Earth

Ocean temperature reconstructed over the last 700,000 years

image: An ice sample from an antarctic ice core.

Image: 
Daniel Baggenstos

Bern's ice core researchers were already able to demonstrate in 2008 how the concentration of CO2 in the atmosphere has changed over the past 800,000 years. Now, using the same ice core from the Antarctic, the group led by Bernese climate researcher Hubertus Fischer shows the maximum and minimum values between which the mean ocean temperature has fluctuated over the past 700,000 years. The results of the reconstruction have just been published in the journal Climate of the Past.

The study's key findings: Mean ocean temperatures have been very similar over the last seven ice ages, averaging about 3.3 °C colder than the pre-industrial reference period, as already suggested by syntheses of deep water temperatures from marine sediments. However, ocean temperatures in the warm periods 450,000 years ago were much colder and CO2 concentrations were lower than in our present warm period, despite similar solar radiation. The new measurements show that ocean temperature is also shaped by changes in ocean circulation. The so-called global circulation of deep waters has a significant impact on heat storage in the ocean.

"To understand how the climate system's heat balance is changing," says Hubertus Fischer, "we have to understand the ocean first and foremost." For example, 93 percent of the additional heat that humans accumulate by increasing greenhouse gases is currently stored in the ocean rather than in the atmosphere. This means that without the ocean's heat uptake, the temperature increase measured on land due to human-induced climate change would be significantly greater. However, because the oceans have a huge mass compared to the atmosphere, the temperature changes measured in the ocean today are very small.

Measurements on a few ice samples are sufficient

The relevance of data from the ocean for climate research is demonstrated by the international ARGO project, a mobile observation system for the world's oceans with which for example continuous temperature measurements down to a depth of 2,000 meters have been carried out since 2000. Roughly 4,000 drifting buoys distributed over all oceans are used for this. This makes the approach of Bern's researchers all the more astonishing in comparison: "We only need a single polar ice sample for our mean ocean temperature measurement," explains Hubertus Fischer, "of course we are nowhere near the accuracy of ARGO, but conversely we can look far back into the past." What is being studied is not frozen seawater, but air bubbles trapped in Antarctica's glacier ice. Specifically: the noble gases argon, krypton, xenon and molecular nitrogen. The majority of these gases are in the atmosphere, just a small fraction is dissolved in the ocean. How well each gas is dissolved in seawater depends on the ocean temperature. Therefore, the changing ratio of these gases in the ice samples can be used to reconstruct past mean ocean temperatures.

High-precision gas measurements by Bernese researchers

"The prerequisite for this method are high-precision measurements using a dynamic mass spectrometer," emphasizes Hubertus Fischer, "which were made possible by the great efforts of several doctoral students and postdocs involved in the publication." Processing and measurement methods developed in Bern as part of the MATRICs project funded by the European Research Council (ERC) are also crucial. Past ocean temperatures are determined to within 0.4 °C in Bern. This precision makes it possible to trace the climatic ups and downs of the past, since the difference in mean ocean temperature between the ice age and the warm phases over the past 700,000 years was about 3 °C. In addition to the laboratory in Bern, only the Scripps Institute of Oceanography in San Diego, USA, which Bern's researchers work closely with, has so far carried out such measurements worldwide.

Credit: 
University of Bern

SARS-CoV-2: New findings on the persistence of neutralizing antibodies

It is an open question to what extent protection against reinfection persists after overcoming a SARS-CoV-2 infection. The "Rhineland Study", a population-based study conducted by DZNE in the Bonn area, is now providing new findings in this regard. Blood samples taken last year indicate that an important component of immunity - the levels of specific neutralizing antibodies against the coronavirus - had dropped in most of the study participants with a previous infection after four to five months. In some, antibody titers even fell below the detection limit. These results, published in the scientific journal "Nature Communications", lay the groundwork for planned follow-up studies.

Between April and June 2020, around 5,300 adult Bonn residents were tested for antibodies against the SARS-CoV-2 coronavirus as part of the „Rhineland Study" - an ongoing DZNE study investigating population health. For this purpose, blood samples were taken and analyzed. If initial results were positive, these samples were subjected to further testing by means of a so-called "plaque reduction neutralization test" to ensure that the detected antibodies were specifically directed against SARS-CoV-2 - and not against other coronaviruses that, e.g., can trigger common colds. In these analyses, the team of the Rhineland Study cooperated with the Institute of Virology at the Charité - Universitätsmedizin Berlin.

Waning Antibodies

Antibodies are proteins produced by the immune system with which the human organism defends itself against pathogens. In 22 study participants, "neutralizing" and thus particularly effective antibodies, which directly prevent the entry of SARS-CoV-2 into cells, could be detected. This indicated previous contact with the virus. The majority of these individuals reported to have experienced only a mild or even asymptomatic course of the disease. They were retested in September 2020 - approximately four to five months after the initial blood sampling. In most of these persons antibody levels had waned, and in four individuals antibodies could not even be detected anymore.

"These studies occurred during the first wave of the pandemic. The number of people who had already become infected at that time was therefore relatively low. In the meantime, we have a different situation," Prof. Monique Breteler, head of the Rhineland Study, says. "Nonetheless, our results suggest that the widely used, just single-stage procedure for detecting SARS-CoV-2 antibodies by immunoassay is insufficient to reliably identify a passed infection. In any case, in our sample, only about one-third of the individuals who were positive by immunoassay actually had specific antibodies against SARS-CoV-2. This should be considered in immunity studies. In my view, a multistage testing procedure like the one we used is highly recommended."

Duration of immunity against SARS-CoV-2

These study data, however, do not allow direct inferences about the extent to which the waning of the antibodies affects the immune response, Dr. Ahmad Aziz, DZNE scientist and first author of the current publication, notes. "The decrease in antibodies seems to happen relatively quickly. However, the immune system has other tools to fight off pathogens. Antibodies are without doubt relevant, but they are only part of a larger arsenal. Other studies suggest that another component, which we call the cellular immune response, may persist despite dropping antibody levels."

In fact, little is known about the durability of immunity to SARS-CoV-2 after infection. This may also depend on the particular variant of the virus. "On the part of the Rhineland Study, we intend to continue to track the development of the pandemic and its effects on the mental and physical health of the population. Our study is the basis for this." Breteler says. "Ultimately, we want to help better understand why some people don't even notice an infection and others become severely ill."

To this end, the researchers are relying on the Rhineland Study's data pool. Extensive health and lifestyle data are collected from all participants, for example on their blood counts, body composition, cardiovascular function, as well as sleep, diet and physical activity. "We have background information on all study participants that is relevant to health. This could be key to understanding the consequences of infection with SARS-CoV-2 and may help identifying risk factors," Breteler says.

Credit: 
DZNE - German Center for Neurodegenerative Diseases

Birds take tRNA efficiency to new heights

image: The tRNA repertoires of vertebrate genomes reflect a balance between translational efficiency, genome functionality, and the emergence of new tRNA copies via transposable element-mediated activity.

