmott (UCL Anthropology) said: "New mothers with more than one child were hardest hit, left to deal with newborns on top of multiple demands like home schooling. First-time mothers often felt cheated out of precious time spent together with their babies and family or friends, making coming to terms with the change of identity and isolation that new mothers often feel even harder.

"But, where partners were at home more because of lockdown, and able to share the relentless tasks and household chores or take care of existing children, new mums felt the benefits. Some reported that it helped everyone develop closer relationships and that the family benefited overall from spending this time together. This should also be food for thought when we look at support for parents with new babies, not just in a pandemic."

Comments from new mothers surveyed about their experiences included: "It has definitely made me more anxious - am I doing enough for my baby, is she ok, is she healthy and happy, should I be doing more, do people think I'm a good mother? Much of this is because it's hard to communicate online."

A first-time mother said, "I feel I'm making it up as I go along and have no one to guide me", while another mum said, "I worry that my child isn't getting the development they deserve as they are not getting enough stimulus."

One mum described how, "We haven't had anyone come over to give us a break since before lockdown and it's exhausting."

Another said: "I think lockdown has made me feel like I'm not a person in my own right anymore. Not having anyone to hold him or to help out a bit makes me feel it's all me and it's a lot of pressure, which I can resent. I feel like I don't have any time to rest." While another mum said, "I am an exhausted mum not able to concentrate on either of my children and this is taking a toll on everyone."

Credit: 
University College London

Improved air quality during first wave of COVID prevented 150 premature deaths in major Spain cities

Air quality in Spain temporarily improved during the first wave of COVID-19, largely as a result of mobility restrictions. Until recently, however, the effect of this improvement on the health of the population was poorly understood. A new study led by the Barcelona Institute for Global Health (ISGlobal), a centre supported by the "la Caixa" Foundation, together with the Barcelona Supercomputing Center (BSC-CNS), has estimated that this improvement in air quality prevented around 150 premature deaths in Spain's provincial capital cities.

Several analyses have estimated the mortality reduction from improved air quality during lockdown periods in China and Europe and found that a substantial number of premature deaths have been avoided. The new study, published in Environmental Pollution, is the first to focus on Spain, specifically 47 provincial capitals. First, the researchers assessed changes in levels of air pollution--nitrogen dioxide (NO2) and ozone (O3)--during the lockdown period (57 days) and deconfinement period (42 days) of the first wave of COVID-19, which occurred between March and June 2020. The team then estimated the impact of these air quality changes on mortality at the population level.

Lead author Hicham Achebak, a researcher at ISGlobal and at the Centre for Demographic Studies (CED), explained the methodology used in the study. "We used machine-learning techniques to take into account the influence of meteorological factors when quantifying the effect of lockdown on air quality levels," he noted. "To estimate changes in mortality, we specifically fitted epidemiological models based on historical health and air pollution data in each provincial capital city."

The authors found that NO2 levels decreased by 51% and 36% during the lockdown and deconfinement periods, respectively, during the first wave of COVID-19. The level of ozone decreased much less on average--by 1.1% and 0.6%, respectively--although it increased in some of the most populous cities.

Regarding the impact of the reduction in NO2 on premature mortality, the authors estimated that around 120 and 50 deaths were avoided during lockdown and deconfinement, respectively, for a total of approximately 170 premature deaths avoided. COVID-19 lockdowns led to "unprecedented reductions in NO2 concentrations, especially when the most stringent measures to reduce viral spread were applied, reaching up to 65% in some of the cities studied," explained Hervé Petetin, researcher at BSC-CNS, who was responsible for the application of machine-learning techniques. Most of the NO2 emissions in cities come from vehicles, in particular those with diesel-powered engines.

In the case of ozone, the decrease was so small that no premature deaths could be attributed to it. In fact, the researchers estimated that premature mortality attributable to this pollutant increased by approximately 20 deaths during the study period. Carlos Pérez García-Pando, ICREA research professor, AXA professor and head of the BSC-CNS Atmospheric Composition Group, which participated in the study, explained: "Even though, on average, there was a small reduction in ozone during the study period, ozone levels increased in the most populous cities, especially Barcelona and Madrid." He added: "Ozone is a secondary pollutant that can increase when levels of nitrogen oxides decrease in environments that are saturated with this pollutant, such as large urban areas." The study shows that "potential trade-offs between multiple pollutants should be taken into account when evaluating the health impacts of environmental exposures," he concluded.

