Earth

Immune cell that drives breast cancer could be effective target in novel immunotherapies

image: New research findings from Paula Bos, Ph.D., identified a type of immune cells that acts as a major driver of breast cancer growth by preventing the accumulation of a specific protein that induces anti-tumor responses.

Image: 
VCU Massey Cancer Center

Breast cancer is the most common cancer in women worldwide, but many immunotherapies have had limited success in treating aggressive forms of the disease.

"A deeper understanding of the immunobiology of breast cancer is critical to the success in harnessing immunotherapeutic approaches to improve breast cancer survival," said Paula Bos, Ph.D., member of the Cancer Biology research program at VCU Massey Cancer Center and assistant professor in the Department of Pathology at the VCU School of Medicine.

New research findings from Bos, published in Cell Reports, identified a type of immune cells that acts as a major driver of breast cancer growth by preventing the accumulation of a specific protein that induces anti-tumor responses. This new knowledge could be utilized for the development of novel immunotherapeutic approaches to treat the disease.

Regulatory T cells (Treg cells) are a special class of immune cells that possess a unique ability to suppress the function of other immune cells. This function serves to protect the organism from overreacting to certain molecules created within the body; however, in many cases it subdues the immune system's ability to attack cancer cells. Therefore, Treg cells are often abundant in solid tumors, particularly breast cancers, and are commonly associated with worse outcomes.

In previous research, Bos demonstrated that targeting Treg cells in breast cancer models significantly reduced tumor growth and metastasis; however, it remained unclear on a molecular level why this tumor reduction was happening.

There is a specific protein called interferon gamma (IFN-?) that has powerful anti-tumor properties, including the activation of macrophages, which are cells that can initiate inflammation and prevent cancer growth.

Bos' latest study suggests that Treg cells suppress IFN-? production by CD4 T lymphocytes (a type of white blood cells), further instigating disease progression. After analyzing breast cancer models in which Treg cells had been targeted and destroyed, Bos discovered an increased presence of IFN-? and functional reprogramming of macrophages into tumor-fighting cells.

"Additionally, we demonstrated better overall survival in human cancers with similar genetic patterns to those observed in mice with breast cancer whose Treg cells were eliminated," Bos said.

This research is the first of its kind to study the mechanistic function of Treg cells in breast cancer.

Bos said these findings validate the potential for adoptive transfer therapeutics using macrophages programmed with the IFN-? protein to effectively treat breast cancer. Adoptive transfer refers to the process of transferring external cells into a patient to improve immune function or response.

"Our work raises the possibility that white blood cells can be extracted from cancer patients, reprogrammed outside of their body through brief exposure to the IFN-? protein and re-infused back into the patient, contributing to the generation of anti-tumor responses," Bos said.

Bos is currently studying the function of Treg cells in metastatic cancer and plans to design follow-up studies testing the utilization of IFN-? as an adoptive transfer therapeutic agent in cancer mouse models.

Credit: 
Virginia Commonwealth University

New permafrost thermal stability map better describes the permafrost on the Tibetan Plateau

image: Mean annual ground temperature (MAGT) on the Tibetan Plateau

Image: 
@Science China Press

The Tibetan Plateau (TP), which is also called Earth's "Third Pole", is the highest and most extensive plateau in the world. TP is well known as the "Asian water tower", where is the largest permafrost region among middle- and low-latitude regions in the world. The average temperature of permafrost on the TP is approximately -2?, this warm permafrost is more sensitive to climate change and human disturbance than that in Arctic. However, the degradation of permafrost may affect the stability of "Asian water tower". Mapping the permafrost on the TP is therefore of critical importance.

Due to the harsh natural environment, the ground measurement data such as mean annual ground temperature (MAGT) at a depth of zero annual amplitude (10-25 m) in permafrost area of TP is very limited, which leads to the large uncertainty of permafrost map in this area. With the accumulation of ground observation data and remote sensing big data, it is possible to mapping the permafrost at TP with a high accuracy.

Recently, Youhua RAN from Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences at Lanzhou, China, Xin LI from Institute of Tibetan Plateau Research, Chinese Academy of Sciences at Beijing, China, and their collaborators collected and compiled MAGT measurement data at 237 boreholes that widely distributed over the TP.

These in situ MAGT data were integrated with remotely sensed freezing degree-days and thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, by using an ensemble learning method that employs a support vector regression model based on distance-blocked resampled training data with 200 repetitions. Cross-validation indicates that it is probably the most accurate of all currently available MAGT data, as show in Figure 1.

In order to better describe the permafrost in the Tibet Plateau, a new permafrost zonation scheme is adopted in this new map. The high altitude permafrost zonation system is proposed by Guodong CHENG. This system based on MAGT is not only closely related to the permafrost thickness, the vertical connectivity, and the development degree of periglacial landform, but also reflects the permafrost thermal stability which is very important in environment and engineering application.

Based on the predicted mean annual ground temperature (MAGT) at a depth of zero annual amplitude (10-25 m) and the high altitude permafrost zonation system, the permafrost in TP was divided into very stable, stable, semi-stable, transitional, and unstable (Figure 2). According to this map, the total area of permafrost on the TP, excluding glaciers and lakes, is approximately 115.02?104 km2. The areas corresponding to the very stable, stable, semi-stable, transitional, and unstable types are 0.86?104, 9.62?104, 38.45?104, 42.29?104, and 23.80?104 km2, respectively. The new permafrost stability map is of fundamental importance for supporting engineering planning and design measures intended to reduce permafrost-related hazards and to enhance water resource management. It is also can be used to evaluate the permafrost change in the future on the Third Pole as a baseline.

Credit: 
Science China Press

Change in use, perceptions of nicotine vaping among US youth 2017-2020

What The Study Did: This study estimates how common nicotine vaping is, its perceived harm and the accessibility of nicotine vaping products among U.S. adolescents from 2017 to 2020.

Authors: Richard Miech, Ph.D., of the University of Michigan in Ann Arbor, is the corresponding author.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamapediatrics.2020.5667)

Editor's Note: The article includes funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.

Credit: 
JAMA Network

Wireless, ultra-thin and battery-free strain sensors that are 10 times more sensitive

image: A team of NUS researchers led by Assistant Professor Chen Po-Yen (right) has developed wireless and battery-free strain sensors that are super sensitive and ultra-thin. Doctoral student Yang Haitao (centre) is demonstrating a soft robotic rehabilitation glove embedded with the novel strain sensors for better sensitivity and performance, as Associate Professor Raye Yeow (left) looks on.