Image: 
Claudia Kutter

Birds have been shaped by evolution in many ways that have made them distinct from their vertebrate cousins. Over millions of years of evolution, our feathered friends have taken to the skies, accompanied by unique changes to their skeleton, musculature, respiration, and even reproductive systems. Recent genomic analyses have identified another unique aspect of the avian lineage: streamlined genomes. Although bird genomes contain roughly the same number of protein-coding genes as other vertebrates, their genomes are smaller, containing less noncoding DNA. Scientists are still exploring the potential consequences of this genome reduction on bird biology. In a new article in Genome Biology and Evolution titled "Genome size reduction and transposon activity impact tRNA gene diversity while ensuring translational stability in birds", Claudia Kutter and her colleagues reveal that, in addition to fewer protein-coding genes, bird genomes also contain surprisingly few tRNA genes, while nonetheless exhibiting the same tRNA usage patterns as other vertebrates. As tRNAs are a pivotal part of the cellular machinery that translates messenger RNA (mRNA) into protein, this suggests that birds have evolved to use their limited tRNA repertoire more efficiently.

There are many factors that go into maintaining a balanced pool of tRNAs to ensure efficient translation of proteins. While there are theoretically 64 possible anticodons--three-nucleotide sequences that base-pair with mRNA codons during translation--there are only 20 standard amino acids, meaning that there are generally tRNAs with different anticodons that bind to the same amino acid, referred to as an isoacceptor family. Moreover, the geometry of pairing between the nucleotides in the third position of the codon and anticodon allows for "wobble" base-pairing, enabling a single tRNA anticodon to bind to multiple codons. tRNA genes, even within the same isoacceptor family, can also differ in their sequences, transcription rates, and translation efficiency. Due to all of these factors, ensuring adequate levels of various tRNA molecules for efficient translation in a cell is a complex biological problem.

To investigate the different ways this problem has been solved across vertebrates, Kutter and her co-authors from the Karolinska Institute and Uppsala University in Sweden--including postdoc Jente Ottenburghs, graduate student Keyi Geng, and assistant professor at Uppsala University Alexander Suh--undertook the first comprehensive overview of tRNA diversity and evolution in vertebrates. (Ottenburghs has written about their study, including the surprising way this collaboration came about, in a post on his blog, Avian Hybrids.) Based on their findings in mammals, the authors extrapolated a uniform set of 500 tRNA genes that they expected to remain relatively consistent across lineages. However, when they added 55 avian genomes to their study, representing all of the major bird lineages, they came across some unexpected findings: "To our surprise, there was much more divergence across vertebrates than we expected to find," says Kutter. In particular, bird genomes stood out, containing an average of just 169 tRNA genes compared to 466 in reptiles, 579 in mammals, 813 in fish, and 1,229 in amphibians. According to Kutter, "While ongoing genome assembly efforts had shown that bird genomes have a smaller genome size, we were not expecting that this would also affect tRNA genes, since tRNA gene redundancy ensures that enough tRNA molecules are transcribed for efficient mRNA translation."

This led the authors to a new question: What did this contraction in tRNAs mean for translation in birds? While tRNA gene number and complexity were greatly reduced compared to other vertebrates, in general, the authors found that preferences for certain isoacceptor families were in line with the wobble pairing strategies observed in other eukaryotic genomes, suggesting that tRNA gene usage in birds follows the overall codon usage seen in vertebrates. This led the researchers to posit that the functional constraints on tRNAs seen in other vertebrates were maintained during early avian evolution: "Despite this decrease [in tRNAs] millions of years ago, the pool of tRNA anticodons and mRNA codons is still balanced across bird species to ensure optimal translational efficiencies."

Another surprising element to the study was the impact of transposable elements on the repertoire of tRNA genes in avian genomes. In some bird genomes studied, in addition to finding functional tRNA genes, Ottenburghs et al. identified hundreds, sometimes thousands, of tRNA-like sequences embedded in transposable elements. While most transposable elements are silenced by epigenetic control mechanisms and become nonfunctional, some may remain active and create new regulatory roles through their mobilization. Through multiplication of transposable elements, the embedded tRNA-like sequences may be carried to new genomic locations, where selection will constrain the tRNA gene sequence, whereas the accompanying transposable element sequence may erode. This process contributes to shaping the pool of available tRNA genes in some avian genomes, adding another layer of complexity to tRNA gene evolution in this vertebrate lineage.

The lesson here, according to Kutter, is that "we should reconsider our current assumptions of gene functionality with regards to redundancy." To explore this idea further, Kutter plans to expand this work to include better mechanistic insight and more functional genomic studies. "It would be insightful to include more species and look deeper into branches, as well as investigate snake genomes and the early vertebrate radiation. Performing studies that go beyond current model organisms may reveal even more unexpected findings." One limitation of these potential studies is that they will require access to high-quality genome assemblies and resources, such as tissue samples from different developmental time points and suitable reagents like antibodies that work across species. Kutter believes these efforts will pay off in the long run however: "Our work has shown us yet again that evolution still has a lot of surprises up its sleeves, and we can get a glimpse into these by looking beyond model organisms."

Credit: 
SMBE Journals (Molecular Biology and Evolution and Genome Biology and Evolution)

Backyard bird feeding sparks a songbird 'reverse migration'

ITHACA, N.Y. - Eurasian Blackcaps are spunky and widespread warblers that breed across much of Europe. Many of them migrate south to the Mediterranean region and Africa after the breeding season. But thanks to a changing climate and an abundance of food resources offered by people across the United Kingdom and Ireland, some populations of Blackcaps have recently been heading north for the winter, spending the colder months in backyard gardens of the British Isles.

New research published this week in Global Change Biology shows some of the ways that bird feeders, fruit-bearing plants, and a warming world are changing both the movements and the physiology of the Blackcaps that spend the winter in Great Britain and Ireland.

"Many migratory birds are in decline, but the Blackcap seems to be thriving in a changing world," says Benjamin Van Doren, a postdoctoral researcher at the Cornell Lab of Ornithology and lead author of the paper.

The research team, consisting of scientists from Oxford University, British Trust for Ornithology, and Max Planck Institute, banded hundreds of birds at dozens of sites across the British Isles and recruited community scientists to report sightings of the birds at feeders over the course of four winters. They also tracked several dozen individuals with geolocators to follow their migrations throughout the year.

Their study showed that Blackcaps wintering in the British Isles move around much less than their southern-wintering counterparts--especially later in the winter. They are also more likely to return to the same sites from one winter to the next. The authors believe the availability of food is the main reason for the difference.

"Birds that winter in the Mediterranean and Africa are primarily eating fruit and moving large distances to track local food abundance," says Van Doren. "Blackcaps wintering in British and Irish gardens have a steady, predictable food supply, and as a result they move around a lot less."

Additionally, the British- and Irish-wintering Blackcaps appear to be in better shape. Researchers found birds frequenting gardens to be in better body condition and maintain smaller fat reserves than the more transient individuals in the study--and birds carrying less fat have an easier time avoiding predators. These birds were also able to make a speedier return journey in the spring, arriving back around 10 days earlier than those wintering in the Mediterranean and Africa--a considerable advantage at a crucial time of year.

The researchers even found that gardens may be influencing Blackcap anatomy: those in gardens had longer bills and more rounded wingtips, traits that may be linked to their more generalist diet and sedentary winter lifestyle.

"Our results show that individual Blackcaps have great flexibility in their movement patterns and how they respond to environmental conditions," Van Doren says. "Species with this kind of flexibility will probably be better equipped to face environmental changes in the coming decades."