Joan Ballester , researcher at ISGlobal and coordinator of the study, commented: "The number of deaths prevented by improvements in air quality in Spain could be greater." The researcher cited two main reasons for this assertion: "First, our study focused on provincial capitals, but there are other cities with high levels of air pollution. Second, we did not take into account reductions in fine particulate matter, which were relatively modest compared to the reductions in NO2 but most likely contributed to a further decrease in premature mortality."

"These findings demonstrate the major short-term health benefits associated with reducing air pollution," added Ballester. "With permanent reductions in emissions, the positive effects could be even greater." In addition to reducing premature mortality, improvements in air quality "could reduce the disease burden of epidemics that cause respiratory infections such as COVID-19, since diseases caused by long-term exposure to air pollution are in turn risk factors for the severity and mortality of coronavirus infection," concluded the researcher.

Credit: 
Barcelona Institute for Global Health (ISGlobal)

Pepsin-degradable plastics of bionylons from itaconic and amino acids

image: Development strategy for pepsin degradable BioNylons from itaconic acid and leucine.

Image: 
Image courtesy: Tatsuo Kaneko and Mohammad Asif Ali from Japan Advanced Institute of Science and Technology.

Point:

Novel chiral diacid monomers were synthesized.

Chirally interactive BioNylons were prepared.

BioNylon showed thermal/mechanical performances than conventional Nylons.

BioNylons disintegrated and degraded with pepsin.

Summary:

Marine plastic waste problems have been more serious year by year. One of the worst issues is that creatures in ocean are going extinct by mistakenly swallowing them.. Conventional biodegradable plastics are degradable in digestive enzymes, but their performances are too low to use in society. In this study, researchers from JAIST have used bio-derived resources such as itaconic acid and amino acid for the syntheses of high-performance BioNylons having the pepsin degradation function.

Ishikawa, Japan - Currently available conventional nylon such as Nylon 6, Nylon 66, and Nylon 11 are nondegradable. On the other hand, BioNylons derived from itaconic acid showed higher performances than conventional ones and degradability in soil, but degradability under the digestive enzymes was not confirmed.

To tackle these issues, a team of researchers from the Japan Advanced Institute of Science and Technologies (JAIST) are investigating syntheses of new BioNylons with their degradability under pepsin enzyme. Their latest study, published in Advanced Sustainable Systems-Wiley-VCH on April 2021, was led by Professor Tatsuo Kaneko and Dr. Mohammad Asif Ali.

In this study, BioNylons were synthesized based on chemically developed novel chiral dicarboxylic acids derived from renewable itaconic and amino acids (D- or L-leucine). Further, BioNylons were prepared via melt polycondensation of hexamethylenediamine with chirally interactive heterocyclic diacid monomers, as shown in Figure 1. The chiral interactions were derived from the diastereomeric mixture of the racemic pyrrolidone ring and the chiral amino acids of leucine. As a result, the polyamides showed a glass transition temperature, Tg, of approximately 117 °C and a melting temperature, Tm, of approximately 213 °C, which were higher than those of conventional BioNylon 11 (Tg of approximately 57 °C). The BioNylons also showed high Young's moduli, E, and mechanical strengths, σ, ranging from 2.2-3.8 GPa and 86-108 MPa, respectively. Such materials can be used for fishing nets, ropes, parachutes, and packaging materials, as a substitute for conventional nylons. The BioNylons including peptide linkage showed enzymatic degradation using pepsin, which is a digestive enzyme found in mammal stomach. The fact that pepsin-degradation can connect with biodegradation in the stomach of marine mammals. Such an innovative molecular design for high-performance nylons by controlling chirality can lead to establish a sustainable carbon negative society and energy conservation by weight saving.

Credit: 
Japan Advanced Institute of Science and Technology

Nature draws out a happy place for children

image: A drawing by a child indicating their happy place

Image: 
Anglia Ruskin University

Young children in deprived areas see nature and outdoor spaces as being associated with "happy places", according to a new study published in the journal Child Indicators Research.

Researchers Dr Nicola Walshe and Dr Zoe Moula from Anglia Ruskin University (ARU) asked 91 children aged seven and eight from two primary schools in areas of relatively high deprivation in the East of England to draw their happy place, before engaging them in group discussions about how they perceive their own wellbeing.

