Earth

Add fatty acid to taste

A new method developed by Institute for Systems Biology (ISB) and University of California, Riverside provides new insights into cancer biology by allowing researchers to show how fatty acids are absorbed by single cells.

Fatty acids, along with glucose and amino acids, are a major energy source for cellular growth and proliferation, and abnormal fatty acid metabolism is often seen in cancer. Dr. Wei Wei's lab at ISB and Dr. Min Xue's lab at UC Riverside have been collaborating for years to develop a series of chemical probes and analytical approaches for quantifying cellular glucose uptake, lactate production, amino acid uptake, and other cancer-related metabolites

Unlike glucose and amino acids, however, the mechanisms underlying the uptake of fatty acids into cells have been lesser known and difficult to discern. The technical tools for measuring fatty acid uptake at the single-cell level are extremely limited.

"This work is the first example of profiling fatty acid uptake in conjunction with aberrant protein signaling in cancer cells at single-cell resolution and represents an important advance in the single-cell metabolic assay," said ISB Assistant Professor Dr. Wei Wei, co-corresponding author of a just-published paper in the Journal of the American Chemical Society.

To profile the fatty acid uptake, the researchers chose a surrogate molecule that was structurally similar to natural fatty acids. This similarity tricked the cells into taking up these surrogates like the native ones. Then, using a unique dendrimer molecule - a tree-like polymer - the researchers achieved precise quantitation of those surrogates from single cells.

Applying this new single-cell tool to a brain cancer model, the researchers identified that fatty acid uptake was differentially regulated by two downstream effectors of the Mammalian Target of Rapamycin (mTOR) - a critical regulator of cell proliferation and protein synthesis. The results revealed a compensatory activation of fatty acid metabolism upon oncogene inhibition or attenuation of glucose metabolism in these brain cancer cells and uncovered a novel combination therapy that targets this bioenergetic flexibility to synergistically block the tumor growth.  

"This novel tool opens new avenues for studying how fatty acid metabolism affects biological systems. It has also inspired us to develop more metabolic probes for single-cell analysis," said UC Riverside Assistant Professor Dr. Min Xue, co-corresponding author on the paper.

Credit: 
Institute for Systems Biology

Climate change to bring more intense storms across Europe

Climate change is driving a large increase in intense, slow-moving storms, a new study by Newcastle University and the Met Office has found.

Investigating how climate affects intense rainstorms across Europe, climate experts have shown there will be a significant future increase in the occurrence of slow-moving intense rainstorms. The scientists estimate that these slow-moving storms may be 14 times more frequent across land by the end of the century. It is these slow-moving storms that have the potential for very high precipitation accumulations, with devastating impacts, as we saw in Germany and Belgium.

Led by Dr Abdullah Kahraman, of Newcastle University's School of Engineering, the researchers used very detailed climate model simulations at the UK Met Office Hadley Centre. They found that slower storm movement acts to increase the amount of rainfall that accumulates locally, increasing the risk of flash floods across Europe beyond what has been expected based on previous studies.

Published in the journal Geophysical Research Letters, the study results show that storms producing intense rain may move slower with climate change, increasing the duration of exposure to these extremes.

Dr Abdullah Kahraman, who is also a visiting scientist at the Met Office, said: "With recent advances in supercomputer power, we now have pan-European climate simulations resolving the atmosphere in high detail as short-range weather forecasting models do. These models have grid spacing of approximately 2 km, which allows them to simulate storm systems much better, resulting in better representation of extremes.

"Using these state-of-the-art climate simulations, we have developed metrics to extract potential cases for heavy rainfall, and a smaller, almost-stationary subset of these cases with the potential for high rainfall accumulations. These metrics provide a holistic view of the problem, and help us understand which factors of the atmosphere contribute to heavy rainfall changes.

"This is one of the first studies to explore changes in the speed of such heavy rainfall systems - an important aspect contributing to flood risk. Currently, we are also investigating other extreme weather types by examining the climate simulations data with a severe weather forecaster's perspective."

Professor Hayley Fowler, of Newcastle University's School of Engineering, added: "Governments across the world have been too slow in reducing greenhouse gas emissions and global warming continues apace. This study suggests that changes to extreme storms will be significant and cause an increase in the frequency of devastating flooding across Europe. This, alongside the current floods in Europe, is the wake-up call we need to produce improved emergency warning and management systems, as well as implementing climate change safety factors into our infrastructure designs to make them more robust to these severe weather events."

Professor Lizzie Kendon, Science Fellow at the Met Office and Professor at Bristol University, said: "This study shows that in addition to the intensification of rainfall with global warming, we can also expect a big increase in slow-moving storms which have the potential for high rainfall accumulations. This is very relevant to the recent flooding seen in Germany and Belgium, which highlights the devastating impacts of slow-moving storms.

"Our finding that slow-moving intense rainstorms could be 14 times more frequent by the end of the century under the high emissions RCP8.5 scenario, shows the serious impacts that we may expect across Europe if we do not curb our emissions of greenhouse gases."

The study findings are relevant to climate mitigation and adaptation policy in Europe, with specific implications for future flooding impacts, the design of infrastructure systems, and the management of water resources.

Currently, almost stationary intense rainstorms are uncommon in Europe and happen rarely over parts of the Mediterranean Sea. Accurate predictions of future changes in intense rainfall events are key to putting effective adaptation and mitigation plans in place to limit the adverse impacts of climate change.

Credit: 
Newcastle University

Ficlatuzumab plus chemotherapy may benefit patients with relapsed/refractory AML

Bottom Line: The investigational therapeutic ficlatuzumab in combination with chemotherapy showed signs of clinical efficacy in patients with relapsed/refractory acute myeloid leukemia.

Journal in Which the Study was Published: Blood Cancer Discovery, a journal of the American Association for Cancer Research

Author: Senior author Charalambos Andreadis, MD, professor of clinical medicine at the University of California, San Francisco (UCSF), and first author Victoria Wang, MD, PhD, an assistant professor of hematology and oncology at UCSF

Background: "Only about half of patients with acute myeloid leukemia (AML) will achieve long-term disease control," said Andreadis. Patients whose AML relapses or does not respond to initial therapy have worse outcomes, Andreadis explained. These patients typically undergo subsequent multi-agent chemotherapy, a toxic treatment with limited success in this population, he added.

"Unfortunately, patients whose cancers relapse or don't respond to initial therapy face a poor outlook, as only 30 to 40 percent of these patients respond to subsequent multi-agent chemotherapy and even fewer develop long-term remissions. Most patients will eventually succumb to their disease," he said.

New therapies targeting AML-specific mutations have been developed in recent years; however, these target select patients, highlighting the need for new, widely applicable therapies, according to Andreadis.

How the Study was Conducted: In their study, Andreadis and colleagues evaluated the safety and efficacy of an investigational agent targeting a shared chemical pathway in combination with single-agent chemotherapy in patients with relapsed/refractory AML. The investigational therapy, ficlatuzumab, is a first-in-class monoclonal antibody that binds the extracellular hepatocyte growth factor (HGF) to prevent it from activating MET signaling and stimulating tumor growth. "Unlike most existing targeted cancer therapies, ficlatuzumab targets an extracellular factor instead of a cancer-specific mutation," Andreadis noted, adding that some patients with refractory AML have higher levels of circulating HGF.