Credit: 
Cornell University

Retracing his steps

Half a century had passed, but UC Santa Barbara Professor Armand Kuris was sure he'd been here before. In fact, he was completely certain. After all, he had detailed notes of the location, written carefully in India ink when he was still a graduate student.

This time, though, Kuris served as a seasoned mentor for several young researchers who hadn't even been born when he first visited the site. Truth be told, many of their parents hadn't yet been born.

This was just one of many shorelines along the coast of the Pacific Northwest where the group was repeating ecological field work Kuris conducted in 1969 and 70. He teamed up with Assistant Professor Chelsea Wood of the University of Washington and her lab -- all parasite ecologists eager to know the fate of the organisms Kuris had studied so long ago.

Wood is interested in the historical ecology of parasitism -- that is, in understanding how the abundance of parasites has ebbed and flowed through time. Over coffee with Kuris during a break from a workshop at UC Santa Barbara, Wood lamented the dearth of quality historical datasets.

"Armand said, 'well, surely you know I've got notebooks full of data on shore crab parasites from the late '60s?'" Wood recalled, "and my jaw dropped."

"You see, a lot of times older studies have a narrow focus, or it's really hard to access the data in detail, as opposed to a summary," explained Kuris. But with reams of notes, and the benefit of access to the man who took them, it was possible to repeat the old experiments to a T.

"And from that moment we were set on it," Wood said.

Results from the new survey, led by undergraduate students, appear in the Proceedings of the Royal Society B, and reveal that the abundance of parasites among shore crabs hasn't followed a simple trajectory over the last half-century.

"There's a widespread perception that humans are messing with ecosystems, and only bad things can come of that," Wood said. "Folks assume that means we're going to see an explosion in infectious disease into the future. But our data suggest there are other trajectories that parasites can take."

A whirlwind adventure

The year is 1969, and a young Armand Kuris is finishing up his graduate studies at UC Berkeley. He is polishing his thesis on the green shore crab and its parasites -- particularly the isopod Portunion conformis -- with considerable data from Bodega Harbor and San Francisco Bay.

But a study at Tacoma Narrows, Washington grabs his attention. The author claimed that 100% of these crabs carried eggs in winter. To Kuris, this meant that none of them could be infected with the isopod, which castrates its hosts. If true, this absence of parasites would have been quite surprising. He had to find out for himself.

Kuris contacted various labs along the western seaboard and arranged an ambitious field expedition for May of that year. In the span of one month, he and two friends drove from the start of the coastal road at Bahia San Quintín, five hours south of the U.S.-Mexico border, to Ucluelet on the outer coast of Vancouver Island, Canada, where the pavement finally ended.

"The aim was to start as far south as the graded road began in Mexico and stop as far north as it ended up," Kuris recalled. All along the way, he and his comrades collected crabs and analyzed their anatomy and parasites.

The trip was extensively planned. "I knew what I was going to be doing plus-or-minus 1 hour for all 30 days," he said.

As a bright-eyed young scientist, Kuris felt his work was the pinnacle of human investigation. Imbued with this sense of consequence, the budding researcher made sure his work was perfect. He kept meticulous notes and took pains to ensure his methodology was consistent at every site. He wasted no materials, identified and quantified all the parasites he found, and recorded his observations in comprehensive data sheets.

Then, the following winter, he did the whole thing again, just for completeness.

Kuris' diligence proved crucial five decades on. "If that spirit of perfectionism hadn't taken hold, the dataset would not have been useful in the way that it was 50 years later," said Wood.

Incidentally, that researcher who studied the crabs of Tacoma Narrows was nearly correct. According to Kuris, 98% of the local crabs were parasite-free, just shy of the 100% figure the other scientist had claimed.

Parasite ecology

Kuris' approach to parasitology in '69 and '70 was relatively unusual. The field had arisen from medical sciences, not ecology, and so an ecological perspective was uncommon among his colleagues at the time. "Parasites are invisible," he said. "And if you don't see it, you don't think about it." A notable exception to this was UC Santa Barbara's own Elmer Noble, namesake of Noble Hall, Kuris noted.

What's more, parasitology is not incorporated into standard biology curricula, Wood pointed out. It certainly isn't present in K-12 curricula, and students can earn a bachelor's degree in ecology without ever learning about these organisms. "Parasites are just not something that's on the radar of most biologists," she said, "And while that's changing now, it has been true for the last couple of decades."

But studying parasites can reveal valuable information about an entire ecosystem, due to their often complex lifecycles. For instance, all of the parasites Kuris sampled require multiple different hosts to complete their lifecycle. So their population dynamics relate to the wellbeing of many different groups of animals and a variety of environmental conditions.

Wood had been searching for detailed historical datasets for over 10 years, and Kuris' was only the second one she'd found. There simply weren't many folks working decades ago who took thorough records of data like the number of parasites in each host and the body size of each host -- two pieces of information crucial for comparing historical and contemporary ecosystems, she explained.

"It's almost impossible to get any time depth on trajectories of parasite change for this reason," Wood said. "We have no idea how parasites have been changing for the past couple of decades. We're just flying blind."

Retracing old footsteps

Kuris' detailed records offered an unprecedented opportunity to carry out the same study and compare results after half a century of ecological change.

"And fortunately, the guy who did that first study is still alive and sentient," Kuris said, referring to himself. "He can tell you what was going on in his mind back then."

This boon was not lost on Wood. "It's one of the coolest things, to be able to have a half-century-old dataset and to have the original data collector hold the hands of the contemporary data collectors and show them exactly how it was done," she said. "I'm not aware of any other historical ecology project that's been able to achieve that level of comparability between past and present."

First author Jessica Quinn was a junior when she took over the project upon the graduation of her classmate Duncan Greeley, who had conducted the first year's worth of field collection and dissection. Kuris personally trained both of them so they could replicate exactly how and where he conducted his research so many years before.

"When we went to the shore at Neah Bay on the north coast of the Olympic Peninsula, my field notes said 'nine miles before the entrance to the Makah Indian Reservation,'" Kuris said. "Duncan and I reached that point, and I realized I was walking the same cut through the brush."

Others had obviously used the path in the intervening decades, maintaining the trail up to the present day. "That's why I went that way 50 years ago," Kuris remarked, "because there was a path."

The team hunted for shore crabs, with a special interest in the three taxa of parasites Kuris had documented in his study. There was the isopod P. conformis; larval trematodes, or flukes, in the family Microphallidae; and larval acanthocephalans, or thorny-headed worms.

The team collected hundreds of shore crabs, counting parasite loads and identifying each parasite. True to their task of repeating Kuris' work, they recorded plenty of other data as well. The scientists measured the crabs, documented their reproductive maturity, molt stage, number of missing limbs and more.

This time, though, the team limited their study to Oregon, Washington and British Columbia -- locations within striking distance of Seattle. Many sites in the south have yet to be resampled. The researchers uploaded the raw datasets, including Kuris' original work, to the internet, in the hope that another team might take up the task of completing it. Kuris and Wood stand ready to help.

Trajectories

The team studied both the prevalence of parasites -- the proportion of the host population that was infected -- and the intensity of infections, or the number of parasites per host.