More than half of the children created drawings that included aspects of nature and outdoor spaces, such as trees, grass, parks, gardens, lakes, rivers, outdoor playgrounds, rainbows or sunlight. Trees, in particular, were drawn by a third of the children.

However, the study found the elements of nature mainly existed in the background of the drawings. Other aspects of wellbeing, such as a sense of safety, positive relationships with family and friends, and the need for love and happiness, were more explicit in the pictures.

The fieldwork for the study took place a week before the UK's first COVID-19 lockdown, in March 2020, and when asked which elements they would want to keep away from their happy place, 14 of the children specifically mentioned coronavirus.

Co-author Dr Walshe, Head of the School of Education and Social Care at ARU, said: "We wanted this study to explore children's own perceptions of wellbeing, as most previous research has focused on adults. This is despite a consensus that children's perspectives differ significantly from adults.

"We identified indicators of wellbeing that were made explicit in children's drawings, such as the need for safety, happiness and positive relationships. Interestingly, the representations of nature mainly exist in the background and were rarely the main focus of the drawings..

"The drawings depicted nature and outdoor spaces as being interconnected with all aspects of wellbeing. For example, being able to play outside boosts physical wellbeing, while being able to stay calm and appreciate the beauty of nature can be linked to emotional or mental health.

"Previous research has shown that wealth affects access to nature, with children living in deprived areas significantly less likely to have access to green spaces and outdoor places to play. Our research suggests that nature and open spaces underpin these children's consideration of wellbeing.

"As such, making nature explicit, and restoring the interconnectedness between the arts and nature should be a key priority for research to help improve children's wellbeing."

Credit: 
Anglia Ruskin University

Firefighting chemical found in sea lion and fur seal pups

image: A sea lion pup on Kangaroo Island, South Australia.

Image: 
Louise Cooper, University of Sydney.

A chemical that the NSW government has recently partially banned in firefighting has been found in the pups of endangered Australian sea lions and in Australian fur seals.

The finding represents another possible blow to Australian sea lions' survival. Hookworm and tuberculosis already threaten their small and diminishing population, which has fallen by more than 60 percent over four decades.

The new research - part of a long-term health study of seals and sea lions in Australia - identified the chemicals in animals at multiple colonies in Victoria and South Australia from 2017 to 2020.

As well as in pups, the chemicals (Per- and polyfluoroalkyl substances - 'PFAS') were detected in juvenile animals and in an adult male. There was also evidence of transfer of the chemicals from mothers to newborns.

PFAS have been reported to cause cancer, reproductive and developmental defects, endocrine disruption and can compromise immune systems. Exposure can occur through many sources including through contaminated air, soil and water, and common household products containing PFAS. In addition to being used in firefighting foam, they are frequently found in stain repellents, polishes, paints and coatings.

The researchers believe the seals and sea lions ingested the chemicals through their fish, crustacean, octopus and squid diets.

Despite South Australia banning the use of PFAS-containing firefighting foams in 2018, these chemicals persist and don't easily degrade in the environment. They have not been banned in Victoria.

High concentrations

Published in Science of the Total Environment, this is the first study to report concentrations of PFAS in seals and sea lions in Australia.

PFAS concentrations in some animals were comparable to those in marine mammals in the northern hemisphere including southern sea otters and harbour seals.

Particularly high concentrations of the chemicals were found in newborns - transferred during gestation or via their mothers' milk. "This is particularly concerning, given the importance of the developing immune system in neonatal animals," said research co-lead, Dr Rachael Gray from the Sydney School of Veterinary Science.

"While it was not possible to examine the direct impacts of PFAS on the health of individual animals, the results are crucial for ongoing monitoring. With the Australian sea lion now listed as endangered, and Australian fur seals suffering colony-specific population declines, it is critical that we understand all threats to these species, including the role of human-made chemicals, if we are to implement effective conservation management."

Food chain implications

The findings have implications for the entire food chain of which the pups are part, including adult seals and sea lions, fish and even humans.

"Because PFAS last a long time, they can become concentrated inside the tissues of living things. This increases the potential for exposure to other animals in the food chain, particularly top marine mammal predators like seals and sea lions," Dr Gray said.

"There is also the potential for humans to be exposed to PFAS by eating contaminated seafood, drinking contaminated water, or even through eating food grown in contaminated soil.

"So, not only do PFAS threaten native endangered species like the Australian sea lion - they could pose a risk to humans too."

