Earth

New approach allows past data to be used to improve future climate projections

Climate scientists are still grappling with one of the main questions of modern times: how high will global temperatures rise if the atmospheric concentration of carbon dioxide doubles. Many researchers are turning to the past because it holds clues to how nature reacted to climate change before the anthropogenic impact. The divergent results of this research, however, have made it difficult to make precise predictions about the impact of increased carbon dioxide on future warming.

UF researcher tests powerful new tool to advance ecology, conservation

GAINESVILLE, Fla. — A new University of Florida study shows ecologists may have been missing crucial information from animal bones for more than 150 years.

The study featured on the cover of the November issue of Ecology shows animal bone remains provide high-quality geographical data across an extensive time frame. The research may be used to identify regions of habitat for the conservation of threatened species.

Chemists invent powerful toolkit, accelerating creation of potential new drugs

LA JOLLA, CA – Scientists at The Scripps Research Institute (TSRI) have invented a set of chemical tools that is radically simplifying the creation of potential new drug compounds.

Scientists develop new approach to support future climate projections

Scientists have developed a new approach for evaluating past climate sensitivity data to help improve comparison with estimates of long-term climate projections developed by the Intergovernmental Panel on Climate Change (IPCC).

The sensitivity of global temperature to changes in the Earth's radiation balance (climate sensitivity) is a key factor for understanding past natural climate changes as well as potential future climate change.

Fracking in Michigan: U-M researchers study potential impact on health, environment, economy

ANN ARBOR—University of Michigan researchers are conducting a detailed study of the potential environmental and societal effects of hydraulic fracturing, the controversial natural gas drilling process known as fracking.

In hydraulic fracturing, large amounts of water, sand and chemicals are injected deep underground to break apart rock and free trapped natural gas. Though the process has been used for decades, recent technical advances have helped unlock vast stores of previously inaccessible natural gas, resulting in a fracking boom.

New study shows how climate change could affect entire forest ecosystems

(Santa Barbara, Calif.) –– The fog comes in, and a drop of water forms on a pine needle, rolls down the needle, and falls to the forest floor. The process is repeated over and over, on each pine needle of every tree in a forest of Bishop pines on Santa Cruz Island, off the coast of Santa Barbara. That fog drip helps the entire forest ecosystem stay alive.

Outside a vacuum: Model predicts movement of charged particles in complex media

Picture two charged particles in a vacuum. Thanks to laws of elementary electrostatics, we can easily calculate the force these particles exert upon one another, and therefore predict their movements.

Submerge those particles in a simple medium — say, water — and the calculation grows more complex. The charged particles' movements influence the water, which in turn may slow, speed, or otherwise alter the particles' paths. In this environment a prediction must also consider the water's reaction, or its dielectric response.

NIST experiments challenge fundamental understanding of electromagnetism

A cornerstone of physics may require a rethink if findings at the National Institute of Standards and Technology (NIST) are confirmed. Recent experiments suggest* that the most rigorous predictions based on the fundamental theory of electromagnetism—one of the four fundamental forces in the universe, and harnessed in all electronic devices—may not accurately account for the behavior of atoms in exotic, highly charged states.

Graphite experiment shines new light on giant planets, white dwarfs and laser-driven fusion

An international team led by researchers from the University of Warwick and Oxford University is now dealing with unexpected results of an experiment with strongly heated graphite (up to 17,000 degrees Kelvin). The findings may pose a new problem for physicists working in laser-driven nuclear fusion and may also lead astrophysicists to revise our understanding of the life cycle of giant planets and stars.

Sea-levels rising faster than IPCC projections

Sea-levels are rising 60 per cent faster than the Intergovernmental Panel on Climate Change's (IPCC) central projections, new research suggests.

While temperature rises appear to be consistent with the projections made in the IPCC's fourth assessment report (AR4), satellite measurements show that sea-levels are actually rising at a rate of 3.2 mm a year compared to the best estimate of 2 mm a year in the report.

Projected sea-level rise may be underestimated

That sea level is rising faster than expected could mean that the Intergovernmental Panel on Climate Change's (IPCC) sea-level rise projections for the future may be biased low as well, their results suggest.

Sea-level rise potentially affects millions of people all around the world in coastal areas as well as megacities like Tokyo.

GSA Bulletin: From Titan to Tibet

Boulder, Colo., USA – GSA Bulletin articles posted online between 2 October and 21 November span locations such as the San Andreas fault, California; Tibet; Mongolia; Maine; the Owyhee River, Oregon; the Afar Rift, Ethiopia; Wyoming; Argentina; the Sinai Peninsula, Egypt; British Columbia; the southern Rocky Mountains; Scandinavia; and Saturn's largest moon, Titan. Topics include the "big crisis" in the history of life on Earth; the structural geology of Mount St. Helens; and the evolution of a piggyback basin.

Graphene switches: HZB research group makes it to first base

Now, Helmholtz Centre Berlin's Dr. Andrei Varykhalov, Prof. Dr. Oliver Rader and his team of physicists has taken the first step towards building graphene-based components, in collaboration with physicists from St. Petersburg (Russia), Jülich (Germany) and Harvard (USA). According to their report on 27. November 2012 in Nature Communications (DOI: 10.1038/ncomms2227), they successfully managed to increase the graphene conduction electrons' spin-orbit coupling by a factor of 10,000 – enough to allow them to construct a switch that can be controlled via small electric fields.

James' bond: A graphene/nanotube hybrid

HOUSTON – (Nov. 27, 2012) – A seamless graphene/nanotube hybrid created at Rice University may be the best electrode interface material possible for many energy storage and electronics applications.

Led by Rice chemist James Tour, researchers have successfully grown forests of carbon nanotubes that rise quickly from sheets of graphene to astounding lengths of up to 120 microns, according to a paper published today by Nature Communications. A house on an average plot with the same aspect ratio would rise into space.

Tracking pollution from outer space

The thickest layers of global smog — caused by traffic, industry, and natural minerals, among other factors — are found over the world's megacities. But getting an accurate measurement of pollution is no easy task. On-the-ground monitoring stations do not always provide the most accurate picture —monitoring stations depend heavily on local positioning and some cities put stations in urban centers, while others build on the edge of a city.