The phase I clinical trial enrolled 17 adult patients with AML that was either refractory to prior treatment or that had relapsed within 12 months of prior treatment. Patients received four doses of ficlatuzumab, administered 14 days apart, along with the chemotherapeutic cytarabine.

Results: Nine of 17 patients (53 percent) had a complete response, and four of the responding patients had no signs of minimal residual disease. Among responding patients, the progression-free survival was 31.2 months, and the overall survival was not reached. Ten patients (eight responders and two non-responders) proceeded to allogeneic hematopoietic cell transplantation; six of these patients remained in remission at the most recent follow-up.

The most common adverse event was febrile neutropenia. Serious adverse events occurred in two patients, and there was one death unrelated to the investigational therapy.

To identify molecular changes associated with treatment response, Andreadis and colleagues analyzed peripheral blood mononuclear cells collected at baseline and at several timepoints after treatment initiation. They found that ficlatuzumab treatment led to attenuated phosphorylation of MET, the receptor for HGF, thereby confirming on-target inhibition of HGF. Clinical response to ficlatuzumab treatment was associated with reduced phosphorylation of the S6 protein and increased expression of genes involved in myeloid and leukocyte activation, whereas non-responding patients were more likely to have increased expression of HGF, increased phosphorylation of S6, and expression of genes involved in protein translation, cell adhesion, and type I interferon signaling.

Author's Comments: "The 53 percent response rate was quite striking to us since historical response rates for the standard-of-care treatment are in the 30 percent range," noted Andreadis. "While these results need to be validated in a larger study, they suggest that ficlatuzumab in combination with single-agent chemotherapy may lead to better responses with less toxicity in patients with relapsed/refractory AML."

"By comparing pre-treatment to post-treatment blood samples using state-of-the art single-cell mass cytometry and RNA sequencing, we observed that ficlatuzumab successfully suppressed HGF signaling, and we also identified biomarkers of treatment response and resistance," said Wang. "This approach provided novel insight into the molecular changes that occur upon treatment, which could have clinical implications for tracking treatment response or identifying patients likely to respond."

"Together, our findings suggest that targeting an extracellular factor in conjunction with existing cancer therapies could be an effective therapeutic strategy for AML treatment," said Andreadis.

Study Limitations: Limitations of the study include the small sample size and its single-arm design. Andreadis and Wang noted that since the study was designed to assess safety and dosing, rather than efficacy, additional studies to validate the efficacy findings will be needed. A phase II clinical trial to evaluate ficlatuzumab plus chemotherapy has been initiated. An additional limitation was the lack of bone marrow specimens for the gene expression analyses.

Credit: 
American Association for Cancer Research

Teens with secure family relationships "pay it forward" with empathy for friends

Teens' ability to empathize -- to understand others' perspectives and emotions, and to care for their wellbeing -- is an important contributor to their relationships, including with friends. Prior research shows that teens who have more secure family relationships report higher levels of empathy for others. But little research examines whether teens with more secure family relationships actually show greater empathy when observed in real-life interactions with peers, or whether their empathic capacities show different patterns of growth over time.

A new study tested whether teens' secure, supportive family relationships at age 14 related to their ability to provide their friends with empathic support across adolescence and into early adulthood. Findings indicate that secure attachment (reflecting on close relationships in an emotionally balanced, coherent, and valuing way) predicts teens' ability to provide empathic support to their close friends. Close friends were also more likely to seek support from teens who had secure family relationships in early adolescence. While having secure family relationships at age 14 predicted greater empathy with peers across adolescence, those teens who did not have secure family relationships in early adolescence showed a pattern of catching up, increasing their empathy towards close friends as they developed. This study is among the first to examine associations of attachment with the development of empathic support using longitudinal methods and observations of empathic support for friends across mid-adolescence.

The findings were published in a Child Development article, written by researchers at the University of Virginia and led by Joseph P. Allen, Hugh P. Kelly professor of psychology.

"Our findings showed that teens who were more secure in their family relationships at age 14 provided greater empathic support to their friends at ages 16, 17 and 18, and they were consistently able to provide that support over time," said Jessica Stern, postdoctoral fellow at the University of Virginia. "Teens who were less secure in their family relationships at age 14 showed lower empathic support for friends in early adolescence, but their empathic abilities grew over time. What's especially interesting is that close friends also sought out more support from securely attached teens."

The study featured a sample of 184 adolescents (86 males, 98 females) recruited from a public middle school (seventh and eighth grades) in a suburban and urban populations from the Southeastern United States. Adolescents in the study were 58% Caucasian, 29% African American, 8% mixed race or ethnic and 5% other identity groups.

In the current study, teens at age 14 responded to an interview about their attachment relationships, unlike most prior studies which used self-report measures of attachment style and empathy. Teens who described their attachment relationships as supportive, who valued those relationships and reflected on them with coherence and emotional balance, were rated as more secure. At ages 16, 17 and 18, teens and their nominated closest friend participated in a video-recorded 6-minute task in which teens helped friends deal with a problem they were facing. Friends' bids for support, as well as teens' ability to provide empathic support, were coded from videos of this task.

The findings suggest a strong association between a teen's having a secure attachment state of mind, or perspective on attachment relationships as supportive, and the development of the capacity to provide empathic support to close friends across a 4-year period of adolescence. Results also suggest that friends' support-seeking develops alongside teens' ability to deliver empathy, with support seeking helping empathy to develop and empathy fostering support-seeking from friends as well.

"Investing in the quality of teens' family relationships early in adolescence may be important for building empathy and positive interactions with peers," said Stern. "Parenting programs, family therapy when needed, and school-based interventions that help young teens feel safe and supported in their relationships with adults--not only parents but teachers, mentors, and extended kin--may equip teens to 'pay it forward' in their empathy and care for others."

The authors acknowledge several limitations. First, the study analyzed support provisions among close friends, but teens may have different motivations for providing support with a range of peers, such as a sense of obligation, the desire to be viewed positively by others (including the researchers). Additionally, it is also important to examine whether adolescent attachment predicts caregiving behavior in other contexts (e.g., with other peers at school, with one's own future children). Future work could take into account other potential sources of friendship stability and change, such as closeness and trust, to provide a more complete picture of friends' support-seeking. Finally, although the sample was reasonably representative of the community from which participants were drawn, the majority of participants were white, and all were from the United States. The authors also note that the present study precludes drawing any causal conclusions. For example, it is possible that teens' ability to be empathetic contributes to their secure attachment, allowing them to take the perspective of others when discussing close relationships, or that the link is bidirectional.

Credit: 
Society for Research in Child Development

A noninvasive test to detect cancer cells and pinpoint their location

CAMBRIDGE, MA -- Most of the tests that doctors use to diagnose cancer -- such as mammography, colonoscopy, and CT scans -- are based on imaging. More recently, researchers have also developed molecular diagnostics that can detect specific cancer-associated molecules that circulate in bodily fluids like blood or urine.