Methodology

A collaboration between the University of Sydney, National Measurement Institute and Phillip Island Nature Parks, the research, chiefly undertaken by University of Sydney PhD student Shannon Taylor, was partly conducted on site at the animals' colonies, with later testing of animal livers at the National Measurement Institute in Sydney. The livers were analysed using a complex method called high-performance liquid chromatograph/triple quadrupole mass spectrometry. At its most basic, this method ionises a molecular compound and then separates and identifies the components based on their mass-to-charge ratio. In this way, specific chemicals and their abundance can be measured.

The endangered Australian sea lion

Dr Rachael Gray and her team of scientists have been conducting world-class research in South Australia in order to save the endangered sea lion.

The Australian sea lion is the only pinniped species endemic to Australian waters, ranging from the Houtman Abrolhos islands off the west coast of Western Australia to the Pages Islands in South Australia. The species is endangered, with a decreasing population trend (International Union for Conservation of Nature Red List) from a low baseline attributed to 19th century commercial sealing.

The small population size increases the species' risk of catastrophic disease impact, as seen in the New Zealand sea lion where neonatal septicaemia and meningitis contributed to 58 percent of pup deaths between 2006 and 2010.

Hookworm infection provides an existing disease pressure for the Australian sea lion. Further, recovery from a significant disease impact would be limited by the species' low reproductive rate. The majority (82 percent) of pup births occur in South Australia where there is dependence on just eight large breeding colonies, including Seal Bay, Kangaroo Island.

Credit: 
University of Sydney

Researchers in Sweden develop light emitters for quantum circuits

image: A closer look at the single photon emitter designed by researchers in Sweden.

Image: 
Ali Elshaair

The promise of a quantum internet depends on the complexities of harnessing light to transmit quantum information over fiber optic networks. A potential step forward was reported today by researchers in Sweden who developed integrated chips that can generate light particles on demand and without the need for extreme refrigeration.

Quantum computing today relies on states of matter, that is, electrons which carry qubits of information to perform multiple calculations simultaneously, in a fraction of the time it takes with classical computing.

The co-author of the research, Val Zwiller, Professor at KTH Royal Institute of Technology, says that in order to integrate quantum computing seamlessly with fiber-optic networks--which are used by the internet today--a more promising approach would be to harness optical photons.

"The photonic approach offers a natural link between communication and computation," he says. "That's important, since the end goal is to transmit the processed quantum information using light."

But in order for photons to deliver qubits on-demand in quantum systems, they need to be emitted in a deterministic, rather than probabilistic, fashion. This can be accomplished at extremely low temperatures in artificial atoms, but today the research group at KTH reported a way to make it work in optical integrated circuits--at room temperature.

The new method enables photon emitters to be precisely positioned in integrated optical circuits that resemble copper wires for electricity, except that they carry light instead, says co-author of the research, Ali Elshaari, Associate Professor at KTH Royal Institute of Technology.

The researchers harnessed the single-photon-emitting properties of hexagonal boron nitride (hBN), a layered material. hBN is a compound commonly used is used ceramics, alloys, resins, plastics and rubbers to give them self-lubricating properties. They integrated the material with silicon nitride waveguides to direct the emitted photons.

Quantum circuits with light are either operated at cryogenic temperatures--plus 4 Kelvin above absolute zero--using atom-like single photon sources, or at room temperature using random single photon sources, Elshaari says. By contrast, the technique developed at KTH enables optical circuits with on-demand emission of light particles at room temperature.

"In existing optical circuits operating at room temperature, you never know when the single photon is generated unless you do a heralding measurement," Elshaari says. "We realized a deterministic process that precisely positions light-particles emitters operating at room temperature in an integrated photonic circuit."

The researchers reported coupling of hBN single photon emitter to silicon nitride waveguides, and they developed a method to image the quantum emitters. Then in a hybrid approach, the team built the photonic circuits with respect to the quantum sources locations using a series of steps involving electron beam lithography and etching, while still preserving the high quality nature of the quantum light.

The achievement opens a path to hybrid integration, that is, incorporating atom-like single-photon emitters into photonic platforms that cannot emit light efficiently on demand.

Credit: 
KTH, Royal Institute of Technology

Light meets superconducting circuits

image: A cryogenic dilution refrigerator. The base temperature is 10 milli Kelvin.