Image: 
National University of Singapore

A research team from the National University of Singapore (NUS), led by Assistant Professor Chen Po-Yen, has taken the first step towards improving the safety and precision of industrial robotic arms by developing a new range of nanomaterial strain sensors that are 10 times more sensitive when measuring minute movements, compared to existing technology.

Fabricated using flexible, stretchable, and electrically conductive nanomaterials called MXenes, these novel strain sensors developed by the NUS team are ultra-thin, battery-free and can transmit data wirelessly. With these desirable properties, the novel strain sensors can potentially be used for a wide range of applications.

Assistant Professor Chen, who is from the NUS Department of Chemical and Biomolecular Engineering, explained, "Performance of conventional strain sensors has always been limited by the nature of sensing materials used, and users have limited options of customising the sensors for specific applications. In this work, we have developed a facile strategy to control the surface textures of MXenes, and this enabled us to control the sensing performance of strain sensors for various soft exoskeletons. The sensor design principles developed in this work will significantly enhance the performance of electronic skins and soft robots."

Precision manufacturing

One area where the novel strain sensors could be put to good use is in precision manufacturing, where robotic arms are used to carry out intricate tasks, such as fabricating fragile products like microchips.

These strain sensors developed by NUS researchers can be coated on a robotic arm like an electronic skin to measure subtle movements as they are stretched. When placed along the joints of robotic arms, these strain sensors allow the system to understand precisely how much the robotic arms are moving and their current position relative to the resting state. Current off-the-shelf strain sensors do not have the required accuracy and sensitivity to carry out this function.

Conventional automated robotic arms used in precision manufacturing require external cameras aimed at them from different angles to help track their positioning and movement. The ultra-sensitive strain sensors developed by the NUS team will help improve the overall safety of robotic arms by providing automated feedback on precise movements with an error margin below one degree, and remove the need for external cameras as they can track positioning and movement without any visual input.

"It is a great pleasure for Realtek Singapore to work with Assistant Professor Chen Po-Yen and his team in NUS for the development of wireless sensor modules applicable to soft robots and industrial robotic arms. Our co-developed wireless sensors with customer designated sensing performance allow the robots to conduct high-precision motions, and the feedback sensing data can be transmitted wirelessly, which cohere to the approaches of Realtek Singapore in wireless smart factory. Realtek will continue to build up a strong collaboration with NUS and we look forward to bringing the technologies from the lab to market," said by Dr Yeh Po-Leh, Chairman of Realtek Singapore.

Customisable, ultra-sensitive sensors

The technological breakthrough is the development of a production process that allows NUS researchers to create highly customisable ultra-sensitive sensors over a wide working window with high signal-to-noise ratios.

A sensor's working window determines how much it can stretch while still maintaining its sensing qualities and having a high signal-to-noise ratio means greater accuracy as the sensor can differentiate between subtle vibrations and minute movements of the robotic arm.

This production process allows the team to customise their sensors to any working window between 0 to 900 per cent, while maintaining high sensitivity and signal-to-noise ratio. Standard sensors can typically achieve a range of up to 100 per cent. By combining multiple sensors with different working windows, NUS researchers can create a single ultra-sensitive sensor that would otherwise be impossible to achieve.

The research team took two years to develop this breakthrough and have since published their work in the scientific journal ACS Nano in September 2020. They also have a working prototype of the application of soft exoskeletons in a soft robotic rehabilitation glove.

"These advanced flexible sensors give our soft wearable robots an important capability in sensing patient's motor performance, particularly in terms of their range of motion. This will ultimately enable the soft robot to better understand the patient's ability and provide the necessary assistance to their hand movements," said Associate Professor Raye Yeow, who heads a soft robotics lab in NUS Department of Biomedical Engineering, and leads the Soft and Hybrid Robotics programme under the National Robotics R&D Programme Office.

Robotic surgery

The team is also looking to improve the sensor's capabilities and work with the Singapore General Hospital to explore the application in soft exoskeleton robots for rehabilitation and in surgical robots for transoral robotic surgery.

"As a surgeon, we rely on not just our sight but also our sense of touch to feel the area inside the body where we operate on. Cancerous tissues, for instance, feel different from normal, healthy tissue. By adding ultra-thin wireless sensing modules to long robotic tools, we can reach and operate in areas where our hands can't reach and potentially "feel" the tissue stiffness without the need for open surgery," said Dr Lim Chwee Ming, Senior Consultant, Otorhinolaryngology-Head & Neck Surgery, Singapore General Hospital.

Credit: 
National University of Singapore

Biologists clarify how three species of cephalopods coexist in the Arctic

image: Isotopic niches of the studied species of the genus Rossia: comparison among species and ontogenetic comparison within species.

Image: 
Olga Zimina

Co-author from Kazan Federal University, Professor Rushan Sabirov explains, "In ecosystems, two or more closely related species of organisms with similar ecology and morphological appearance often inhabit the same territory. These species are called sympatric. According to classical ecological theory, one of the species will lose out in competition and eventually die out. In reality, closely related sympatric species coexist successfully for a long time. It is very important to understand how the division of resources and favorable biotope sites between sympatric species in the Arctic occurs, because Arctic ecosystems are extremely susceptible to external influences."

By analyzing the content of stable heavy isotopes of carbon (δ13C) and nitrogen (δ15N) in the beaks, the researchers studied three closely related cephalopod species: the highly boreal Rossia megaptera, the wide-boreal-Arctic Rossia palpebrosa, and the Arctic endemic Rossia moelleri, which are sympatric in the Arctic.

"It has been found that these species of Arctic cephalopods have seven characteristics that allow them to avoid competition: a certain pelagic lifestyle; ability to migrate; pronounced dimensional sexual dimorphism; geographical variability in diet; range of the diet; ontogenetic variability of isotopic niches; sexual variability of isotopic niches. Moreover, none of these seven traits occurs in all three species at the same time. Thus, a decrease in competition between closely related sympatric species is observed due to ecological adaptations, which are diagnosed only when studying a large sample with equal proportions of sexes and all ontogenetic stages using non-classical methods, such as ecological applications of isotope analysis," explains Associate Professor Aleksey Golikov.

As the researchers conclude, none of the species should suffer from the warming in the Arctic, and Rossia megaptera may even become more competitive because of that.

Studies of Arctic ecosystems are in line with Russia's Strategy for the Development of the Arctic Zone of Russian and National Security until 2035.