As in Kuris' first study, there was considerable variation between sites. Local conditions seemed to exert a strong influence on parasite populations.

Overall, they found that populations of spiny-headed worms were virtually unchanged since the initial study. Similarly, the abundance of the isopod had remained relatively stable, despite high variability from year to year.

On the other hand, the population of trematodes exploded in abundance between the late 1960s and today. Prevalence surged from 8% to 62%, and the intensity of infections increased as well.

Although the authors aren't certain what led to the proliferation in trematode infections, Kuris and Wood suspect it reflects a rise in the number of shorebirds in the Pacific Northwest, as birds are an important host for part of the parasite's lifecycle.

Kuris remembers Tacoma Narrows as a semi-industrial wasteland when he sampled the area in 1969. Returning some 50 years later, the site was completely transformed, and a park now protects that area of the shore. Restoration and conservation efforts may have benefitted certain parasites, like the trematode, he suggested.

But it wasn't the rising number of flukes that most caught the researchers' attention. "I think the most surprising part of these results is the stasis in two of those taxa," said Wood. "So much has changed about the Pacific Northwest in the past 50 years and yet these two parasites are still trucking along the way that they were in the late '60s." The stability suggests that conditions are relatively consistent, at least the ones that matter to the lifecycles of those organisms.

It's important to understand how parasite abundance has changed over the past decades. "There's ample reason for us to be concerned about infectious disease processes these days," Wood said. "Understanding how things have changed gives us a sense of what we need to worry about and what we don't need to worry about from a wildlife disease perspective."

"Studies like this one really help contextualize contemporary disease problems in a way that's useful for management," she added.

Kuris agreed, and offered a more philosophical take on the enterprise as a whole. "The past is never dead," he said, quoting William Faulkner's novel "Requiem for a Nun." "It's not even past."

Credit: 
University of California - Santa Barbara

Finally, 3D-printed graphene aerogels for water treatment

image: Graphene aerogel on a single tissue.

Image: 
University at Buffalo

BUFFALO, N.Y. -- Graphene excels at removing contaminants from water, but it's not yet a commercially viable use of the wonder material.

That could be changing.

In a recent study, University at Buffalo engineers report a new process of 3D printing graphene aerogels that they say overcomes two key hurdles -- scalability and creating a version of the material that's stable enough for repeated use -- for water treatment.

"The goal is to safely remove contaminants from water without releasing any problematic chemical residue," says study co-author Nirupam Aich, PhD, assistant professor of environmental engineering at the UB School of Engineering and Applied Sciences. "The aerogels we've created hold their structure when put in water treatment systems, and they can be applied in diverse water treatment applications."

The study -- "3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept" -- was published in the Emerging Investigator Series of the journal Environmental Science: Nano. Arvid Masud, PhD, a former student in Aich's lab, is the lead author; Chi Zhou, PhD, associate professor of industrial and systems engineering at UB, is a co-author.

An aerogel is a light, highly porous solid formed by replacement of liquid in a gel with a gas so that the resulting solid is the same size as the original. They are similar in structural configuration to Styrofoam: very porous and lightweight, yet strong and resilient.

Graphene is a nanomaterial formed by elemental carbon and is composed of a single flat sheet of carbon atoms arranged in a repeating hexagonal lattice.

To create the right consistency of the graphene-based ink, the researchers looked to nature. They added to it two bio-inspired polymers -- polydopamine (a synthetic material, often referred to as PDA, that is similar to the adhesive secretions of mussels), and bovine serum albumin (a protein derived from cows).

In tests, the reconfigured aerogel removed certain heavy metals, such as lead and chromium, that plague drinking water systems nationwide. It also removed organic dyes, such as cationic methylene blue and anionic Evans blue, as well as organic solvents like hexane, heptane and toluene.

To demonstrate the aerogel's reuse potential, the researchers ran organic solvents through it 10 times. Each time, it removed 100% of the solvents. The researchers also reported the aerogel's ability to capture methylene blue decreased by 2-20% after the third cycle.

The aerogels can also be scaled up in size, Aich says, because unlike nanosheets, aerogels can be printed in larger sizes. This eliminates a previous problem inherent in large-scale production, and makes the process available for use in large facilities, such as in wastewater treatment plants, he says. He adds the aerogels can be removed from water and reused in other locations, and that they don't leave any kind of residue in the water.

Aich is part of a collaboration between UB and the University of Pittsburgh, led by UB chemistry professor Diana Aga, PhD, to find methods and tools to degrade per- and polyfluoroalkyl substances (PFAS), toxic materials so difficult to break down that they are known as "forever chemicals." Aich notes the similarities to his work with 3D aerogels, and he hopes results from the two projects can be brought together to create more effective methods of removing waterborne contaminants.

"We can use these aerogels not only to contain graphene particles but also nanometal particles which can act as catalysts," Aich says. "The future goal is to have nanometal particles embedded in the walls and the surface of these aerogels and they would be able to degrade or destroy not only biological contaminants, but also chemical contaminants."

Aich, Chi, and Masud hold a pending patent for the graphene aerogel described in the study, and they are looking for industrial partners to commercialize this process.

Credit: 
University at Buffalo

In pig brain development, nature beats nurture

image: Using a newly developed pig brain atlas, University of Illinois researchers show no major differences in pig brain development between pigs in artificial rearing environments vs. sow rearing. The discovery has important implications for further laboratory-based testing of nutritional interventions and their effect on neurodevelopment.

Image: 
Lauren D. Quinn, University of Illinois

URBANA, Ill. - Before humans can benefit from new drug therapies and nutritional additives, scientists test their safety and efficacy in animals, typically mice and rats. But, as much as they've done for biomedical research, rodents aren't always the best research model for studies on neonatal brain development and nutrition. That's where pigs can play an important role.

University of Illinois researchers say the domestic pig is ideal for these studies because their brain size, rate of development, and digestive system are excellent analogues for human newborns.

They know a lot about pig brains, having built the first - and recently, the second - complete, MRI-based atlases of the organ. They've used the first to study the effects of numerous nutritional interventions in pigs. But some critics say they can't be sure those outcomes reflect reality. After all, these research subjects are raised in carefully controlled environments, not mingling with siblings and mom in farm-standard farrowing crates.

So just how much does the pig's early rearing environment affect brain development?

"We've been countering a lot of criticism about whether the development of the pig brain is the same in our laboratory as it is on any pig farm. And the answer is yes. We now have indisputable evidence to say that the brains of pigs raised in an artificial environment grow and develop in the same way structurally as those of pigs raised by their mother," says Ryan Dilger, associate professor in the Department of Animal Sciences and senior author on a new study in Frontiers in Neuroscience.

In the study, the research team brought 2-day-old piglets to their facility, known as the Piglet Nutrition and Cognition Laboratory, which is outfitted with large individual enclosures that let pigs see, smell, and hear others in adjacent pens. Dilger says the high ambient temperature and ability for pigs to socialize is important.

"In our nutritional studies, we want to keep them separated to avoid cross-contamination of the bacteria found in their colon, which is collectively known as the microbiota. But the pigs still get to express social behaviors by seeing, hearing, and smelling each other," he says. "And in many of our studies, we let the pigs out of their enclosures to socialize each day, so they get to have a piggy party each afternoon."