Image: 
Andrea Bancora, Amir Youssefi (EPFL)

In the last few years, several technology companies including Google, Microsoft, and IBM, have massively invested in quantum computing systems based on microwave superconducting circuit platforms in an effort to scale them up from small research-oriented systems to commercialized computing platforms. But fulfilling the potential of quantum computers requires a significant increase in the number of qubits, the building blocks of quantum computers, which can store and manipulate quantum information.

But quantum signals can be contaminated by thermal noise generated by the movement of electrons. To prevent this, superconducting quantum systems must operate at ultra-low temperatures - less than 20 milli-Kelvin - which can be achieved with cryogenic helium-dilution refrigerators.

The output microwave signals from such systems are amplified by low-noise high-electron mobility transistors (HEMTs) at low temperatures. Signals are then routed outside the refrigerator by microwave coaxial cables, which are the easiest solutions to control and read superconducting devices but are poor heat isolators, and take up a lot of space; this becomes a problem when we need to scale up qubits in the thousands.

Researchers in the group of Professor Tobias J. Kippenberg at EPFL's School of Basic Sciences have now developed a novel approach that uses light to read out superconducting circuits, thus overcoming the scaling challenges of quantum systems. The work is published in Nature Electronics.

The scientists replaced HEMT amplifiers and coaxial cables with a lithium niobate electro-optical phase modulator and optical fibers respectively. Microwave signals from superconducting circuits modulate a laser carrier and encode information on the output light at cryogenic temperatures. Optical fibers are about 100 times better heat isolators than coaxial cables and are 100 times more compact. This enables the engineering of large-scale quantum systems without requiring enormous cryogenic cooling power. In addition, the direct conversion of microwave signals to the optical domain facilitates long-range transfer and networking between quantum systems.

"We demonstrate a proof-of-principle experiment using a novel optical readout protocol to optically measure a superconducting device at cryogenic temperatures," says Amir Youssefi, a PhD student working on the project. "It opens up a new avenue to scale future quantum systems." To verify this approach, the team performed conventional coherent and incoherent spectroscopic measurements on a superconducting electromechanical circuit, which showed perfect agreement between optical and traditional HEMT measurements.

Although this project used a commercial electro-optical phase modulator, the researchers are currently developing advanced electro-optical devices based on integrated lithium niobate technology to significantly enhance their method's conversion efficiency and lower noise.

Credit: 
Ecole Polytechnique Fédérale de Lausanne

Universal equation for explosive phenomena

Climate change, a pandemic or the coordinated activity of neurons in the brain: In all of these examples, a transition takes place at a certain point from the base state to a new state. Researchers at the Technical University of Munich (TUM) have discovered a universal mathematical structure at these so-called tipping points. It creates the basis for a better understanding of the behavior of networked systems.

It is an essential question for scientists in every field: How can we predict and influence changes in a networked system? "In biology, one example is the modelling of coordinated neuron activity," says Christian Kühn, professor of multiscale and stochastic dynamics at TUM. Models of this kind are also used in other disciplines, for example when studying the spread of diseases or climate change.

All critical changes in networked systems have one thing in common: a tipping point where the system makes a transition from a base state to a new state. This may be a smooth shift, where the system can easily return to the base state. Or it can be a sharp, difficult-to-reverse transition where the system state can change abruptly or "explosively." Transitions of this kind also occur in climate change, for example with the melting of the polar ice caps. In many cases, the transitions result from the variation of a single parameter, such as the rise in concentrations of greenhouse gases behind climate change.

Similar structures in many models

In some cases - such as climate change - a sharp tipping point would have extremely negative effects, while in others it would be desirable. Consequently, researchers have used mathematical models to investigate how the type of transition is influenced by the introduction of new parameters or conditions. "For example, you could vary another parameter, perhaps related to how people change their behavior in a pandemic. Or you might adjust an input in a neural system," says Kühn. "In these examples and many other cases, we have seen that we can go from a continuous to a discontinuous transition or vice versa."

Kühn and Dr. Christian Bick of Vrije Universiteit Amsterdam studied existing models from various disciplines that were created to understand certain systems. "We found it remarkable that so many mathematical structures related to the tipping point looked very similar in those models," says Bick. "By reducing the problem to the most basic possible equation, we were able to identify a universal mechanism that decides on the type of tipping point and is valid for the greatest possible number of models."

Universal mathematical tool

The scientists have thus described a new core mechanism that makes it possible to calculate whether a networked system will have a continuous or discontinuous transition. "We provide a mathematical tool that can be applied universally - in other words, in theoretical physics, the climate sciences and in neurobiology and other disciplines - and works independently of the specific case at hand," says Kühn.