Credit: 
Kazan Federal University

How water helps the substrate into the enzyme

Researchers from Bochum and Berkeley have investigated why cages can increase the catalytic activity of enclosed molecules. Using terahertz spectroscopy and complex computer simulations, they showed that water encapsulated in a tiny cage has special properties - that are structurally and dynamically distinct from any known phase of water. The water forms a droplet inside the cage that facilitates the encapsulation of a host molecule, i.e. to access the catalytic centre. The research team describes the thermodynamic properties of this special form of water, which have never been observed before, in the journal Proceedings of the National Academy of Sciences (PNAS) published online on 14 December 2020.

The team led by Professor Martina Havenith, Head of the Chair of Physical Chemistry II at Ruhr-Universität Bochum and Speaker of the Cluster of Excellence Ruhr Explores Solvation, Resolv for short, cooperated during the work with Professor Teresa Head-Gordon, Professor Ken Raymond and Professor Dean Toste from the University of California in Berkeley.

Water in the cage is neither solid nor a normal liquid

Some molecular constructs have an internal cavity filled with water, which can be catalytically active, i.e. can facilitate the reaction of certain molecules. The scientists replicated these conditions in their experiments using nanocapsules. They investigated the encapsulated water molecules and their properties.

A recent theory suggests that, under these circumstances, water would form ice-like clusters. The team refuted this theory in the current work. The terahertz spectrum - a kind of chemical fingerprint - of the confined water looked different from the spectra of any previously known phases of water. It did not resemble either the spectrum of ice nor the spectrum of bulk water at high pressure.

Water inside wants to leave the cage

Instead, a droplet formed from nine water molecules connected internally by hydrogen bonds, while the hydrogen bond network was disrupted at the surface of the droplet. "The motions of the water molecules within the cage are more constrained," explains Martina Havenith. "It cannot be happy with this state." As a result, emptying the cavity is alleviated with respect to normal bulk water, making it easier for a guest to enter the cavity.

Ken Raymond's and Dean Toste's team synthesised the nanocage for the present study. The group led by Martina Havenith then analysed the hydrogen bond network of the confined water using terahertz spectroscopy. Teresa Head-Gordon simulated the experiment using computer simulations called ab initio molecular dynamics simulations.

Credit: 
Ruhr-University Bochum

Delayed Arctic ice advance tracked back to atmospheric conditions near Alaska months prior

image: Researchers aboard the research vessel Mirai watched water vapor rise from the Chukchi Sea, resembling the mist that rises from a hot bath in a cold room. The Pacific Ocean brings relatively warm 2-degree Celsius water into the Arctic Ocean, where much colder minus 10-degree Celsius winds blow across the surface. New analysis by researchers in Japan shows how changes in the atmosphere that raise Pacific sea surface temperatures during the summer can delay the formation of Arctic sea ice months later.

Image: 
Photo by Jun Inoue, National Institute of Polar Research, CC BY-SA.

Experts in Japan recently discovered that atmospheric conditions near Alaska can affect sea ice conditions in the Arctic Ocean months later. The team used various data, including ship-based data from 2018, to uncover how a single atmospheric event over the northern Pacific Ocean caused significantly delayed sea ice formation in the Pacific Arctic region.

"Global warming is going on, so the global mean surface air temperature is increasing, but compared to that trend, the Arctic is warming twice or more as fast," said Assistant Professor Tsubasa Kodaira, first author of the recent research publication and an expert in applied physical oceanography from the University of Tokyo.

One important heat source in the Arctic is warm Pacific seawater. The seawater flows northward into the Bering Sea, then through the narrow, 85-kilometer wide opening of the Bering Strait into the Chukchi Sea and onward into the Arctic. Researchers aboard the research vessel Mirai in November 2018 recorded water conditions for 12 consecutive days while sailing along the edge of sea ice in the Chukchi Sea. Despite ideal atmospheric conditions for sea ice formation, researchers recorded that the water surface remained unusually warm and ice-free.

The delay of sea ice formation in 2018 was remarkable even in an era of climate change turning extreme weather into regular events. Sea ice coverage of the Chukchi Sea remained 20% less from Nov. 13 through Dec. 4, 2018, compared to the average from 2002 to 2017.

The research team analyzed satellite recordings of sea surface temperature of the Chukchi Sea from 2002 to 2018. During the months when sea ice formed, the fluctuations of seawater temperature closely matched fluctuations of the Pacific Decadal Oscillation (PDO) index, large-scale and long-term sea surface temperature variations over northern regions of the Pacific. Despite this two-decade association between Chukchi Sea temperature and the PDO index, when the Chukchi Sea was at its warmest in November 2018, the PDO was neutral.

The research team looked specifically at monthly sea surface temperatures from August through November in every year. Typically, seawater temperature cooled by about two degrees each month as summer fades to winter. In 2018, the temperature remained the same as August in September.

"So, something was happening in summer to create the unusual warm seawater observed by Mirai in November 2018," said Kodaira.

Researchers then examined additional atmospheric satellite data recordings and noticed sustained, unusually high air pressure over the Bering Sea in September 2018. This high pressure is known as atmospheric blocking and leads to stationary weather patterns. This atmospheric blocking caused a sustained increase in wind blowing northward over the Bering Strait.

Kodaira's team estimates that these winds led to 70% more water than average flowing from the Pacific into the Arctic.

"This large volume of additional warm Pacific water was likely what prohibited sea ice advance towards the south in November 2018," said Kodaira.

Researchers regard the September 2018 Bering Sea atmospheric blocking event as unusual because although such events are common in the region during the winter, they are significantly less common in the summer and autumn.

The unusual atmospheric blocking in September and remarkably delayed sea ice formation in November occurred during a year with a neutral PDO index. The study of Kodaira's team also showed that seawater temperatures increase by a full 1 degree Celsius during a positive phase of PDO index.

If atmospheric blocking were to occur simultaneously with a positive PDO index, researchers predict sea surface temperatures in the Arctic could rise by approximately 2 degrees Celsius, dramatically reducing -- not just delaying -- annual sea ice growth.

The Pacific Arctic region, including the Chukchi Sea, was previously known to have experienced a significant reduction of summer sea ice and this new study has demonstrated one mechanism of how sea ice formation can be delayed. The researchers hope that their new findings will lead to better predictions of Arctic sea ice formation, benefiting global weather forecasting and predictions of local Arctic ecosystem health.