MIT engineers have now created a new diagnostic nanoparticle that combines both of these features: It can reveal the presence of cancerous proteins through a urine test, and it functions as an imaging agent, pinpointing the tumor location. In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations.

"This is a really broad sensor intended to respond to both primary tumors and their metastases. It can trigger a urinary signal and also allow us to visualize where the tumors are," says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT and a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science.

In a new study, Bhatia and her colleagues showed that the diagnostic could be used to monitor the progression of colon cancer, including the spread of metastatic tumors to the lung and the liver. Eventually, they hope it could be developed into a routine cancer test that could be performed annually.

Bhatia is the senior author of the study, which appears today in Nature Materials. The paper's lead author is MIT research scientist Liangliang Hao.

Locating tumors

Over the past several years, Bhatia has been developing cancer diagnostics that work by generating synthetic biomarkers that can be easily detected in the urine. Most cancer cells express enzymes called proteases, which help them escape their original locations by cutting through proteins of the extracellular matrix. Bhatia's cancer-detecting nanoparticles are coated with peptides that are cleaved by these proteases. When these particles encounter a tumor, the peptides are cleaved and excreted in the urine, where they can be easily detected. In animal models of lung cancer, these biomarkers can detect the presence of tumors early on; however, they don't reveal the exact location of the tumor or whether the tumor has spread beyond its organ of origin.

Building on their previous efforts, the MIT researchers wanted to develop what they call a "multimodal" diagnostic, which can perform both molecular screening (detecting the urinary signal) and imaging, to tell them exactly where the original tumor and any metastases are located.

To modify the particles so they could also be used for PET imaging, the researchers added a radioactive tracer called copper-64. They also coated them with a peptide that is attracted to acidic environments, such as the microenvironment in tumors, to induce the particles to accumulate at tumor sites. Once they reach a tumor, these peptides insert themselves into cell membranes, creating a strong imaging signal above background noise.

The researchers tested the diagnostic particles in two mouse models of metastatic colon cancer, in which tumor cells travel to and grow in the liver or the lungs. After treatment with a chemotherapy drug commonly used to treat colon cancer, the researchers were able to use both the urine signal and the imaging agent to track how the tumors responded to treatment.

The researchers also found that delivering copper-64 with their nanoparticles offers an advantage over the strategy that is typically used for PET imaging. The PET tracer, known as FDG, is a radioactive form of glucose that is taken up by metabolically active cells, including cancer cells. However, the heart generates a bright PET signal when exposed to FDG, and that signal can obscure weaker signals from nearby lung tumors. Using acid-sensitive nanoparticles to accumulate Copper-64 in the tumor environment provides a much clearer image of lung tumors, the researchers found.

Toward cancer screening

If approved for use in human patients, Bhatia envisions that this kind of diagnostic could be useful for evaluating how well patients respond to treatment, and for long-term monitoring of tumor recurrence or metastasis, especially for colon cancer.

"Those patients could be monitored with the urinary version of the test every six months, for instance. If the urine test is positive, they could follow up with a radioactive version of the same agent for an imaging study that could indicate where the disease had spread. We also believe the regulatory path may be accelerated with both modes of testing leveraging a single formulation," Bhatia says.

In the longer term, she hopes that this technology could be used as part of a diagnostic workflow that could be given periodically to detect any kind of cancer.

"The vision is that you could use this in a screening paradigm -- alone or in conjunction with other tests -- and we could collectively reach patients that do not have access to costly screening infrastructure today," she says. "Every year you could get a urine test as part of a general check-up. You would do an imaging study only if the urine test turns positive to then find out where the signal is coming from. We have a lot more work to do on the science to get there, but that's where we would like to go in the long run."

Glympse Bio, a company co-founded by Bhatia, has performed phase 1 clinical trials of an earlier version of the urinary diagnostic particles and found them to be safe in patients.

Credit: 
Massachusetts Institute of Technology

Science snapshots from Berkeley Lab

image: Detailed X-ray measurements at the Advanced Light Source helped a research team co-led by Berkeley Lab, SLAC, and Stanford University reveal how oxygen seeps out of the billions of nanoparticles that make up lithium-ion battery electrodes.

Image: 
Berkeley Lab

Berkeley Lab Pushes Its Energy-Saving Windows into the Market

By Julie Chao

Windows make up 7% of the envelope area of a home but can account for 47% of the envelope heat loss. High-performance windows thus represent a significant opportunity for consumers to be more comfortable and save money - and help reduce energy demand and greenhouse gas emissions while doing so.

Now Berkeley Lab is teaming up with the Northwest Energy Efficiency Alliance (NEEA), the Pacific Northwest National Laboratory (PNNL), and other organizations to create the Partnership for Advanced Window Solutions (PAWS), with the aim of accelerating nationwide adoption of highly efficient windows, storm windows and shading systems.

"Berkeley Lab's core mission is more on the research side, but of course, we're always looking at bringing the technology to the market," said Berkeley Lab windows researcher Robert Hart. "In this case, PAWS is going to build on the R&D basics that we have been working on for 40 years, but it's going to bring in a lot of new partners who are more market-oriented."

The decades of windows research at Berkeley Lab sponsored by the Department of Energy's Buildings Technologies Office and the California Energy Commission has led to low-emissivity (or low-E) coatings now found in more than 80% of windows sold, and even more efficient products such as thin-triple glazing which has just been brought to market by multiple major U.S. manufacturers. Now the Berkeley Lab team is working with PAWS and PNNL to conduct field demonstrations of high-performance windows and window attachments and support manufacturers and utility companies with new analysis, tools, and ratings.

"Buying new windows for a home can be expensive, but if you're going to be replacing them anyway, the incremental cost of going for a highly insulating window is not that much," said Stephen Selkowitz, now a retired affiliate in Berkeley Lab's Energy Technologies Area (ETA). "In addition to saving energy, these high-performance windows add comfort, have health benefits such as reducing the risk of condensation, and add resilience to buildings in the face of climate extremes."

Microbial Fingerprints for Cities

By Ashleigh Papp

Vibrant cities around the world are made up of a unique blend of cultures, languages, cuisines, and - as scientists recently revealed - microbes.

Nearly 1,000 scientists from around the world, including three from Berkeley Lab, collected and analyzed microbial samples from public transit stations across 60 global cities. They probed ticket kiosks, benches, and rails to see what tiny organisms like bacteria, viruses, and archaea were in residence. The team found that in most cities, the same four bacteria phyla - Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidota - are most abundant, but more interestingly, they discovered that each location also has its own distinct set of microbes.

Nikos Kyrpides, head of the DOE Joint Genome Institute (JGI) Microbiome Data Science group, along with Russell Neches, a postdoctoral researcher, and David Paez-Espino, a research scientist, used an extensive JGI database to investigate viruses detected in the samples.

The JGI scientists took the nearly 5,000 viral genome samples collected by the larger consortium of scientists involved in this work, known as the International Metagenomics and Metadesign of Subways and Urban Biomes, or MetaSUB, and compared them to the database. Neches and Kyrpides then set out to map the diversity and global distribution of the viruses.