Credit: 
Technical University of Munich (TUM)

Time running out to save coral reefs

image: Saving coral reefs requires immediate and drastic reductions in global carbon emissions. Photo of bleached reef at Yamacutta Flat.

Image: 
Morgan Pratchett / ARC Centre of Excellence for Coral Reef Studies.

New research on the growth rates of coral reefs shows there is still a window of opportunity to save the world's coral reefs--but time is running out.

The international study was initiated at the ARC Centre of Excellence for Coral Reef Studies (Coral CoE), which is headquartered at James Cook University (JCU).

Co-author Professor Morgan Pratchett from Coral CoE at JCU said the results show that unless carbon dioxide emissions are drastically reduced the growth of coral reefs will be stunted.

"The threat posed by climate change to coral reefs is already very apparent based on recurrent episodes of mass coral bleaching," Prof Pratchett said. "But changing environmental conditions will have other far-reaching consequences."

Co-author Professor Ryan Lowe, from Coral CoE at The University of Western Australia (UWA), said modern coral reef structures reflect a balance between a wide range of organisms that build reefs, not just corals. This includes coralline algae--a rock-hard alga that bind reefs together.

"While the responses of individual reef organisms to climate change are increasingly clear, this study uniquely examines how the complex interactions between diverse communities of organisms responsible for maintaining present day coral reefs will likely change reef structures in the future," Prof Lowe said.

The joint lead authors, Dr Christopher Cornwall and Dr Steeve Comeau (who are now at Victoria University of Wellington and Sorbonne Université CNRS Laboratoire d'Océanographie de Villefranche sur Mer, respectively) calculated how coral reef growth is likely to react to ocean acidification and warming under three different climate-change carbon dioxide scenarios: low, medium and worst-case.

The findings suggest that under an intermediate emissions scenario, some reefs may even keep pace with sea-level rise by growing--but only for a short while.

"All reefs around the world will be eroding by the end of the century under the intermediate scenario," said co-author Dr Scott Smithers, from JCU. "This will obviously have serious implications for reefs, reef islands, as well as the people and other organisms depending upon coral reefs."

The study gives broader projections of ocean warming and acidification--and their interaction--on the net carbonate production of coral reefs.

Warming oceans bring more marine heatwaves, which cause mass coral bleaching. Ocean acidification affects the ability of calcifying corals to form their calcium carbonate skeletons, a process called 'calcification'. Warming waters also reduce calcification.

The data in the study include net calcification, bioerosion and sediment dissolution rates measured or collated from 233 locations across 183 distinct reefs. 49% of the reefs were in the Atlantic Ocean, 39% in the Indian Ocean and 11% in the Pacific Ocean.

These were then modelled against three Intergovernmental Panel on Climate Change emissions scenarios for low, medium and high-impact outcomes on ocean warming and acidification for 2050 and 2100.

The projections show that even under the low-impact case, reefs will suffer severely reduced growth, or accretion, rates.

"While 63% of reefs are projected to continue to accrete by 2100 under the low-impact pathway, 94% will be eroding by 2050 under the worse-case scenario," Dr Cornwall said. "And no reef will continue to accrete at rates matching projected sea-level rise under the medium and high-impact scenarios by 2100."

"Our study shows changing environmental conditions challenge the growth of reef-building corals and other calcifying organisms, which are important in maintaining the structure of reef systems," Prof Pratchett said.

"Saving coral reefs requires immediate and drastic reductions in global carbon emissions."

Credit: 
ARC Centre of Excellence for Coral Reef Studies

Friendly pelicans breed better

image: Blackpool zoo pelican nesting area

Image: 
Dr Paul Rose

Captive pelicans that are free to choose their own friendships are more likely to breed successfully on repeated occasions, new research suggests.

Social network analysis on captive great white pelicans, led by the University of Exeter, found that providing social choice within the flock and allowing partnerships to form naturally led to improved breeding success.

The study revealed that the pelicans chose their specific social relationships, and that there was a social structure across the flock, in which sub-adults (the equivalent of teenagers) spent more time with each other than with adult birds.

Zoo-housed pelicans are common, but their breeding record is poor and they receive little research attention, compared to other popular birds in zoos such as penguins.

As great white pelicans are long lived and hard to breed in captivity, they need careful management.