Credit: 
University of Tokyo

Academies call for prompt action to protect biodiversity in the agricultural landscape

The biodiversity in Germany's agricultural landscape has declined considerably in recent years, even in nature reserves. In their joint statement "Biodiversity and Management of Agricultural Landscapes - Wide-ranging action is now crucial", the German Academies of Sciences make recommendations in eight fields of action. They state the protection of biodiversity as an urgent and complex challenge. A change in society as a whole towards sustainable farming is required. It is important to also take the economic, political, legal, and social parameters of agriculture into account. Thus, the scientists recommend a systematic approach, implementing a variety of solutions at the same time. As the most important starting point, subsidies paid to the agricultural industry as part of the Common Agricultural Policy of the European Union (CAP) should be more closely tied to quantifiable ecosystem services that have actually been provided.

The observed decline in biodiversity in Germany's agricultural landscape will perspectively restrict the functionality of agro-ecosystems and have noticeable consequences for human society and the environment. The experts point out that the value of biodiversity cannot be assessed purely based on economic criteria. They attribute the decline in animal and plant species to a combination of numerous factors such as intensified land use and biological and technical innovations to increase production. The authors of the statement see an acute need for action to protect and promote biodiversity in the German agricultural landscape. Future framework conditions should actively support farmers in managing their farms in a biodiversity-friendly manner. According to the scientists, a combination of the proposed measures would not only halt the decline of biodiversity in the agricultural landscape, but also reverse it. The statement outlines courses of action in eight areas:

Further development of agricultural and conservation policies at European and national level: The academies recommend, among other things, a tighter coupling of agricultural and conservation policies. CAP support should be focused on specific targeted conservation measures, and subsidy payments to agriculture should be linked to actual quantifiable ecosystem services.

Adaptation of agricultural and environmental laws: The introduction of an EU-wide agricultural law would enshrine in law environmental protection regulations for farms while avoiding any distortion of competition within the EU. Shortfalls in enforcing existing legislation need to be eliminated.

Development of plan-based, region-specific collective approaches: The aim of such adjustments in landscape planning is a modified land use through close cooperation of all parties involved. Perspectively, some areas should either cease to be used for farming production, or they should be farmed much less intensively.

Responsibility of the municipalities: As visible pioneers and opinion leaders of a biodiversity-friendly way of life, they should be more committed to preserving, fostering and increasing biological diversity on their land.

Influence through trade and markets: Products farmed locally in biodiversity-friendly conditions should be labeled with this information when being sold. In addition, the development of infrastructures should be promoted that allow agricultural products to be further processed locally. Food losses must also be reduced.

Support for farms: Biodiversity-friendly farming can and must be economically viable. Farms should be supported in implementing of appropriate farming methods and they need to be given greater support if they choose to invest in conservation measures for their holdings. Ideas beyond organic farming need to be expanded upon and continually developed, focusing on integrated farming methods with small-scale technical or large-scale digital support.

Change in social perception and appreciation: Awareness of the importance of biological diversity in the agricultural landscape should be fundamentally strengthened and must also be reflected in changed consumer behavior. It is particularly important to increase the willingness to buy biodiversity-friendly products and to reduce meat consumption.

Expansion of monitoring and research: Long-term, nationwide, standardized monitoring and research are needed to verify the effectiveness of the measures implemented to protect biological diversity. The monitoring system should document changes to a broad, representative range of species and habitats.

Credit: 
Leopoldina

Scientists: Xenon improves properties of maxillofacial and orthopedic implants

Scientists of Tomsk Polytechnic University (TPU) jointly with the colleagues from Siberian State Medical University (SSMU) and Immanuel Kant Baltic Federal University (IKBFU) studied the properties of calcium phosphate coatings deposited on titanium implants in various inert gases environment. The researchers managed to discover that the use of xenon positively affects the physicochemical, mechanical and biological properties of the coatings used in oral and maxillofacial surgery, orthopedics and traumatology. Moreover, no comprehensive research related to the impact of working gases on surfaces have been conducted before. The research findings are published in Biomedical Materials academic journal.

Photo: calcium phosphate coatings

"Our research team is engaged in biomedical materials. However, the engineering university context does not imply having in-house medical researchers. That is why we cooperate with the researchers from SSMU and IKBFU obtaining all the required competences. This collaboration allows not only to obtain the results in form of academic articles, but also to solve the real-world problems of medicine. After all, practical application of our technological solutions without medical experts is simply impossible.

In the long run, our cooperation has a challenging goal - to make Tomsk a center of development and application of new medical materials and technologies. As engineers, we can propose new technical ideas and materials and they, as medical researchers, can put these ideas into medical practice.

This conjunction of technical and medical universities will help us elevate the patient treatment quality and reduce treatment time," Sergei Tverdokhlebov, Head of the TPU Laboratory for Plasma Hybrid Systems, says.

The calcium phosphate coatings up to 1 μm thick were deposited on the titanium substrate by sputter deposition of hydroxyapatite targets in the working gas. Usually, an inert gas argon is used for these purposes. However, the TPU scientists studied not only the effect of argon but also experimented with neon, krypton and xenon on the coatings. Then, the scientists studied physicochemical, mechanical and biological properties of the obtained biomedical materials. The TPU researchers worked on coating formulation, morphology, mechanical properties, including adhesion and chemical composition, while SSMU and IKBFU staff conducted the cellular research.

"The calcium phosphate coatings are studied not only at our university. Their properties are thoroughly studied and scientists work on their improvement. Our joint research work was aimed at obtaining new results in this direction and researching the impact of different inert gases on coatings. In our part of the research work, we found out that depending on a specific gas, the coating morphology, calcium to phosphorus ratio differ and the mechanical properties vary. For instance, the coatings formed using xenon show better adhesion, which a property that prevents the coating from peeling off too quickly from the surface. The results obtained with the use of cellular technologies surprised us because in this case xenon proved itself best as well," Anna Kozelskaya, Research Fellow of the TPU Weinberg Research Center, one of the authors of the article, says.

Mesenchymal stem cells isolated from the donor`s adipose tissue were used for cellular research. These cells can transform into various types of cells, including adipose, bone, cartilage, probably, muscle and nervous cells. The cell research included testing cell viability, in vitro cell culture and gene expression. In this research work, it was necessary to ascertain that the coatings stimulate mesenchymal stem cell transition into bone tissue cells.