Another subset of piglets stayed with their littermates and mothers in farrowing crates on a research farm on the U of I campus. At 4 weeks of age, when pigs have developed enough that they no longer need to solely drink milk, the artificially reared pigs moved back to the farm and were group-housed with their sow-reared counterparts. So, in the end, the pigs only lived in different environments for the first four weeks of life and from that point forward, all pigs were treated the same.

All pigs were anesthetized and scanned in a state-of-the-art magnetic resonance imaging (MRI) machine at 1, 2, 3, 4, 8, 12, 18, and 24 weeks of age. The researchers assessed brain macro- and microstructure of the artificially reared and sow-reared pigs using the new pig brain atlases for young and adolescent pigs.

Not only did the pigs eat and grow at the same rates in the two rearing environments, their brain development was equivalent overall as well. The researchers found no differences in absolute volumes of the whole brain, gray matter, white matter, cerebrospinal fluid growth, or microstructural changes (neuronal connections between brain regions) over time in the two groups.

Joanne Fil, doctoral student in the Neuroscience Program at Illinois and first author of the study, says, "We looked at a surrogate measure of myelin, myelin water fraction, which reflects the fat and protein surrounding neurons and helps them communicate more effectively. Humans and pigs develop a lot of myelin significantly after birth, so if we see more myelination, then we assume the brain is maturing at a different rate. Longitudinally, there were no differences between the myelin water fraction in the two groups.

"We did see slight differences in the rate of development, with artificially reared pigs having a slightly higher rate of myelin development than the sow-reared pigs, but in the end, pigs raised in either environment reached the same place when it came to brain growth."

The researchers also compared the pigs' memory in behavioral tests. The pigs were presented with two stationary toys to play with - one they had previously been able to investigate and one they had never seen before. If they spent more time checking out the new toy, that was evidence they remembered the older one and therefore had encoded a memory.

At a couple of early time points, 4 and 8 weeks, pigs in the sow-reared group had slightly greater object recognition. The authors suggest that might have been due to greater peer interaction in the sow-reared environments. However, the differences were slight and temporary.

"Behavior is always more variable, more subjective. That's why we like the objective and structural measures of the brain we can evaluate by MRI," Dilger says. "And what we found is that when both sets of pigs are healthy and we've met their nutritional requirements, the rearing environment didn't appear to influence brain development. Their brains effectively grew the same."

In addition to supporting the continued use of laboratory rearing environments in pig neuroscience research, the study provides new data on pig brain development over time.

For half a dozen years, the first pig brain atlas served as the definitive reference for researchers around the world. But that atlas was based on 4-week-old pigs and couldn't be easily extrapolated to older animals. Not only do the new atlases include one for 12-week-old pigs, the rearing environment study provides absolute volume measures for pigs at many more time points, up to adulthood.

"This provides a lot of foundational data where somebody could come back and ask how many cubic millimeters is the pig brain at a particular age. We can model that based on what we have here," Fil says. "Our objective was comparing the two rearing environments, but also providing what is expected for a certain age of pig. That helps because we can start to develop nutritional interventions for specific ages and understand what parts of brain development can be influenced by nutrition."

Dilger adds, "There's a lot of power in the pig as a model for biomedical research, and we're showing that by bringing together engineering and agriculture, which are central to our mission as a land-grant institution. We use lots of mice in research on our campus, but we're also very good at working with pigs. We're mixing the biomedical world with the agricultural world, to ultimately benefit both pig and human nutrition.

Credit: 
University of Illinois College of Agricultural, Consumer and Environmental Sciences

Shape-shifting Ebola virus protein exploits human RNA to change shape

image: The cover image is an artistic representation of how butterfly-shaped dimers of the Ebola virus matrix protein VP40 combine and structurally transform the create the VP40 octameric ring.

Image: 
The image was created by Christina Corbaci. Used with permission from Cell Reports.

La Jolla, CA--The human genome contains the instructions to make tens of thousands of proteins. Each protein folds into a precise shape--and biologists are taught that defined shape dictates the protein's destined function. Tens of thousands of singular shapes drive the tens of thousands of needed functions.

In a new Cell Reports study, researchers at La Jolla Institute for Immunology demonstrate how Ebola virus has found a different way to get things done. The virus encodes only eight proteins but requires dozens of functions in its lifecycle. The new study shows how one of Ebola virus's key proteins, VP40, uses molecular triggers in the human cell to transform itself into different tools for different jobs.

"We're all taught that proteins have 'a' structure," says study co-leader Erica Ollmann Saphire, Ph.D., professor at La Jolla Institute for Immunology (LJI) and member of the LJI Center for Infectious Disease and Vaccine Research. "Ebola virus's VP40 protein, however, changes itself into different structures at different times, depending on the function needed."

VP40 is the protein that gives Ebola virus its distinctive string-like shape. Saphire's previous studies showed that VP40 can take on a two-molecule, butterfly-shaped "dimer" or an eight-molecule, wreath-like "octamer" form.

There are dramatic rearrangements of the protein as it transforms from one to the other. The dimer is what physically constructs new viruses that emerge and release from infected cells. The octamer functions only inside the infected cell, in a controlling role, directing other steps of the viral life cycle.

The new study shows exactly what triggers these structural changes. The researchers found that VP40 senses and relies on particular human mRNA to make the transformation from the dimer to octamer.

Saphire worked with study co-corresponding author Scripps Research Professor Kristian Andersen, Ph.D. to deeply sequence RNAs captured and selected by VP40 inside cells. VP40 selected particular sequences, most often found in the untranslated tails of human mRNA.

Saphire lab postdoctoral fellows Hal Wasserman Ph.D. and co-first author Sara Landeras Bueno, Ph.D. , worked with purified VP40 in test tubes to get a glimpse of the dimer-to-octamer transformation in action. The duo tested many combinations of RNA molecules to try to trigger the transformation and found that particular human mRNA sequences rich in bases guanine and adenine were ideal for driving the same conformational change in vitro that they saw in high-resolution structures of VP40.

"We were very excited and surprised to see that the RNA that triggers this change comes from the host cell and not the virus," says Landeras Bueno. "The virus is hijacking the host cell--this is another example of a virus acting like a parasite."

Saphire says the study sheds light on the fundamentals of how information is encoded in the genome. There's the genetic code, of course, but Ebola virus also controls how VP40 is deployed during different stages of its life cycle. "It has an additional layer of programming," Saphire says.

The new study also offers further evidence that VP40 is a promising target for effective therapies. Because Ebola virus cannot spread without VP40, the virus is unlikely to acquire VP40 mutations that let it "escape" antibody therapies. This vulnerability has led the LJI team to think of VP40 as Ebola's Achilles' heel.

"VP40 fulfills an elaborate system of requirements for Ebola virus, so we don't expect it to change much," says Wasserman. "That means if we could attack VP40 specifically, the virus would be helpless."

Wasserman says the octamer's regulatory function is still slightly mysterious. The octamer is known to be essential to the Ebola virus life cycle, but more work needs to be done to understand how this VP40 structure controls Ebola virus replication.

Saphire is very interested in investigating whether other viruses--or living organisms--have proteins with the same "structural plasticity" as VP40. "I've always wanted to know if this kind of functionality is more common in biology than we think," she says.