The team - from the University of Exeter, University Centre Sparsholt and Reaseheath College - collected data at Blackpool Zoo on the behaviour, space use and association preferences around the nesting events of great white pelicans in 2016 and 2017.

"Evaluating space use and behaviour to ensure that pelicans have the choice to behave in a way that they wish is essential to good animal welfare," said lead author Dr Paul Rose, of the University of Exeter and WWT Slimbridge Wetland Centre.

"Social network analysis enables us to identify the strongest bonds and discover who is influential in the flock. Therefore we can work out which birds might initiate breeding and encourage this activity in others.

"This is important for flock management. If birds are to be moved between flocks, we should preserve these important bonds and the experience they provide.

"Alongside the good care the birds get from zoo staff, this experience of what to do and when to do it is likely why the flock we analysed nested successfully on multiple occasions."

The research team also identified specific behavioural cues that might tell pelican keepers when breeding is likely to happen.

For example, data collected before the pelicans began nesting showed that the flock was more vigilant during this time, suggesting that vigilance may be a precursor for courtship or nesting activity.

Credit: 
University of Exeter

New vaccine blocks COVID-19 and variants, plus other coronaviruses

DURHAM, N.C. - A potential new vaccine developed by members of the Duke Human Vaccine Institute has proven effective in protecting monkeys and mice from a variety of coronavirus infections -- including SARS-CoV-2 as well as the original SARS-CoV-1 and related bat coronaviruses that could potentially cause the next pandemic.

The new vaccine, called a pan-coronavirus vaccine, triggers neutralizing antibodies via a nanoparticle. The nanoparticle is composed of the coronavirus part that allows it to bind to the body's cell receptors and is formulated with a chemical booster called an adjuvant. Success in primates is highly relevant to humans.

The findings appear Monday, May 10, in the journal Nature.

"We began this work last spring with the understanding that, like all viruses, mutations would occur in the SARS-CoV-2 virus, which causes COVID-19," said senior author Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute (DHVI). "The mRNA vaccines were already under development, so we were looking for ways to sustain their efficacy once those variants appeared.

"This approach not only provided protection against SARS-CoV-2, but the antibodies induced by the vaccine also neutralized variants of concern that originated in the United Kingdom, South Africa and Brazil," Haynes said. "And the induced antibodies reacted with quite a large panel of coronaviruses."

Haynes and colleagues, including lead author Kevin Saunders, Ph.D., director of research at DHVI, built on earlier studies involving SARS, the respiratory illness caused by a coronavirus called SARS-CoV-1. They found a person who had been infected with SARS developed antibodies capable of neutralizing multiple coronaviruses, suggesting that a pan-coronavirus might be possible.

The Achilles heel for the coronaviruses is their receptor-binding domain, located on the spike that links the viruses to receptors in human cells. While this binding site enables it to enter the body and cause infection, it can also be targeted by antibodies.

The research team identified one particular receptor-binding domain site that is present on SARS-CoV-2, its circulating variants and SARS-related bat viruses that makes them highly vulnerable to cross-neutralizing antibodies.

The team then designed a nanoparticle displaying this vulnerable spot. The nanoparticle is combined with a small molecule adjuvant -- specifically, the toll-like receptor 7 and 8 agonist called 3M-052, formulated with Alum, which was developed by 3M and the Infectious Disease Research Institute. The adjuvant boosts the body's immune response.

In tests of its effect on monkeys, the nanoparticle vaccine blocked COVID-19 infection by 100%. The new vaccine also elicited significantly higher neutralizing levels in the animals than current vaccine platforms or natural infection in humans.

"Basically what we've done is take multiple copies of a small part of the coronavirus to make the body's immune system respond to it in a heightened way," Saunders said. "We found that not only did that increase the body's ability to inhibit the virus from causing infection, but it also targets this cross-reactive site of vulnerability on the spike protein more frequently. We think that's why this vaccine is effective against SARS-CoV-1, SARS-CoV-2 and at least four of its common variants, plus additional animal coronaviruses."

"There have been three coronavirus epidemics in the past 20 years, so there is a need to develop effective vaccines that can target these pathogens prior to the next pandemic," Haynes said. "This work represents a platform that could prevent, rapidly temper, or extinguish a pandemic."

Credit: 
Duke University Medical Center

Turns out developing a taste for carbs wasn't a bad thing

image: Grauer's gorilla specimens at the Royal Museum for Central Africa in Tervuren (Belgium), showing typical dental calculus deposits on the teeth that are stained dark likely as a result of their herbivorous diet.