"The integration of all these data in a single database is a key resource for the research community which provides a reference point for comparing viruses identified from new samples," Kyrpides said.

In addition to mapping microbial signatures, scientists discovered over 10,000 new viruses and bacteria, hinting at the vast world of microbes that is yet to be understood.

Public health officials can now use these microbial maps to keep track of virus and bacteria levels over time. "It's like a census," Neches said. "This can inform on where public health resources can best be allocated to benefit all of us."

Read the Cornell Press Release HERE

Scientists Discover How Oxygen Loss Saps a Lithium-Ion Battery's Voltage

Adapted from a SLAC news release by Glennda Chui

Lithium-ion batteries work like a rocking chair, moving lithium ions back and forth between two electrodes that temporarily store charge. Ideally, those ions are the only things moving in and out of the billions of nanoparticles that make up each electrode.

But researchers have known for some time that oxygen atoms leak out of the particles as lithium moves back and forth. The details have been hard to pin down because the signals from these leaks are too small to measure directly.

Now, in a study published in Nature Energy, a research team co-led by SLAC National Accelerator Laboratory, Stanford University, and Berkeley Lab has measured this process with unprecedented detail, showing how the holes, or vacancies, left by escaping oxygen atoms change the electrode's structure and chemistry and gradually reduce how much energy it can store.

Using COSMIC, a multipurpose X-ray instrument at Berkeley Lab's Advanced Light Source (ALS), the research team scanned across samples of electrode nanoparticles, making high-res images and probing the chemical makeup of each tiny spot. This information was combined with a computational technique called ptychography to reveal nanoscale details, measured in billionths of a meter.

At SLAC's Stanford Synchrotron Lightsource, the team shot X-rays through entire electrodes to confirm that what they were seeing at the nanoscale level was also true at a much larger scale.

Comparing the experimental results with computer models of how oxygen loss might occur, the team concluded that an initial burst of oxygen escapes from the surfaces of particles, followed by a very slow trickle from the interior. Where nanoparticles glommed together to form larger clumps, those near the center of the clump lost less oxygen than those near the surface.

The results contradict some of the assumptions scientists had made about this process and could suggest new ways of engineering electrodes to prevent it.

"Previously, researchers were not able to access the length scales needed to study oxygen release in batteries from the primary particle to the electrode level. COSMIC's ability to achieve few-nanometer spatial resolution with chemical specifity across a wide field allowed us, for the first time, to study the influence of microstructure on this phenomenon." said co-senior author David Shapiro, who is the lead scientist for COSMIC's microscopy experiments. Shapiro also leads the ALS Microscopy Program.

Scientists Uncover a Different Facet of Fuel-Cell Chemistry

By Lori Tamura

Solid oxide fuel cells (SOFCs) are a promising technology for cleanly converting chemical energy to electrical energy. But their efficiency depends on the rate at which solids and gases interact at the devices' electrode surfaces. Thus, to explore ways to improve SOFC efficiency, an international team led by researchers from Berkeley Lab studied a model electrode material in a new way - by exposing a different facet of its crystal structure to oxygen gas at operating pressures and temperatures.

"We began by asking questions like, could different reaction rates be achieved from the same material, just by changing which surface the oxygen reacts with?" said Lane Martin, a faculty scientist in Berkeley Lab's Materials Sciences Division. "We wanted to examine how the atomic configuration at specific surfaces of these materials makes a difference when it comes to reacting with the oxygen gas."

Thin films of a common SOFC cathode material, lanthanum strontium cobalt ferrite (LSCF), were synthesized to expose a surface that was oriented along a diagonal crystallographic plane. Electrochemical measurements on this atypical surface yielded oxygen reaction rates up to three times faster than those measured on the usual horizontal plane.

To better understand the mechanisms underlying this improvement, the researchers used Berkeley Lab's Advanced Light Source (ALS) to probe the "new" surface at high temperatures and in varying pressures of oxygen. The results revealed that different crystallographic planes stabilize different surface chemistries, even though the chemistry in the bulk of the films is unchanged.

"Exposing different surfaces to air can lead to completely different structures, chemistries, and defect concentrations to a point where these surfaces almost look and act like different materials," said Abel Fernandez, a graduate student in Materials Science and Engineering at UC Berkeley and co-first author of the study. "Taking our results into consideration can allow manufacturers a relatively simple way to enhance the reactivity of LSCF-based cathodes without the groundwork typically necessary for utilizing new materials chemistries."

Credit: 
DOE/Lawrence Berkeley National Laboratory

Among spotted hyenas, social ties are inherited

image: A massive study of data collected over 27 years, published today in the journal Science, sheds new light on social networks, rank and survival of spotted hyenas.

Dr. Amiyaal Ilany, a biologist at Bar-Ilan University in Israel, integrates behavioral ecology, network science, and social science, to study broad aspects of social behavior in the wild. As a postdoctoral researcher at the University of Pennsylvania, he developed, together with Dr. Erol Akçay, a theoretical model suggesting that social inheritance – in which offspring inherit their social bonds from their parents, either passively or by copying them – could explain the social networks of multiple species. To test their model Ilany and Akçay forged a partnership with Dr. Kay Holekamp, of Michigan State University. Holekamp had spent the previous 27 years observing wild spotted hyenas in Kenya.

Poring over Holekamp's data, which included nearly 74,000 social interactions among the spotted creatures, they were able to show, for the first time on such a large scale, that their model correctly hypothesized that a process of social inheritance determines how offspring relationships are formed and maintained. Their study also elucidates the major role that social rank plays in structuring the spotted hyena clan, and how this affects survival.

Image: 
Kate Shaw Yoshida

Social networks among animals are critical to various aspects of their lives, including reproductive success and survival, and could even teach us more about human relationships.

Dr. Amiyaal Ilany, a biologist at the Mina and Everard Goodman Faculty of Life Sciences at Bar-Ilan University in Israel, integrates behavioral ecology, network science, and social science, to study broad aspects of social behavior in the wild. As a postdoctoral researcher at the University of Pennsylvania, he developed, together with Dr. Erol Akçay, a theoretical model suggesting that social inheritance - in which offspring inherit their social bonds from their parents, either passively or by copying them - could explain the social networks of multiple species.

In a study published today in the journal Science, the researchers show, for the first time on such a large scale, that their model correctly hypothesized that a process of social inheritance determines how offspring relationships are formed and maintained. Their study also elucidates the major role that social rank plays in structuring the spotted hyena clan, and how this affects survival.

To test their model Ilany and Akçay forged a partnership with Dr. Kay Holekamp, of Michigan State University. Holekamp had spent the previous 27 years observing wild spotted hyenas in Kenya. The researchers pored over Holekamp's data, which included nearly 74,000 social interactions among the spotted creatures.