Credit: 
La Jolla Institute for Immunology

The American public is responsible for identifying over a quarter of new invasive species

New research by a team at Resources for the Future (RFF) has found that at least 27% of new pests in the United States were initially detected by members of the general public. The study, which was published today in the journal Conservation Science and Practice, seeks to understand who is identifying new invasive species that make their way into the United States.

The RFF team developed and analyzed a new dataset of pest discoveries in the United States, using a sample size of 169 detections from 2010 to 2018. Researchers divided discovery sources into three categories: government agencies, local extension specialists and researchers, and members of the public, with the latter category including community members, farm and nursery operators, and other private individuals.

They found that 27-60 percent of invasive pests were first detected by the public, 8-17 percent by research or extension personnel, and 32-56 percent by government agencies. The wide range for each category is due to uncertainties in distinguishing initial reports from follow-up confirmations.

"Early detection of invasive species is critical," lead author Rebecca Epanchin-Niell said. "The sooner that ecosystem managers realize that there's a problem, the better--they can save a lot of time and resources if they catch a species before it becomes too widespread and wreaks too much havoc. Understanding who is finding these pests can help managers understand where to invest more proactively."

Efforts to control invasive pests, combined with the damage they cause to ecosystems and economies, cost over $160 billion each year in the United States. Leveraging the contributions of the public--who can be low cost contributors in the fight against invasive species--could help reduce that price tag and, potentially, lead to earlier detections.

Building on the already substantial contributions from the public, the report also suggested leveraging the group's role by:

emphasizing ethical and environmental attitudes or economic concerns to increase motivation for reporting invasive pests;

enhancing reporting channels that can streamline public reports to people who can verify and manage a species;

integrating existing citizen science observations into government agency monitoring;

and incentivizing landscapers and other outdoor-oriented workers to report unusual organisms at work sites.

The paper emphasizes that the public's work provides significant value--in the dataset, members of the general public discovered at least 31% of pests that incur high economic and environmental costs on society.

"Regulatory and land management organizations invest substantially to protect agriculture, ecosystems, and economies from harmful invasive species, and the public serves an important role in this. The more eyes we can get on the problem, the better," Epanchin-Niell said.

Credit: 
Resources for the Future (RFF)

Using sound waves to make patterns that never repeat

image: A quasiperiodic two-dimensional pattern.

Image: 
Courtesy of Fernando Guevara Vasquez

Mathematicians and engineers at the University of Utah have teamed up to show how ultrasound waves can organize carbon particles in water into a sort of pattern that never repeats. The results, they say, could result in materials called "quasicrystals" with custom magnetic or electrical properties.

The research is published in Physical Review Letters.

"Quasicrystals are interesting to study because they have properties that crystals do not have," says Fernando Guevara Vasquez, associate professor of mathematics. "They have been shown to be stiffer than similar periodic or disordered materials. They can also conduct electricity, or scatter waves in ways that are different from crystals."

Non-pattern patterns

Picture a checkerboard. You can take a two-by-two square of two black tiles and two white (or red) tiles and copy and paste to obtain the whole checkerboard. Such "periodic" structures, with patterns that do repeat, naturally occur in crystals. Take, for example, a grain of salt. At the atomic level, it is a grid-like lattice of sodium and chloride atoms. You could copy and paste the lattice from one part of the crystal and find a match in any other part.

But a quasiperiodic structure is deceiving. One example is the pattern called Penrose tiling. At first glance, the geometric diamond-shaped tiles appear to be in a regular pattern. But you can't copy and paste this pattern. It won't repeat.

The discovery of quasiperiodic structures in some metal alloys by materials scientist Dan Schechtman earned a 2011 Nobel Prize in Chemistry and opened up the study of quasicrystals.

Since 2012, Guevara and Bart Raeymaekers, associate professor of mechanical engineering, have been collaborating on designing materials with custom-designed structures at the microscale. They weren't initially looking to create quasiperiodic materials--in fact, their first theoretical experiments, led by mathematics doctoral student China Mauck, were focused on periodic materials and what patterns of particles might be possible to achieve by using ultrasound waves. In each dimensional plane, they found that two pairs of parallel ultrasound transducers suffice to arrange particles in a periodic structure.

But what would happen if they had one more pair of transducers? To find out, Raeymaekers and graduate student Milo Prisbrey (now at Los Alamos National Laboratory) provided the experimental instruments, and mathematics professor Elena Cherkaev provided experience with the mathematical theory of quasicrystals. Guevara and Mauck conducted theoretical calculations to predict the patterns that the ultrasound transducers would create.

Creating the quasiperiodic patterns

Cherkaev says that quasiperiodic patterns can be thought of as using, instead of a cut-and-paste approach, a "cut-and-project" technique.

If you use cut-and-project to design quasiperiodic patterns on a line, you start with a square grid on a plane.  Then you draw or cut a line so that it passes through only one grid node. This can be done by drawing the line at an irrational angle, using an irrational number like pi, an infinite series of numbers that never repeats. Then you can project the nearest grid nodes on the line and can be sure that the patterns of the distances between the points on the line never repeats. They are quasiperiodic.

The approach is similar in a two-dimensional plane. "We start with a grid or a periodic function in higher-dimensional space," Cherkaev says. "We cut a plane through this space and follow a similar procedure of restricting the periodic function to an irrational 2-D slice." When using ultrasound transducers, as in this study, the transducers generate periodic signals in that higher-dimensional space.

The researchers set up four pairs of ultrasound transducers in an octagonal stop sign arrangement. "We knew that this would be the simplest setup where we could demonstrate quasiperiodic particle arrangements," Guevara says. "We also had limited control on what signals to use to drive the ultrasound transducers; we could essentially use only the signal or its negative."

Into this octagonal setup, the team placed small carbon nanoparticles, suspended in water. Once the transducers turned on, the ultrasound waves guided the carbon particles into place, creating a quasiperiodic pattern similar to a Penrose tiling.

"Once the experiments were performed, we compared the results to the theoretical predictions and we got a very good agreement," Guevara says.

Custom materials

The next step would be to actually fabricate a material with a quasiperiodic pattern arrangement. This wouldn't be difficult, Guevara says, if the particles were suspended in a polymer instead of water that could be cured or hardened once the particles were in position.

"Crucially, with this method, we can create quasiperiodic materials that are either 2-D or 3-D and that can have essentially any of the common quasiperiodic symmetries by choosing how we arrange the ultrasound transducers and how we drive them," Guevara says.

It's yet to be seen what those materials might be able to do, but one eventual application might be to create materials that can manipulate electromagnetic waves like those that 5G cellular technology uses today. Other already-known applications of quasiperiodic materials include nonstick coatings, due to their low friction coefficient, and coatings insulating against heat transfer, Cherkaev says.

Yet another example is the hardening of stainless steel by embedding small quasicrystalline particles. The press release for the 2011 Nobel Prize in Chemistry mentions that quasicrystals can "reinforce the material like armor."

So, the researchers say, we can hope for many new exciting applications of these novel quasiperiodic structures created by ultrasound particle assembly.

Credit: 
University of Utah

Satellite map of human pressure on land provides insight on sustainable development

image: The pandemic year provided an opportunity for Patrick Keys and Elizabeth Barnes, husband and wife scientists at Colorado State University, to collaborate on new research.