Image: 
Katerina Guschanski

A new study looking at the evolutionary history of the human oral microbiome shows that Neanderthals and ancient humans adapted to eating starch-rich foods as far back as 100,000 years ago, which is much earlier than previously thought.

The findings suggest such foods became important in the human diet well before the introduction of farming and even before the evolution of modern humans. And while these early humans probably didn't realize it, the benefits of bringing the foods into their diet likely helped pave the way for the expansion of the human brain because of the glucose in starch, which is the brain's main fuel source.

"We think we're seeing evidence of a really ancient behavior that might have been part encephalization -- or the growth of the human brain," said Harvard Professor Christina Warinner, Ph.D. '10. "It's evidence of a new food source that early humans were able to tap into in the form of roots, starchy vegetables, and seeds."

The findings come from a seven-year study published in the Proceedings of the National Academy of Sciences on Monday that involved the collaboration of more than 50 international scientists. Researchers reconstructed the oral microbiomes of Neanderthals, primates, and humans, including what's believed to be the oldest oral microbiome ever sequenced -- a 100,000-year-old Neanderthal.

The goal was to better understand how the oral microbiome -- a community of microorganisms in our mouths that help to protect against disease and promote health -- developed since little is known about its evolutionary history.

"For a long time, people have been trying to understand what a normal healthy microbiome is," said Warinner, assistant professor of anthropology in the Faculty of Arts and Sciences and the Sally Starling Seaver Assistant Professor at the Radcliffe Institute. "If we only have people today that we're analyzing from completely industrialized contexts and that already have high disease burdens, is that healthy and normal? We started to ask: What are the core members of the microbiome? Which species and groups of bacteria have actually co-evolved with us the longest?"

The scientists analyzed the fossilized dental plaque of both modern humans and Neanderthals and compared them to those of humanity's closest primate relatives, chimpanzees and gorillas, as well as howler monkeys, a more distant relative.

Using newly developed tools and methods, they genetically analyzed billions of DNA fragments preserved in the fossilized plaque to reconstruct their genomes. It's similar in theory to how archeologists painstakingly piece together ancient broken pots, but on a much larger scale.

The biggest surprise from the study was the presence of particular strains of oral bacteria that are specially adapted to break down starch. These strains, which are members of the genus Streptococcus, have a unique ability to capture starch-digesting enzymes from human saliva, which they then use to feed themselves. The genetic machinery the bacteria uses to do this is only active when starch is part of the regular diet.

Both the Neanderthals and the ancient humans scientists studied had these starch-adapted strains in their dental plaque while most of the primates had almost no streptococci that could break down starch.

"It seems to be a very human specific evolutionary trait that our Streptococcus acquired the ability to do this," Warinner said.

The findings also push back on the idea that Neanderthals were top carnivores, given that the "brain requires glucose as a nutrient source and meat alone is not a sufficient source," Warinner said.

Researchers said the finding makes sense because for hunter-gatherer societies around the world, starch-rich foods --underground roots, tubers (like potatoes), and forbs, as well as nuts and seeds, for example -- are important and reliable nutrition sources. In fact, starch currently makes up about 60 percent of calories for humans worldwide.

"Its availability is much more predictable across the annual season for tropical hunter-gatherers," said Richard W. Wrangham, Ruth B. Moore Professor of Biological Anthropology and one of the paper's co-authors. "These new data make every sense to me, reinforcing the newer view about Neanderthals that their diets were more sapien-like than once thought, [meaning] starch-rich and cooked."

The research also identified 10 groups of bacteria that have been part of the human and primate oral microbiome for more than 40 million years and are still shared today. While these bacteria may serve important and beneficial roles, relatively little is known about them. Some don't even have names.

Focusing on Neanderthals and today's humans, the analysis surprisingly showed the oral microbiome of both groups were almost indistinguishable. Only when looking at individual bacterial strains could they see some differences. For example, ancient humans living in Europe before 14,000 years ago during the Ice Age shared some bacterial strains with Neanderthals that are no longer found in humans today.

The differences and similarities from the study are all part of what makes us human, Warinner said. It also touches on the power of analyzing the tiny microbes that live in the human body, she said.

"It shows that our microbiome encodes valuable information about our own evolution that sometimes gives us hints at things that otherwise leave no traces at all," Warinner said.

Credit: 
Harvard University