"The results turned out to be quite interesting. Inert gases are considered to be rather inert substances with similar properties. Nevertheless, they differently affect physicochemical properties of the formed calcium phosphate coatings. In its turn, it causes different cellular response starting from their gene activation that ultimately leads to the stem cell transition into osteoblasts.

Xenon, known as a gas for anesthetic purposes in medicine, showed the most favourable cellular response. If the results are confirmed by animal testing and clinical trials, we can talk about implementation of the technology to produce an extended implant panel used in bioengineering of bone tissue," Igor Khlusov, Professor of the SSMU Department of Morphology and General Pathology, adds.

At the same time, the scientists admit that xenon is quite an expensive inert gas to use. However, the coatings formed using it can be combined with thicker calcium phosphate coatings with a crystalline structure. It will allow reducing gas expenses and obtaining coatings with improved properties. The fact is that the coatings formed with xenon obtain entirely amorphous structure. It helps to stimulate bone formation in the first weeks after implant insertion. Calcium and phosphorus responsible for the bone tissue formation release well from this coating. Thereby, such thin coatings decompose very fast uncovering the implant.

"We propose to apply such a coating above calcium phosphate coatings with a crystalline structure. Thus, we can obtain another positive effect: an amorphous layer will decompose during the first two-four weeks providing for a maximum calcium and phosphate release. Then, the lower layers will provide for a further longer release of the elements, which will contribute to a prolonged process. The combination of such coatings will be the next stage of our research work," Anna Kozelskaya explains.

Credit: 
Tomsk Polytechnic University

Everything you want to know about sunscreen

From safety and effectiveness to who should use sunscreen and how to apply it, Canadian dermatologists review the latest evidence and guidelines on use of sunscreen.

The review, published in CMAJ (Canadian Medical Association Journal), recommends that everyone older than six months of age should use sunscreen to protect against skin cancer https://www.cmaj.ca/lookup/doi/10.1503/cmaj.201085.

Most skin cancers develop because of long-term sun exposure. Sunscreen reduces the risk of developing skin cancer by blocking solar radiation through chemical or physical sunscreen filters such as titanium dioxide and zinc oxide.

"Exposure to ultraviolet radiation is directly harmful and has been associated with the development of skin cancers, which are common in Canada. High-quality evidence has shown that sunscreen reduces the risk of developing both melanoma and nonmelanoma skin cancer," writes Dr. Megan Sander, a dermatologist and clinical lecturer at the Cumming School of Medicine, University of Calgary, Calgary, Alberta, with coauthors.

Some key points:

Prevention -- Evidence from randomized controlled trials indicates that sunscreen is effective at protecting against skin cancer as well as premature aging of the skin.

Non-White populations -- There is a lack of evidence for the effectiveness of sunscreen in people with darker skin. Current evidence is mostly limited to White people, who have a higher rate of skin cancers.

Babies -- Sun avoidance and protective clothing are recommended for babies. Sunscreen is not recommended for use before age 6 months because of the potential for systemic absorption of sunscreen ingredients.

SPF -- Sunscreens with an SPF (sun protection factor) of 30 or higher are recommended in cream or lotion format. Spray-on sunscreens are not recommended as they can be dispersed, are flammable and their effects if inhaled are unknown.

Harms -- Some people can have skin reactions such as contact dermatitis, especially to chemical sunscreens, and there is evidence these sunscreens can be systemically absorbed, although the clinical importance of the absorption is not known.

Environmental impact -- Recent evidence indicates that chemical sunscreens can be detected in water and fish and may contribute to the bleaching of coral reefs.

"Sunscreen is only one part of a comprehensive photoprotection strategy. It is important to counsel patients regarding behaviours for avoiding ultraviolet radiation, including the use of wide-brimmed hats, eye protection (e.g., "wrap-around" sunglasses with ultraviolet radiation protection) and seeking shade when the ultraviolet index is above 3 (usually 11 am-3 pm, April to September in Canada)," write the authors.

Research into the safety of sunscreens and of new technologies continues.

Credit: 
Canadian Medical Association Journal

Industrial waste is reused to produce alternatives to plastic

image: Scraps left over from production of wound dressing film

Image: 
Pamela Melo/UNESP

In Brazil, researchers at São Paulo State University (UNESP) in Ilha Solteira have developed a film that can replace plastic in food packaging. The film is made from hydroxypropyl methylcellulose (HPMC) and bacterial cellulose scraps left over from industrial processing. Both raw materials are sustainable. They are combined to produce a biodegradable film of bacterial cellulose nanocrystals and HPMC.

The product outperforms film made of HPMC alone. An article on the research project, which was supported by FAPESP, is published in the journal Applied Material & Interfaces.

“We set out to fill the HMPC matrix with bacterial cellulose nanocrystals in order to enhance its properties. We also wanted to create greener protocols for the development of novel composites, from the material itself to its origin, so we included the reuse of industrial waste in the project,” said Márcia Regina de Moura Aouada, a co-author of the article. Aouada has a PhD in chemistry from UNESP, where she teaches and is a researcher at the Center for Development of Functional Materials (CDMF), one of the Research, Innovation and Dissemination Centers (RIDCs) supported by FAPESP.

Since her PhD, Aouada has studied films made from renewables, and edible and biodegradable films, with the aim of reducing the growing generation of solid waste in the form of dumped plastic food packaging.

“One of the limitations of films made of HPMC and other biopolymers is their low mechanical strength compared with traditional films derived from petroleum. They are also highly permeable to water vapor, which limits the available applications. We improved these properties by adding bacterial cellulose,” said Pamela Melo, a graduate student in material sciences at UNESP and first author of the article on the project, which was conducted during her PhD research under Aouada’s supervision.

Cake recipe

The researchers obtained bacterial cellulose scraps from Seven Indústria de Produtos Biotecnológicos, which makes wound dressing biofilms in the state of Paraná. To convert this waste into film suitable for food packaging, they first milled the scraps into powder. “We then submitted the powder to sulfuric acid hydrolysis, a process well described in the literature,” Melo said. The result was a bacterial cellulose nanocrystal suspension, which they mixed with HPMC diluted in water to produce a film-forming dispersion, a target of interest for the bioplastics industry.

“It’s not enough to create good composites. We need to find the best solution to obtain good film properties by varying factors such as viscosity and nanoparticle concentration. A fair analogy could be a cake recipe: studying the recipe is another significant innovation in our study,” Aouada said.