Image: 
Joe Mendoza/Colorado State University

The coronavirus pandemic has led researchers to switch gears or temporarily abandon projects due to health protocols or not being able to travel. But for Patrick Keys and Elizabeth Barnes, husband and wife scientists at Colorado State University, this past year led to a productive research collaboration.

They teamed up with Neil Carter, assistant professor at the University of Michigan, on a paper published in Environmental Research Letters that outlines a satellite-based map of human pressure on lands around the world.

Keys, lead author and a research scientist in CSU's School of Global Environmental Sustainability, said the team used machine learning to produce the map, which reveals where abrupt changes in the landscape have taken place around the world. The map shows a near-present snapshot of effects from deforestation, mining, expanding road networks, urbanization and increasing agriculture.

"The map we've developed can help people understand important challenges in biodiversity conservation and sustainability in general," said Keys.

This type of a map could be used to monitor progress for the United Nations Sustainable Development Goal 15 (SDG15), "Life on Land," which aims to foster sustainable development while conserving biodiversity.

Eight algorithms to encompass data from around the world

Barnes, an associate professor in CSU's Department of Atmospheric Science, did the heavy lifting on the data side of the project.

While staggering parenting duties with Keys, she wrote code like never before, working with trillions of data points and training up to eight separate algorithms to cover different parts of the world. She then merged the algorithms to provide a seamless classification for the whole planet.

At first, the two researchers had to learn to speak the other's work language.

"Pat initially had an idea for this research, and I said, 'Machine learning doesn't work that way,'" said Barnes.

She then sketched out the components with him: The input is something we want to be able to see from space, like a satellite image; and the output is some measure of what humans are doing on Earth. The middle part of the equation was machine learning.

Keys said what Barnes designed is a convolutional neural network, which is commonly used for interpreting images. It's similar to how Facebook works when the site suggests tagging friends in a photo.

"It's like our eyes and our brains," he said.

In developing the algorithm, they used existing data that classified human impacts on the planet, factors like roads and buildings, and grazing lands for livestock and deforestation. Then, the convolutional neural network learned how to accurately interpret satellite imagery, based on this existing data.

From an analysis of one country, to the world

The researchers started with Indonesia, a country that has experienced rapid change over the last 20 years. By the end of the summer, after they were confident about what they identified in Indonesia using machine learning, Keys suggested that they look at the entire globe.

"I remember telling him it's not possible," said Barnes. "He knows whenever I say that, I will go back and try and make it work. A week later, we had the whole globe figured out."

Barnes said using machine learning is not fool-proof, and it requires some follow-up to ensure that data are accurate.

"Machine learning will always provide an answer, whether it's garbage or not," she explained. "Our job as scientists is to determine if it is useful."

Keys spent many nights on Google Earth reviewing over 2,000 places on the globe in the year 2000 and then compared those sites with 2019. He noted changes and confirmed the data with Barnes.

The research team also did a deeper dive into three countries - Guyana, Morocco and Gambia -to better understand what they found.

In the future, when new satellite data is available, Keys said the team can quickly generate a new map.

"We can plug that data into this now-trained neural network and generate a new map," he said. "If we do that every year, we'll have this sequential data that shows how human pressure on the landscape is changing."

Keys said the research project helped lift his spirits over the last year.

"Honestly, I have had a tough time during the pandemic," he said. "Looking back, I was able to work on this project that was exciting, fun, interesting and open-ended, and with great people. It brightened the pandemic considerably."

Credit: 
Colorado State University

The chillest ape: How humans evolved a super-high cooling capacity

PHILADELPHIA-- Humans have a uniquely high density of sweat glands embedded in their skin--10 times the density of chimpanzees and macaques. Now, researchers at Penn Medicine have discovered how this distinctive, hyper-cooling trait evolved in the human genome. In a study published today in the Proceedings of the National Academy of Sciences of the USA, researchers showed that the higher density of sweat glands in humans is due, to a great extent, to accumulated changes in a regulatory region of DNA--called an enhancer region--that drives the expression of a sweat gland-building gene, explaining why humans are the sweatiest of the Great Apes.

"This is one of the clearest examples I've ever seen of pinpointing the genetic basis for one of the most extreme and distinctively human evolutionary traits as a whole," said the study's senior author, Yana Kamberov, PhD, an assistant professor of genetics at Penn Medicine. "This kind of research is important not only because it shows how evolution actually works to produce species diversity but also because it gives us access into human biology that is often not possible to gain in other ways, essentially by learning from tweaking the biological system in a way that is actually beneficial, without breaking it."

Scientists broadly assume that humans' high density of sweat glands, also called eccrine glands, reflects an ancient evolutionary adaptation. This adaptation, coupled with the loss of fur in early hominins, which promoted cooling through sweat evaporation, is thought to have made it easier for them to run, hunt, and otherwise survive on the hot and relatively treeless African savannah, a markedly different habitat than the jungles occupied by other ape species.

Kamberov found in a 2015 study that the expression level of a gene called Engrailed 1--EN1 in humans--helps determine the density of eccrine glands in mice. EN1 encodes a transcription factor protein that, among many other functions, works during development to induce immature skin cells to form eccrine glands. Because of this property, Kamberov and colleagues hypothesized that perhaps one way in which humans could have built more sweat glands in their skin is to evolve genetic changes that increased the production of EN1 in the skin.

The activity of a gene is often affected by nearby regions of DNA called enhancer regions, where factors that activate the gene can bind and help drive the gene's expression. In the study, Kamberov and her team identified an enhancer region called hECE18 that boosts the production of EN1 in skin, to induce the formation of more eccrine glands. The researchers showed that the human version of hECE18 is more active than that of ape or macaque versions, which would in turn drive higher levels of EN1 production.

Kamberov and her colleagues also teased apart the individual mutations that distinguish human hECE18, showing why some of them boost EN1 expression--and showing that rolling back those mutations to the chimp version of hECE18 brings the enhancer activity down to chimp levels.

Prior studies of evolved human-specific traits, such as language, generally have tied such traits to complex genetic changes involving multiple genes and regulatory regions. In contrast, the work from Kamberov and her team suggest that the human "high-sweat" trait evolved at least in part through repeated mutations to just one regulatory region, hECE18. This means that this single regulatory element could have repeatedly contributed to a gradual evolution of higher eccrine gland density during human evolution.

While the study is mainly a feat of basic biology that shines a light on human evolution, it also should have some long-term medical relevance, Kamberov said.

"Severe wounds or burns often destroy sweat glands in skin, and so far we don't know how to regenerate them--but this study brings us closer to discovering how to do that," she said. "The next step in this research would be to uncover how the multiple activity enhancing mutations in hECE18 interact with each other to increase EN1 expression and to use these biologically key mutations as starting points to figure out what DNA-binding factors actually bind at these sites. Basically, this provides us with a direct molecular inroad to discover the upstream factors that by activating EN1 expression get skin cells to start making sweat glands."

Credit: 
University of Pennsylvania School of Medicine

New Skoltech sensor tracks 'stress hormone' in real time

Skoltech researchers have developed a prototype of a fluorescence-based sensor for continuous detection of cortisol concentrations in real time, which can help monitor various health conditions. The paper was published in the journal Talanta.