"Social affiliations are, indeed, inherited within clusters of hyenas. The plethora of data on spotted hyenas that was collected by Kay Holecamp provided us with a golden opportunity to test the model we developed several years ago," says Dr. Ilany, the lead author of the study. "We found overwhelming evidence that social connections of offspring are similar to those of the mother. A mother who has social affiliations with another hyena can connect her offspring to that hyena and the two, in turn, will form a social bond. Even after the mother-offspring bond itself weakens dramatically, the offspring still remain connected to their mother's friends."

Spotted hyenas live in clans, the size of which depends on the abundance of prey and may vary from only a few individuals to more than a hundred. Life in the clan can be difficult for lower-ranked individuals. They may be excluded and may not get access to food.

"Rank is super important," says Dr. Akçay, who co-authored the study. "Spotted hyena live in a matriarchal society. Those born to a lower-ranked mother are less likely to survive and to reproduce." Descendants of high-class individuals face fewer constraints than descendants of lower-class individuals in choosing their social partners. The researchers found that offspring born to high-ranked mothers copied their mother's bonds more accurately than those born to low-ranked mothers.

Social inheritance plays an important role in survival, and the researchers discovered an association between the two in both mothers and female offspring. There was a positive relationship between offspring survival and social associations that were similar to their mothers, but only in offspring of high-ranked mothers. Mothers of offspring who were more similar to them in social association were more likely to survive to the following year, possibly reflecting a change in maternal relationships as they get older.

The results of this study suggest that social inheritance plays an important role in building the social networks of hyenas and further supports Ilany's and Akçay's hypothesis that in species with stable social groups, the inheritance of social connections from parents is the cornerstone of social structure. In several species successful social integration is associated with higher survival and reproductive success. The results add to this by showing that social inheritance is also associated with both offspring and mother survival.

The researchers note that social network inheritance likely contributes to a group's stability, and also has implications for how behaviors are learned and spread through groups. The study also underscores how factors other than genetics hold sway in key evolutionary outcomes, including reproductive success and overall survival. "A lot of things that are considered by default to be genetically determined may depend on environmental and social processes," concludes Ilany.

Credit: 
Bar-Ilan University

Newly discovered role for CTP in ensuring faithful cell division in bacteria

image: X-ray crystallography structure of Noc, and the location of the Noc-DNA-membrane complex inside Bacillus subtilis cells

Image: 
Dr. Ling Wu, Newcastle University.

To grow and multiply efficiently, bacteria must coordinate cell division with chromosome segregation. Crucial to this process in the bacterium Bacillus subtilis (commonly found in soil and the guts of humans and ruminants) is a protein called Nucleoid Occlusion Factor or Noc.

Noc binds to particular binding sites on the chromosome and then recruits further Noc proteins to grow a larger protein complex.

Part of the Noc protein can also bind to the cell membrane, pulling chromosomal DNA towards the membrane, allowing space for cellular division machinery to split the cell in two while keeping the DNA away and undamaged from this process.

Previously it had been unclear how the physical link between chromosomal DNA, Noc protein, and the cell membranes is established and regulated. To solve this mystery, researchers in the group of Dr Tung Le and in the scientific platforms at the John Innes Centre teamed up with Prof. Jeff Errington and Dr Ling Wu at the Newcastle University.

The team showed that a small and abundant molecule called Cytidine Triphosphate (CTP) is key to the functions of Noc. CTP binding enables Noc to "spread" on DNA to form a large protein complex. CTP also "switches on" the membrane-binding ability of Noc. Mutants of Noc that are defective in CTP binding can no longer pull DNA towards the cell membrane.

Researchers note that small molecule "switches" such as those dependent on Adenosine Triphosphate (ATP) or Guanosine Triphosphate (GTP) are ubiquitous in biology, but CTP switches, such as the one in Noc, are still rarely reported.

The research suggests that these previously rarely identified CTP switches may be far more widespread than previously thought - and might open a pathway towards the development of drugs to target bacterial chromosome segregation or cell division.

"Previous research has shown that new practical applications and innovations stem from fundamental discoveries. Understanding the mechanisms underpinning CTP binding and hydrolysis and how CTP switches evolve will open many new and unexpected avenues for research and application," said Adam Jalal, the first author of this study.

Credit: 
John Innes Centre

Melting High Mountain Asia glaciers are revealed as a potential source of greenhouse gases

image: Conceptual diagram of the carbon cycle within a glacial basin in the Tibetan Plateau.

Image: 
Dr. Yulan Zhang

The cryosphere, a term used to describe the areas of the Earth's surface where water exists in solid form, plays an important role in regulating the Earth's climate. Due to cryospheric retreat; for example, the melting Greenland ice sheet in the Arctic, greenhouse gases that were formerly in "frozen storage" are now being released. High Mountain Asia, also known as the Tibetan Plateau, hosts the largest volume of glaciers outside the polar regions. However, Tibetan glaciers are currently excluded from global greenhouse gas budgets.

According to Shichang Kang, leader of a group of researchers who recently became the first team to measure the flux variations of greenhouse gases (CO2 and CH4) in typical glacial basins in High Mountain Asia, it's important that Tibetan glaciers are not only included in budget calculations, but are subject to more thorough investigation.

In a paper published in the KeAi journal Fundamental Research, he and his colleagues report that cryoconite holes on the glacier surface in southern and southeastern regions of the Tibetan Plateau are strong sources of carbon with positive CH4 and CO2 fluxes. However, this is mitigated to some extent by the fact that proglacial river runoff can be a significant sink of atmospheric CO2; a fact not identified in previous studies.

Kang, who is a Professor at the Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, explains: "Glaciers in High Mountain Asia contain large reservoirs of organic carbon that can influence glacial ecosystems under rapid melting. We have estimated the lateral export of carbon from glaciers to the downstream. However, no systematic data exist on the current footprint of greenhouse gases from glacial basins, which limits our understanding of the carbon cycle."

He adds: "Given the current climate change problems we are facing, the impact of glacier shrinking on CH4 and CO2 fluxes in this region needs to be further investigated and understood. Specifically, the CH4 and CO2 fluxes from the cryoconite holes, subglacial sediments and proglacial rivers."

According to Dr. Yulan Zhang, the investigator who led the study: "Until now, there were no estimates on the potential climate change caused by greenhouse gas emissions from cryosphere melting in High Mountain Asia. Determining how these data are coupled with biogeochemical models, including feedback between the glacial cryosphere and atmosphere, is required to test the sensitivity of carbon sinks or sources to changes in the terrestrial cryosphere." She adds: "Our results provide new insight about the projections in the cryospheric regions. It's clear that how the climate responds to carbon and nitrogen cycles in High Mountain Asia should be thoroughly studied in the future."

Credit: 
KeAi Communications Co., Ltd.

Silicon in drinking water caused irreversible lung pathologies in rodents

Bone density, skin and hair health, and the mobility of joints depend to a great extent on the microelement of silicon. We mostly get it with food, but silicon is also consumed with some biologically active additives that promise beauty, longevity, and youth. The element can also be found in drinking water of a natural origin: usually, it is included in the compound of sodium salt and metasiliconic acid. However, in the case of microelements, one should be extremely careful: a deficiency could lead to diseases, but an overdose could bring negative effects too.