“How the nanocrystals interact with the HPMC matrix and are distributed within it will determine film quality, so we conducted tests and arrived at the optimal distribution via high-energy dispersion using a Turrax disperser,” Melo said. The film-forming dispersion was deposited on a substrate. The solvents evaporated after 24-48 hours. The result was a stronger, less permeable product than HPMC-only film. The amount of water absorbed by the material is currently a constraint on its use in packaging.

Another positive finding is that the nanocrystals do not alter the transparency of HPMC.

Advantages of bacterial cellulose

Cellulose is the most abundant polymer in nature and the main component of vegetable fibers, providing rigidity for plants. Plant cellulose is well-known and used in the manufacturing of paper, but some bacteria, algae and marine invertebrates also secrete cellulose, which has been used for some time in wound dressing biofilms and is now expanding into other areas, such as food packaging (read more at: revistapesquisa.fapesp.br/en/cellulose-on-the-skin).

Protection of the natural environment benefits most. “Bacterial cellulose can be produced in the laboratory all year round, regardless of weather and environmental conditions. It’s a purer molecule and the production process generates less pollution,” Aouada said. Processing of plant cellulose requires the elimination of impurities such as lignin using organochlorine compounds, which are harmful to the environment.

Another advantage of bacterial cellulose is the presence of nanometric fibers in its structure. “This is very interesting because it gives the material distinct properties such as high tensile strength, meaning it can withstand certain loads or stresses without breaking,” Aouada said.

Next steps

The researchers plan to continue testing film-forming dispersions until they conclude they have developed a competitive product. They are studying other polymer dispersion techniques, comparing them with the use of HPMC, and assessing their biodegradability.

If they succeed in developing better film-forming dispersions, it may be possible to use bacterial cellulose on a larger scale. “Our main focus is on finding substitutes for materials not considered ecologically correct, such as petroleum products. Such substitutes include biodegradable composites derived from renewable resources,” Aouada said.

The use of cellulose scraps and other kinds of waste also helps reduce processing cost. Consumers typically prefer plastic film for packaging because it is cheap. Moreover, there are other promising sources of bacterial cellulose, such as the sugarcane and soy industries. “Studies have shown that bacterial cellulose can be obtained using sugarcane or soy molasses as a substrate,” Aouada said.

Credit: 
Fundação de Amparo à Pesquisa do Estado de São Paulo

Powerhouse plants that bolster the food web

image: A white-blotched Heterocampa munches on an oak leaf. A new study led by the University of Delaware's Doug Tallamy identifies the most critical plants needed to sustain food webs across the United States.

Image: 
University of Delaware

University of Delaware Professor of Entomology Doug Tallamy published a new research study in Nature that systematically identifies the most critical plants needed to sustain food webs across the United States. Alongside co-authors Kimberley Shropshire and former graduate student Desiree Narango, now a postdoctoral researcher at the University of Massachusetts Amherst, the study drills down to the top plants in each county and bioregion, illuminating a plan for how to restore ecosystems anywhere in the country.

Why care about food webs? Well, these complex, highly interconnected systems of feeding relationships are essential for our planet's health. The Earth and its many species depend on them, including humans.

To get the feast started, who has the first seat at the dining room table? The system all starts with plants, which get great publicity for their ability to convert carbon dioxide and into breathable air. But plants also have another, lesser known talent; they capture energy from the sun and turn it into food. Animals eat plants. Some eat plants directly; others obtain this energy by eating an animal who eats plants. And what animals are the best at converting this energy? Think small.

Punching way above their weight class, insects are the best creatures on Earth at this energy transfer. And the world champions are caterpillars of the Lepidoptera species, the lifeblood of the food web whose protein-rich bodies are ideal for hungry birds.

But caterpillars and other insects can't simply thrive among any plants; they must be surrounded by native plants, meaning those that have evolved alongside insects over millions of years. For example, caterpillars in Delaware like the promethea silkmoth don't jive with popular exotic trees like crepe myrtle, a popular choice by homeowners.

And not just any native plant will do. The new research finds that only a few powerhouse plants support the majority of Lepidoptera. Ninety percent of what caterpillars eat is created by only 14 percent of native plant species with only five percent of the powerhouse plants taking credit for 75 percent of food. This pattern is consistent wherever you go in the U.S.

"Most people talk about a food chain as if it's linear. In a diagram, these connections look like a web rather than a simple chain," said Tallamy, a conservationist and bestselling author. "Take a keystone native plant like an oak tree. More than 500 types of caterpillars can eat that oak tree. That allows for a more complex and, thus, more stable food web."

It's known that native plants are much better for an ecosystem than non-native plants, but this new study takes the knowledge an important further step.

"There are certain native plants, and there are actually not that many of them, that are doing the bulk of the work," said Tallamy. "So, if you build landscapes without these powerhouse plants that support caterpillars, the food web is doomed."

The mid-Atlantic region boasts more than 2,000 plant genera; Tallamy and Narango categorized 38 as powerhouses. Native oaks, willows, birches and wild cherry trees made the trees' list; the most powerful herbaceous plants included goldenrod, asters and perennial sunflowers.

Tallamy, a veteran of conservation research, was surprised by just how significant the difference was between powerhouse plants and other native species.

"The magnitude of the differences surprised us. It's not just a steady continuum where you have all of your native plants lined up and, from one plant to the next, there's a gradual decrease in productivity," said Tallamy. "It is extremely skewed toward these powerhouse plants."

The Lepidoptera order of insects includes butterflies and moths. While butterflies are more admired for their beauty, the tastier moth caterpillars do most of the work of transferring energy to predators.

"You hear a lot about butterfly gardens. We need to think more about Lepidoptera gardens that include moths, who are the biggest driver of the food web," said Tallamy.

Today, because of human expansion, pesticides and species isolation, insect populations around the world are in a precipitous decline, referred to as Insect Armageddon. Flying insects like moths have seen a 78% reduction over the past 40 years. Whether you love insects or run in fear of these six-legged invertebrates, their demise will affect you.

"Insects pollinate 90% of our flowering plants. Without insects, we'd lose these plants, which collapses the food web," said Tallamy. "We'd lose amphibians, reptiles, birds, mammals and even some freshwater fish."

On top of their energy transfer abilities, insects are also crucial to soil decomposition, unlocking dead plant and animal material and returning nutrients to the soil. Sure, fungi and bacteria also have this talent, but they are significantly slower than insects. Tallamy puts it bluntly.

"If insect populations continue to decline, the Earth will rot. Humans will not survive such a drastic change," said Tallamy. "Insects are essential not just to our well-being, but to our continued existence on Earth."