Cortisol, a steroid hormone commonly known as the "stress hormone," plays a significant role in the regulation of a range of physiological processes from glucose levels to blood pressure and inflammation. Reduced or elevated cortisol levels are linked to various diseases and symptoms, but accurate and reliable continuous cortisol monitoring in vivo is yet out of reach. Existing laboratory-based methods such as enzyme-linked immunosorbent assay (ELISA), reliable as they are, cannot be adapted to real-time monitoring due to sample preparation requirements.

"First of all, any analyte monitoring in vivo is a challenge. Secondly, cortisol is a relatively small molecule. Finally, it is always destructive to take a blood test from mouse/rats or human patients. The reason is simple, as any such kind of tests initiate stress and elevate the cortisol concentration, making the test inconclusive. The goal is to develop an implantable cortisol sensor, which would work in real-time placed in blood flow," Vladimir Drachev of Skoltech and the University of North Texas, a coauthor of the paper, explains.

Drachev and his Skoltech colleagues from CDMM created a prototype immunosensor for cortisol monitoring using gold nanoparticles. The free cortisol in the sample displaces fluorescently marked complexes of cortisol and bovine serum albumin (BSA), which are attached to monoclonal antibodies to cortisol and put onto nanoscale gold "islands" on the sensor. The fluorescence can be measured as a signal of cortisol concentration in the sample. This work is performed in collaboration with a Skoltech group of biologists led by Yuri Kotelevtsev.

In in vitro tests, the new sensor showed the lowest levels of detection for cortisol of 0.02 microgram per milliliter, comparable to normal levels in the human plasma. The reversible response was also demonstrated in vitro. The team hopes their approach can lead to the development of an implantable sensor for continuous monitoring of cortisol concentration in real-time. Such an implantable sensor will look like an optical fiber with a capillary cell at the end covered by the semipermeable membrane placed in a thin needle. This needle will have several inside layers and will be connected to a portable spectrometer via fiber optics.

"We need to develop an implantable sensor separated from the biological fluid (blood, saliva, interstitial fluid) with a semi-permeable membrane. Such devices for measuring glucose, for instance, already exist. However, there are still big challenges," Drachev says.

Credit: 
Skolkovo Institute of Science and Technology (Skoltech)

World's protected areas need more than a 'do not disturb' sign

image: Forest-covered mountain in China's Wolong Nature Reserve

Image: 
Sue Nichols, Michigan State University Center for Systems Integration and Sustainability

Lessons learned from the world's protected forests: Just declaring a plot of land protected isn't enough - conservation needs thoughtful selection and enforcement.

A group of scientists, many tied to Michigan State University, examined nearly 55,000 protected areas across the world to understand what it took to effectively protect their forests - a key benchmark to protecting habitat and preserving natural resources. They conclude that it's important to protect the forests exposed to the most threats in areas close to cities and be prepared to be strict in enforcing rules intended to stop deforestation.

In a recent issue of Science of the Total Environment, researchers noted that more than 4 million square kilometers have been designated as protected areas in the past decade, without documentation of how effective such areas across the globe are at protecting.

Preserving forests means more trees to suck up greenhouse gasses, as well as prevent erosion, mitigate flooding, purify water and quell sandstorms. The paper notes some high-profile protected areas have suffered a loss of wildlife meant to be protected.

"Protecting forests is crucial to achieve sustainability," said Jianguo "Jack" Liu, MSU Rachel Carson Chair in Sustainability and director of the Center for Systems Integration and Sustainability. "To ensure we are directing our efforts to the right places, it's important to scrutinize protected areas across the globe."

In this comprehensive analysis, the study revealed:

About 71% of the protected areas worldwide contributed to preventing forest loss, but there is considerable room for improvement since only 30% of forest loss in protected areas has been prevented.

Protected areas in regions with higher pressure of forest loss prevented more forest loss.

Enforcement is important. At the global scale there is a trade-off between human uses of natural resources and the prevention of forest loss

Private reserves performed similarly to public PAs in preventing forest loss.

The group concluded that declaring an area as protected is not enough and that more attention needs to be given to improving the quality of forest protection and protecting the right forests. Currently, a global pattern of declaring remote areas as protected is missing the target, which instead is better focused on natural areas more in danger of being exploited.

Credit: 
Michigan State University

Habitual snoring linked to significant brain changes in children

Children who regularly snore have structural changes in their brain that may account for the behavioral problems associated with the condition including lack of focus, hyperactivity, and learning difficulties at school. That is the finding of a new study conducted by researchers at the University of Maryland School of Medicine (UMSOM), which was published today in the journal Nature Communications.

The research was supported by the National Institute on Drug Abuse (NIDA) and nine other Institutes, Centers, and Offices of the National Institutes of Health.

To conduct study, the researchers examined MRI images collected from more than 10,000 children aged 9 to 10 years enrolled in the Adolescent Brain Cognitive Development (ABCD) study, the largest long-term study of brain development and child health in the US. UMSOM researchers are co-investigators in this ongoing study.

They found that children who snored regularly (three or more times per week), as reported by their parents were more likely to have thinner gray matter in several regions in the frontal lobes of their brain. These areas of the brain are responsible for higher reasoning skills and impulse control. The thinner cortex in these regions correlated with behavioral disturbances associated with sleep disordered breathing, a severe form of which is called sleep apnea. These behavioral problems include a lack of focus, learning disabilities, and impulsive behaviors. The snoring condition causes disrupted sleep throughout the night due to interrupted breathing and reduction in oxygen supply to the brain.

"This is the largest study of its kind detailing the association between snoring and brain abnormalities," said study lead author Amal Isaiah, MD, PhD, Associate Professor of Otorhinolaryngology--Head and Neck Surgery and Pediatrics at UMSOM. "These brain changes are similar to what you would see in children with attention deficit hyperactivity disorder. Children have loss of cognitive control which is additionally associated with disruptive behavior."

Up to 10 percent of American children have obstructive sleep disordered breathing, and a significant percentage are misdiagnosed as having ADHD and treated with stimulant medications.

Dr. Isaiah offered this advice to parents: "If you have a child who is snoring more than twice a week, that child needs to be evaluated. We now have strong structural evidence from brain imaging to reinforce the importance of diagnosing and treating sleep disordered breathing in children."

The condition can be treated with tonsillectomy and adenoidectomy, considered the first line of treatment of children with symptoms of snoring, breathing pauses during sleep, and mouth breathing.

"We know the brain has the ability to repair itself, especially in children, so timely recognition and treatment of obstructive sleep disordered breathing may attenuate these brain changes. More research is needed to validate such mechanisms for these relationships which may also lead to further treatment approaches," said study co-author Linda Chang, MD, MS, Professor of Diagnostic Radiology and Nuclear Medicine who is a co-principal investigator on the ABCD study.

The researchers plan to conduct a follow-up study to determine whether children who continued to snore experienced worsening brain findings on their MRI.

"For the first time, we see evidence on brain imaging that measures the toll this common condition can take on a child's neurological development," said E. Albert Reece, MD, PhD, MBA, Executive Vice President for Medical Affairs, UM Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine. "This is an important finding that highlights the need to properly diagnose snoring abnormalities in children."

Credit: 
University of Maryland School of Medicine