Together with colleagues from the Chuvash State University and the Hamburg Medical University, scientists of Immanuel Kant Baltic Federal University studied the effect of prolonged silicon consumption in relatively small doses. They experimented on laboratory rats and mice. For several months the animals were given water with sodium metasilicate, one of the most common compounds of silicon; the concentration was ten milligrams per liter.

In the first phase of their experiment, the researchers took rats and mice pulmonary tissue samples two and three months after the introduction of silicon-contaminated water and didn't find any pathological changes. Then, they decided to triple the time of influence. Nine months later, the results were very different -- the animals' health greatly deteriorated. Their weight reduced in half, and the animals showed signs of lung fibrosis (the transformation of functional tissues into non-functional connective) of varying severity, and deformation of the bronchial tree. The epithelial walls between their alveoli were so depleted that in some cases they conjoined, and the total number and diameter of the alveoli decreased. Histological studies showed the presence of giant multinuclear Pirogov-Langhans cells that are common in tuberculosis and other severe lung diseases.

Remarkably, the negative impact on animals from the first phase of the experiment occurred six months after they were transferred from silicon-contaminated to clean water. Zones of increased density developed inside their lungs and along the bronchial tree areas. High concentration of lymphocytes (the main cells of the immune system) in these zones was indicative of inflammation.

"What we've seen during our experiment with rats and mice was very similar to silicosis, a chronic occupational disease that mostly affects miners and foundry workers. The constant use of silicon, whether in water or dietary supplements, may at first appear safe, although the damage increases unnoticeably. Research like this has been going on for years and is aimed to form an evidence base. The results are already included in the guidelines on microelement additives, which means we are actively changing the minds of the scientific community. Perhaps, lovers of "miracle pills" would be next", noted the head of research Valentina Gordova, a Candidate of Medical Sciences, and an Assistant Professor at the Department of Fundamental Medicine of the Immanuel Kant Medical Institute.

Credit: 
Immanuel Kant Baltic Federal University

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties

image: RUDN University chemists obtained a metal-containing complex with an unusual planar architecture. The unexpected structure was formed due to the spontaneous fixation of carbon dioxide from the air during the reaction. This compound exhibits unusual magnetic properties (spin glass behaviour). This can be useful for creating memory storage devices.

Image: 
RUDN University

RUDN University chemists obtained a metal-containing complex with an unusual planar architecture. The unexpected structure was formed due to the spontaneous fixation of carbon dioxide from the air during the reaction. This compound exhibits unusual magnetic properties (spin glass behaviour). This can be useful for creating memory storage devices. The results are published in the Journal of Organometallic Chemistry

Coordination polymers are hybrid crystalline coordination compounds contained of infinitely repeating fragments (structural elements). These structural elements include metal centers and organic linking "bridges". Coordination polymers are used for catalysis, separation of gas mixtures, manufacturing of sensors and storage of "guest" molecules. Some coordination polymers turn out to be molecular magnets with a linear chain structure (single chain magnets, SCM) -- these are the promising objects for creating high-capacity memory storage devices. While studying the peculiarities of the synthesis of coordination polymers, RUDN University chemists obtained a new metal-containing compound with an non-trivial architecture, which turned out to be an unusual molecular magnet ("spin glass").

"Design of isolated molecular architectures based on transition metal ions by using organic and inorganic ligands attracts a great deal of attention of research groups due to their potential applications including electronics, data storage, catalysis, contrast agents, sensors and others", said Prof. Alexey Bilyachenko, a leading researcher of the Joint Institute for Chemical Research at RUDN University.

The RUDN University chemists investigated the traditional protocol for design of coordination polymers. They used organic compounds with coordinating centers as bridging ligands. As for a metal-containing center they used an unusual organo-inorganic compounds (metallasilsesquioxanes). The researchers used phenylsilsesquioxane containing nickel and sodium ions. At the last stage, chemists added pyridine, a colorless organic liquid with coordinating properties. As a result, a yellow crystalline product was isolated, the molecular structure of which was established by single crystal X-ray diffraction study.

Compound obtained by RUDN University chemists turned out to have an unusual architecture. The complex has a planar structure resembling a square. In the center of the square is the sodium cation. The chloride anion which balances the charges in the complex is located above the plane of the square. The four nickel ions forming the square structure are coordinated by pyridine ligands and are additionally connected via carbonate bridges. The appearance of carbonate structural units (which were not used as reagents in the synthesis) is the most interesting effect in this reaction. Chemists suggested that unusual carbonate bridges appeared due to the fact that during the reaction there was a spontaneous capture of carbon dioxide from the atmosphere. The resulting carbonate fragments are key to the complex creation, forming the "sides" of the square. In this case, carbonates not only bind the angular nickel ions, but also coordinate the central sodium ion. The chemists studied the magnetic properties of the crystals using the SQUID MPMS-XL magnetometer. It turned out that the new crystal is a molecular magnet that exhibits spin glass behavior.

"To our surprise, performed reaction causes a deep structural rearrangement with the formation of a tetranuclear nickel complex linked by carbonate bridges. Isolation of this strcuture could not be explained by the formal logic of synthesis and, most likely, carbonates were formed by the reaction of sodium ions with atmospheric CO2. In all likelihood, subsequent exchange reaction of sodium bicarbonate species with nickel ions results in formation of resulting compound. The arrangement of magnetically active nickel ions in the planar square structure provides an unusual magnetic behaviour of the complex", said Prof. Alexey Bilyachenko, a leading researcher of the Joint Institute for Chemical Research at RUDN University

Credit: 
RUDN University

Revealing the values in mathematics education through a variety of cultural lenses

image: The mathematics education can often be associated with only numeracy skills. But viewing the discipline as a cultural product--whose values differ across cultures--reveals its significance beyond numbers crunching.

Image: 
ECNU Review of Education

If you ask an adult what their least favorite subject at school was, they are likely to say mathematics. This response has less to do with mathematics per se than it is about how well it was taught or whether students were supported in their endeavor to learn numbers, master algebra, understand trigonometry, and handle data. To grasp the values of mathematics and how the discipline is viewed by society, we need to see it as a cultural phenomenon first.

It is commonly known that mathematics is the foundation of technology, be it primitive tools or the supercomputers in the 21st century. In turn, this technology shapes our modes of social connection. Thus, learning mathematics is inseparable from the connection with the external environment, and teaching mathematics is also inseparable from the interaction between people. Seen this way, it is hard not to categorize mathematics as a cultural product. Philosophers, educators, and mathematicians who have written about the discipline's cultural contours have noted how intrinsically enmeshed it is with other fields such as anthropology, sociology, education, philosophy, and psychology.

"While people may readily understand the significance of anthropology to our lives and histories, it is often felt that the objective and the scientific nature of mathematics masks its value relevance," says Dr. Qiaoping Zhang from the Education University of Hong Kong. "Because research on values in mathematics education is limited and considered unimportant."