So, what can you do to help? As Tallamy details in his New York Times bestseller Nature's Best Hope: A New Approach to Conservation that Starts in Your Yard, homeowners can turn their yards into conservation corridors that provide wildlife habitats. They just need to choose plants native to their region.

"We need to change the cultural norms of what our yards should look like. Homeowners can shrink the size of their lawns," said Tallamy. "But you can't simply replace the grass with any old plants; choose key native plants that support local insect populations. If you're in the mid-Atlantic, pick from the 38 genera that we identified. Start with oaks. Some others on the list aren't the most beautiful, but we need to learn to accept that. Maybe you plant a black cherry in the backyard instead of out front."

The same goes for public and non-profit efforts to restore ecosystems. Without powerhouse plants, restoration efforts will fall short.

"Think of a baseball team. What if you constructed a lineup of only pitchers and zero position players? They all pitch, but are lousy hitters, so you're going to lose the game," said Tallamy. "Take these national and international ventures [focused on forest restoration]. It's important to plant trees, but we need to have the right lineup of powerhouse plants native to each region."

Credit: 
University of Delaware

Study: Oregon's Western Cascades watershed to experience larger, more frequent fires

image: A view of the Riverside Fire from La Dee Flats on the Mt. Hood National Forest on Sept. 9, 2020. The fire encompassed over 138,000 acres, largely on the Mt. Hood National Forest.

Image: 
U.S. Forest Service - Pacific Northwest Region

The Clackamas Basin rarely experiences the intense fire activity that burned in the watershed during the Labor Day fires, but new research out of Portland State University shows that wildfires like the Riverside Fire, which grew to 138,000 acres within days, could become more common under a warming climate, even under non-extreme wind conditions.

The study found that wildfire hazard in the Clackamas Basin, which is the second largest source of drinking water for the Portland metro area, will likely increase by mid-century. Projected changes in temperature and relative humidity are expected to lead to longer fire seasons and more severe fire weather in Oregon's Western Cascade mountains, which in turn will result in larger, more frequent fires.

"Because of shifts in climate, the scenarios that would create extreme fire events all become a little more plausible," said Andy McEvoy, the study's lead author and a graduate student in environmental science and management. "There will be that many more days under which those components of a fire -- ignition, weather and fuel -- can align in a terrible way."

The group of researchers simulated four climate scenarios from 2040-2069, representing a range of plausible changes in temperature and humidity.

The simulations showed that the fire season increased from as little as eight days to as much as 32 days. The projected annual average area burned increased significantly by 50% under the least impactful scenario (the coolest and wettest of the four) and as much as 540% under the most extreme scenario (the hottest and driest of the four).

"We don't make the case that one future is more likely than the other, but it helps bracket the plausible outcomes for planning purposes," said McEvoy, who works as a research fellow in the U.S. Forest Service's Pacific Northwest Research Station. "The future is very uncertain and if land and resource managers plan just for the average case, their plans are not going to be robust in the face of those worst-case scenarios."

The researchers, who worked closely with the Clackamas River Water Providers and the Clackamas County Water and Environment Services, said the findings provide regional managers and planners with a tool to develop climate adaptation and risk mitigation strategies. Given the wide range of plausible future wildfire hazards, robust adaptation plans will be ones that maintain essential ecosystem services across the broadest range of scenarios by balancing land use management, fire suppression, and community preparedness strategies.

These efforts could range from designing and testing the effectiveness of fuel breaks -- breaks in vegetation that can help firefighters control the spread of fire and protect homes and resources -- to identifying susceptible communities and planning evacuations in the event of future extreme wildfires. In those cases, like the Riverside Fire, fuel breaks would not be successful and the only sensible strategy would be timely, safe evacuations.

"They're planning for an uncertain future," McEvoy said. "They have to plan using all available tools and adapt to events as they occur."

Credit: 
Portland State University

Study reveals networks of genes involved in congenital heart disease

image: A team of scientists at Gladstone Institutes led by Benoit Bruneau (left), including Irfan Kathiriya (center) and Kavitha Rao (right), make inroads into understanding what genes are improperly deployed in some cases of congenital heart disease.

Image: 
Gladstone Institutes

SAN FRANCISCO, CA--December 14, 2020--Over two million babies, children, and adults in the United States are living with congenital heart disease--a range of birth defects affecting the heart's structure or function. Now, researchers at Gladstone Institutes and UC San Francisco (UCSF) have made inroads into understanding how a broad network of genes and proteins go awry in a subset of congenital heart diseases.

"We now have a better understanding of what genes are improperly deployed in some cases of congenital heart disease," says Benoit Bruneau, PhD, director of the Gladstone Institute of Cardiovascular Disease and a senior author of the new study. "Eventually, this might help us get a handle on how to modulate genetic networks to prevent or treat the disease."

Congenital heart disease encompasses a wide variety of heart defects, ranging from mild structural problems that cause no symptoms to severe malformations that disrupt or block the normal flow of blood through the heart. A handful of genetic mutations have been implicated in contributing to congenital heart disease; the first to be identified was in a gene known as TBX5. The TBX5 protein is a transcription factor--it controls the expression of dozens of others genes, giving it far-reaching effects.

Bruneau has spent the last 20 years studying the effect of TBX5 mutations on developing heart cells, mostly conducting research in mice. In the new study published in Developmental Cell, he and his colleagues turned instead to human cells, using novel approaches to follow what happens in individual cells when TBX5 is mutated.

"This is really the first time we've been able to study this genetic mutation in a human context," says Bruneau, who is also a professor in the Department of Pediatrics at UCSF. "The mouse heart is a good proxy for the human heart, but it's not exactly the same, so it's important to be able to carry out these experiments in human cells."

The scientists began with human induced pluripotent stem cells (iPS cells), which have been reprogrammed to an embryonic-like state, giving them--like embryonic stem cells--the ability to become nearly every cell type in the body.

Then, Bruneau's group used CRISPR-Cas9 gene-editing technology to mutate TBX5 in the cells and began coaxing the iPS cells to become heart cells. As the cells became more like heart cells, the researchers used a method called single-cell RNA sequencing to track how the TBX5 mutation changed which genes were switched on and off in tens of thousands of individual cells.

The experiment revealed many genes that were expressed at higher or lower levels in cells with mutated TBX5. Importantly, not all cells responded to the TBX5 mutation in the same way; some had drastic changes in gene expression while other were less affected. This diversity, the researchers say, reflects the fact that the heart is composed of many different cell types.