To correct this notion and explore the values that are considered important in teaching and learning mathematics according to various cultures, ECNU Review of Education is putting out a Special Issue this month with Dr. Qiaoping Zhang and Dr. Wee Tiong Seah as its guest editors. Teachers and students in Australia, Pasifika learners in New Zealand, and primary and secondary students in Korea and the Chinese mainland are just some of the participants who will be sharing their stories and ideas about the values they hold dear in mathematics education. This special issue of the journal is being launched as a tribute to the 14th International Congress on Mathematical Education, which is being held from July 14 to 18 in Shanghai, China.

Among the plethora of articles and commentaries in the Special Issue, some of the highlights include:

Wee Tiong Seah (University of Melbourne), Qiaoping Zhang, and Alan J. Bishop (Monash University) discussing the role that individuals such as teachers and parents play in affecting the development of students' values in mathematics education through their views, decisions, and behavior, and emphasizing the importance of bringing humanity back into mathematics education;

Yüksel Dede (Gazi University), Veysel Akçakın (Uşak University), and Gürcan Kaya (Burdur Mehmet Akif Ersoy University) exploring the intersection of mathematical values, educational values, and the educational values involved in mathematical modeling tasks in Brazil, Germany, the United Kingdom, and the United States of America;

Jodie Hunter from Massey University examining the understanding of mathematics educational values and the reasons for rating values at different levels of importance, according to Pasifika students in New Zealand; and

Hengjun Tang (Zhejiang Normal University), Wee Tiong Seah, Qiaoping Zhang and Weizhong Zhang (Zhejiang Normal University) using the 'What I Find Important' [WIFI] questionnaire to investigate Chinese mainland students' value structures in mathematics learning across primary, junior secondary, and senior secondary levels.

It must be noted that the COVID-19 pandemic of 2020 has given greater weight to these discussions. "Prior to the scramble of teachers and students joining online lectures and tutorials last year, it was felt that information and communication technology would have a fundamental influence on mathematics education and could reduce the differences between cultural traditions", Dr. Seah says. "However, after a year of learning online, might digital learning technology have widened the learning opportunity gaps within and amongst cultural traditions instead?"

Examining whether and how teachers and students have changed their values in mathematics learning as a result of online teaching, and how these values are maintained and sustained alongside the wellbeing of everybody involved, remain as the open-ended questions whose answers are of critical importance as we move forward in a world which is (still) suffering from a pandemic.

Credit: 
Cactus Communications

Autophagy may be the key to finding treatments for early Huntington's disease

image: Proposed pathway of mutant huntingtin (mHtt) contribution to cognitive dysfunction and cell death through impairments in synaptic autophagy: the Huntingtin protein (mHtt) interferes with autophagic efficiency, leading to a decline in synaptic autophagy. This may in turn interfere with synaptic plasticity, causing both cognitive dysfunction and loss of normal synaptic input to post-synaptic cells and feedback to presynaptic cells. Loss of normal synaptic feedback and input may then contribute to cell death. Credit: Journal of Huntington's Disease.

Image: 
Journal of Huntington's Disease

Amsterdam, July 15, 2021 - Huntington's Disease (HD) is a progressive neurodegenerative condition characterized by motor, cognitive, and psychiatric symptoms, and motor symptoms are often preceded by cognitive changes. Recent evidence indicates that autophagy plays a central role in synaptic maintenance, and the disruption in autophagy may be at the root of these early cognitive changes. Understanding this mechanism better may help researchers develop treatments for patients with HD early in their disease progression, report scientists in a review article published in the Journal of Huntington's Disease.

In this review, experts describe how autophagy, the cellular process responsible for clearing old or damaged parts of the cell, plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease. The line of research discussed in this review represents a previously unexplored avenue for identifying potential disease-modifying therapies for HD.

"Like many neurodegenerative conditions affecting primarily cognition, such as Alzheimer's disease, preclinical and clinical data indicate that synapses, the part of brain cells responsible for communication between cells, are affected early in HD," explained Hilary Grosso Jasutkar, MD, PhD, Department of Neurology, Columbia University, and Ai Yamamoto, PhD, Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA. "We have long thought that autophagy played a role in the pathophysiology of HD, but what this role is has been unclear until recently. Recent evidence indicates that autophagy may be important in maintaining the synapse. This line of research has the potential to lead to identification of a drug target to treat HD early in the disease process."

The authors first explore how cognitive dysfunction is an early manifestation of HD, and that similarly to other neurodegenerative diseases that primarily affect cognition, such as Alzheimer's disease, dementia with Lewy bodies, and frontotemporal dementia, early deficits in synaptic function may underlie these cognitive symptoms. Next, they review the growing evidence that the lysosome-mediated degradation pathway autophagy plays a central role in synaptic maintenance, and how the disruption in autophagy may contribute to early cognitive changes in HD.

The authors conclude that there are pathologic and imaging data in individuals with mutations in the Huntingtin protein (mHtt), as well as evidence from animal models with HD, that suggest that synapse dysfunction may occur early in HD, prior to cell death.

"Autophagy plays a specialized role in the maintenance and function of the synapse, and mHtt may disrupt this function, leading to the early synaptic changes seen in HD patients and model systems," explained Dr. Grosso Jasutkar. "These synaptic changes may then manifest as impairments in synaptic plasticity and thus cognitive changes early in the disease course. Given that neurons rely on synaptic input and feedback for cell health, it is possible that this disruption in synaptic signaling in and of itself contributes to cell death in HD."

"There is much work yet to be done in this field," added Dr. Yamamoto. "Although various groups have demonstrated individual components of this pathway, a direct causal relationship of mutant Htt leading to synaptic dysfunction and, in turn, cognitive impairments, has yet to be demonstrated."

"If the model described here is borne out, therapeutics aimed at enhancing the efficiency of synaptic autophagy early in the course of HD could be protective against early cognitive changes and potentially degeneration itself," concluded the authors.

HD is a fatal genetic neurodegenerative disease that causes the progressive breakdown of nerve cells in the brain. An estimated 250,000 people in the United States are either diagnosed with, or at risk for, the disease. Symptoms include personality changes, mood swings and depression, forgetfulness and impaired judgment, unsteady gait, and involuntary movements (chorea). Every child of an HD parent has a 50% chance of inheriting the gene. Patients typically survive 10-20 years after diagnosis.

Credit: 
IOS Press

Wearable sensors with wide-ranging strain sensitivity

(LOS ANGELES) - Many bodily functions in humans are manifested by mechanical deformations to the skin - from the stretching, bending and movement of muscles and joints to the flutter of a pulse at the wrist. These mechanical changes can be detected and monitored by measuring different levels of strain at various points throughout the body.

In recent years, much attention has been focused on wearable sensors to measure these strains for use in personal health monitoring. Some of these sensors can detect high-level (40-100%) strains, such as those associated with the movements of fingers and limb joints, others detect mid-level (10-40%) strains, as found in swallowing and facial movements and still others are sensitive to low-level (

Due to its highest levels of conductivity and stability, a highly-favored material for these types of sensors is PEDOT:PSS, or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Previously, very sensitive PEDOT:PSS strain sensors have been developed that can detect strain from very minute movements (20%). Attempts to solve this problem by adding stretchy polymers, or elastomers, have resulted in increased stretchiness but decreased sensitivity in detecting small strains.

A collaborative team from the Terasaki Institute for Biomedical Innovation has addressed these challenges by designing a wearable strain sensing device that can effectively detect a wide range of strains. In order to maximize the stretchiness of this sensor, the TIBI researchers drew inspiration from an example found in nature. Snakes are well known in having the ability to stretch to multiple times their normal body size when ingesting prey. Upon closer examination of snake skin, the researchers observed that snake skin is covered with overlapping scales; when strain is applied, these scales slide past each other and are displaced into separated scales with skin interspersed among them. This confers exceptional stretchiness to the skin.

The researchers used this design concept in fabricating their sensor. A thin layer of PEDOT:PSS was applied and baked onto an elastomer tape. This layer was then stretched to an experimentally optimized 50% strain level. This process resulted in cracks and the formation of microscale pieces, or "islands" in the layer's surface, with interspersing areas of PEDOT:PSS. These exposed areas served as bonding sites for the application of a second thin layer of PEDOT:PSS. Once applied, the second layer was further stretched to a 100% strain level, resulting in the creation of additional islands and areas which naturally aligned with those of the first layer. When released from stretching, a structure was created with overlapping islands that mimicked the scaly structure of a snake.

"The key point in the development of this sensor is its novel structural design," said lead researcher Shiming Zhang, Ph.D. "It makes it possible for our device to measure a wide range of strain levels with a high degree of sensitivity."

The PEDOT:PSS bilayer was affixed atop a layer of hydrogel; the soft, gelatinous hydrogel was chosen for this underlayer, as it would rest on the skin of the subject and offer biocompatibility and wearable comfort. Copper wires and an elastomer seal were added to the sensor and various experiments were conducted to test its ability to detect a wide range of strains.

In low-range strain tests, measurements of wrist pulses were taken at rest and after exercise. There were also measurements taken of skin and tissue movement on the neck during vocalization and phonation. To detect mid-level strains, measurements were taken of eyebrow movements and the up-and-down movements of the larynx during swallowing. And in high-level strain tests, measurements of different degrees of elbow bending were taken.

The results of the experiments showed that the TIBI sensor yielded clearly defined signals with a sensitivity range of two orders of magnitude. The signals accurately reflected the degrees and angles of the corresponding movements that were detected. In addition, the sensor demonstrated excellent conductivity, durability and reproducibility.

The versatility of this wide-ranging wearable sensor can be applied to myriad biomedical needs, such as in monitoring cardiac or circulatory functions, aiding subjects with difficulties in vocalization or swallowing, or in the physical rehabilitation and evaluation of athletic performance. It can also be used in such creative applications as improving communication for those who work in noisy environments or in monitoring psychological conditions associated with facial expressions.

"The structural design principles demonstrated here are a true advancement in wearable health monitoring," said Ali Khademhosseini, Ph.D., Director and CEO of TIBI. "It exemplifies the creative and forward thinking of our researchers in developing personalized sensing devices."

Credit: 
Terasaki Institute for Biomedical Innovation

International team of scientists turns methane into methanol at room temperature

image: Benjamin Snyder (right) and his former PhD adviser, Edward Solomon, a
professor of chemistry at Stanford and of photon science at SLAC.

Image: 
Linda A. Cicero

A team of researchers from Stanford University and the University of Leuven in Belgium has further elucidated an intriguing process that could be an important step toward a methanol fuel economy with abundant methane as the feedstock, an advance that could fundamentally change how the world uses natural gas.

Methanol - the simplest alcohol - is used to make various products, like paints and plastics, and as an additive to gasoline. Rich in hydrogen, methanol can drive new-age fuel cells that could yield significant environmental benefits.

If natural gas, of which methane is the primary component, could be converted economically into methanol, the resulting liquid fuel would be much more easily stored and transported than natural gas and pure hydrogen. That also would greatly reduce the emissions of methane from natural gas processing plants and pipelines. Today, escaped methane, a greenhouse gas many times more potent than carbon dioxide, nearly negates the environmental advantages of natural gas over oil and coal. The team's new study in the current edition of Science is their latest to advance a low-energy way to produce methanol from methane.

"This process uses common crystals known as iron zeolites that are known to convert natural gas to methanol at room temperature," explains Benjamin Snyder, who earned his doctorate at Stanford studying catalysts to address key facets of this challenge. "But, this is extremely challenging chemistry to achieve on a practical level, as methane is stubbornly chemically inert."

When methane is infused into porous iron zeolites, methanol is rapidly produced at room temperature with no additional heat or energy required. By comparison, the conventional industrial process for making methanol from methane requires temperatures of 1000°C (1832°F) and extreme high pressure.

"That's an economically tantalizing process, but it's not that easy. Significant barriers prevent scaling up this process to industrial levels," said Edward Solomon, Stanford professor of chemistry and of photon science at SLAC National Accelerator Laboratory. Solomon is the senior author of the new study.

Keeping the zeolites on

Unfortunately, most iron zeolites deactivate quickly. Unable to process more methane, the process peters out. Scientists have been keen to study ways to improve iron zeolite performance. The new study, co-authored by Hannah Rhoda, a Stanford doctoral candidate in inorganic chemistry, uses advanced spectroscopy to explore the physical structure of the most promising zeolites for methane-to-methanol production.

"A key question here is how to get the methanol out without destroying the catalyst," Rhoda said.

Choosing two attractive iron zeolites, the team studied the physical structure of the lattices around the iron. They discovered that the reactivity varies dramatically according to the size of the pores in the surrounding crystal structure. The team refers to it as the "cage effect," as encapsulating lattice resembles a cage.

If the pores in the cages are too big, the active site deactivates after just one reaction cycle and never reactivates again. When the pore apertures are smaller, however, they coordinate a precise molecular dance between the reactants and the iron active sites - one that directly produces methanol and regenerates the active site. Leveraging this so-called 'cage effect,' the team was able to reactivate 40 percent of the deactivated sites repeatedly - a significant conceptual advance toward an industrial-scale catalytic process.

"Catalytic cycling - the continual reactivation of regenerated sites - could someday lead to continual, economical methanol production from natural gas," said Snyder, now a postdoctoral fellow at UC-Berkeley in the Department of Chemistry under Jeffrey R. Long.

This fundamental step forward in basic science will help elucidate for chemists and chemical engineers the process iron zeolites use to produce methanol at room temperature, but much work remains before such a process might be industrialized.

Next up on Snyder's list: tackling achieving the process not only at room temperature but using ambient air rather than some other source of oxygen, such as the nitrous oxide used in these experiments. Dealing with a powerful oxidizing agent like oxygen, which is notoriously hard to control in chemical reactions, will be another considerable hurdle along the path.

For now, Snyder was both pleased and amazed by the illustrative powers of the sophisticated spectroscopic instrumentation in the Solomon labs that were leveraged for this study. These were invaluable to his understanding of the chemistry and the chemical structures involved in the methane-to-methanol process.

"It's cool how you can get some very powerful atomic-level insight, like the cage effect, from these tools that weren't available to previous generations of chemists," Snyder said.

Credit: 
Stanford University