"It makes sense that some are more affected than others, but this is the first experimental data in human cells to show that diversity," says Bruneau.

Bruneau's team then collaborated with computational researchers to analyze how the impacted genes and proteins were related to each other. The new data let them sketch out a complex and interconnected network of molecules that work together during heart development.

"We've not only provided a list of genes that are implicated in congenital heart disease, but we've offered context in terms of how those genes are connected," says Irfan Kathiriya, MD, PhD, a pediatric cardiac anesthesiologist at UCSF Benioff Children's Hospital, an associate professor in the Department of Anesthesia and Perioperative Care at UCSF, a visiting scientist at Gladstone, and the first author of the study.

Several genes fell into known pathways already associated with heart development or congenital heart disease. Some genes were among those directly regulated by TBX5's function as a transcription factor, while others were affected in a less direct way, the study revealed. In addition, many of the altered genes were relevant to heart function in patients with congenital heart disease as they control the rhythm and relaxation of the heart, and defects in these genes are often found together with the structural defects.

The new paper doesn't point toward any individual drug target that can reverse a congenital heart disease after birth, but a better understanding of the network involved in healthy heart formation, as well as congenital heart disease may lead to ways to prevent the defects, the researchers say. In the same way that folate taken by pregnant women is known to help prevent neural tube defects, there may be a compound that can help ensure that the network of genes and proteins related to congenital heart disease stays balanced during embryonic development.

"Our new data reveal that the genes are really all part of one network--complex but singular--which needs to stay balanced during heart development," says Bruneau. "That means if we can figure out a balancing factor that keeps this network functioning, we might be able to help prevent congenital heart defects."

Credit: 
Gladstone Institutes

Women, parents and early-career faculty in ecology most impacted by COVID-19

In April 2020, Lise Aubry learned that the daycare her children attended in Fort Collins would be closed for several weeks. Aubry, an assistant professor in the Fish, Wildlife and Conservation Biology Department at Colorado State University, and her husband, Professor Dave Koons, began to juggle childcare at home for their two kids - ages 4 months and 4 years old - and work responsibilities.

Aubry said she was happy after a successful day early on of balancing these duties, having completed at least six hours of work.

"Reflecting on the day, I felt pretty good," said Aubry, also an instructor for the Graduate Degree Program in Ecology at CSU. "But I realized there might be other people - single parents, young faculty starting out - in the university setting who were really struggling."

Aubry decided to conduct a survey of similar faculty across the United States to gauge how they've been impacted by COVID-19. She teamed up with Professor Zhao Ma from Purdue University and Theresa Laverty, postdoctoral fellow at CSU, as both have experience with designing surveys.

The results, "Impacts of COVID?19 on ecology and evolutionary biology faculty in the United States," were recently published in Ecological Applications, a journal from the Ecological Society of America.

Among the findings, the team said that the majority of more than 600 faculty who responded to the survey were negatively impacted on personal and professional levels, and struggling to find a healthy work-life balance.

Aubry said female faculty, early-career researchers and those in caretaking roles were most impacted by the pandemic. In addition, people who did not have access to a private room to use as a home office were significantly more dissatisfied with their work-life balance.

Researchers hope that administrators will use these data when discussing faculty promotions or tenure applications, and that the study will also increase recognition for the problems being faced by faculty during the pandemic.

Aubry said she also views the survey as a "manifesto, a record of what we're experiencing" that will be important as we recover from the "massive blow that COVID-19 has been to many people's careers and personal lives."

Research provides more evidence on pandemic's impact

To conduct the survey, the research team used a list from the National Research Council to target 94 ecology and evolutionary biology doctoral programs in the United States.

More than 600 faculty responded, providing a response rate of more than 23%.

Ma, a University Faculty Scholar in the Department of Forestry and Natural Resources at Purdue University, said what the team discovered adds to existing evidence and increases the recognition of the impacts of COVID-19 in an academic setting.

"Female and junior faculty members, people who have more responsibilities for either children or elderly relatives, are impacted more and are more stressed," she said.

"We talk about the 'leaky pipeline,' and why women gradually disappear in STEM fields," said Ma. "By the time you get to being a full professor, you wonder, 'Where did the women go'? The pandemic will most likely exacerbate what we've seen."

"This will affect faculty for years to come, and the long-term effect is concerning," she said. "This needs to be addressed by university leadership, so that faculty can continue to be successful."

Researchers said they are also seeing serious impacts on graduate students and postdoctoral fellows. Ma said that she is spending more time mentoring students and postdocs than she did prior to the pandemic, which takes away from research activities.

"They are so worried and stressed," she said. "In that particular time of their career, it's already stressful. They don't know what may happen after the pandemic, if their funding will continue, if they will have a job or what the job market will look like. Our survey really documents the need to look at the long-term impact."

Anxiety for younger researchers

Laverty, as a member of the research team, is one of those early-career researchers. Her postdoc position in the Fish, Wildlife and Conservation Biology department ends in May 2021, and that's already creating anxiety for her.

"It's definitely stressful being on the job market," she said. "I don't have the same home life that Lise and Zhao both have, with children at home. But the effects from the pandemic will impact early-career researchers over the next several years."

Laverty said the team found that while options like putting a pause on the tenure clock might be helpful for some faculty, promotions should be handled on a case-by-case basis.

"Rather than issue blanket statements or policies, we suggest that universities acknowledge the difficulties faced by faculty, especially women," she said. "Administrators need to recognize that what is happening will affect tenure and promotion applications."

'Suck it up, cupcake'

As part of the survey, Aubry and the team included an open comment box, which was completed by one-third of the people who responded. Some faculty responded with a line, while others typed out pages.

Aubry said the comments were insightful - ranging from thoughts on home schooling older children, balancing work and life as a single parent, and the need for increased mentoring of students - and are grouped by themes in the research paper.

"A big proportion of the respondents were full professors, and what I appreciated from them was a recognition that they were doing okay, working from home, but they showed concern for their students and younger colleagues," she said. "It showed that our larger community of ecologists and evolutionary biologists is not just resilient, but also empathetic, and we need empathy now more than ever."

On the flip side, the scientists also received a few negative remarks, including one faculty member whose advice was: Suck it up, cupcake, we're all in this together, so what's the big deal?

Aubry said this person "couldn't be more wrong. Not everybody is impacted the same way by the pandemic."

Credit: 
Colorado State University