Earth

High-yield agriculture slows pace of global warming, say Stanford researchers

High-yield agriculture slows pace of global warming, say Stanford researchers

Advances in high-yield agriculture over the latter part of the 20th century have prevented massive amounts of greenhouse gases from entering the atmosphere – the equivalent of 590 billion metric tons of carbon dioxide – according to a new study led by two Stanford Earth scientists.

Aircraft seed, hole-punch clouds

Aircraft seed, hole-punch clouds

BOULDER--As turboprop and jet aircraft climb or descend under certain atmospheric conditions, they can inadvertently seed mid-level clouds and cause narrow bands of snow or rain to develop and fall to the ground, new research finds. Through this seeding process, they leave behind odd-shaped holes or channels in the clouds, which have long fascinated the public.

Fermilab's MINOS experiment suggests difference in key neutrino and antineutrino property

Fermilab's MINOS experiment suggests difference in key neutrino and antineutrino property

Recalculating cell sensing

Mobile biological cells may be twice as good at following chemical signals as previously believed possible, according to Princeton researchers publishing in the latest issue of Physical Review Letters. The revelation offers new insight into the ability of microscopic, single-celled entities such as bacteria, amoebae, immune cells and sperm to find their way to their intended destinations.

Scientists locate BP Gulf oil plume extending toward Dry Tortugas

Scientists locate BP Gulf oil plume extending toward Dry Tortugas

Scientists create nano-patterned superconducting thin films

UPTON, NY — A team of scientists from Bar-Ilan University, Israel, and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has fabricated thin films patterned with large arrays of nanowires and loops that are superconducting — able to carry electric current with no resistance — when cooled below about 30 kelvin (-243 degrees Celsius). Even more interesting, the scientists showed they could change the material's electrical resistance in an unexpected way by placing the material in an external magnetic field.

NY3 strain of Pseudomonas aeruginosa bacteria could aid in Gulf oil spill, other environmental cleanup

CORVALLIS, Ore. – Researchers have discovered a new strain of bacteria that can produce non-toxic, comparatively inexpensive "rhamnolipids," and effectively help degrade polycyclic aromatic hydrocarbons, or PAHs – environmental pollutants that are one of the most harmful aspects of oil spills.

Because of its unique characteristics, this new bacterial strain could be of considerable value in the long-term cleanup of the massive Gulf Coast oil spill, scientists say.

Asian Summer Monsoon record from 16 thousand years ago shows ancient climate change

Research at the School of Geographical Sciences, Southwest University (SWU) in Chongqing, China-Research, has demonstrated that the record of the Asian Summer Monsoon (ASM) covers the last deglaciation and the early Holocene (from 16.2 to 7.3 ka BP), with an average oxygen isotope resolution of 9 years (issue 53, May 2010 of SCIENCE CHINA Earth Sciences).

Gypsy moths wreak havoc, but their own enemies are not far behind

ITHACA, N.Y. – If you live in a section of the country where gypsy moths are a relatively new menace, have no fear, help is not far behind.

Cornell University entomologist Ann Hajek told a national conference earlier this month that when the gypsy moth – whose caterpillars have defoliated entire forests – started spreading westward more than 100 years ago from New England to Wisconsin, its fungal and viral pathogens followed close behind.

"We were pretty surprised," Hajek says. "No one knew how long it took the pathogens to chase their hosts."

Stretching molecules yields new understanding of electricity

Cornell University researchers recently stretched individual molecules and watched electrons flow through them, proving that single-molecule devices can be used as powerful new tools for nanoscale science experiments.

The finding, reported in the June 11 issue of the journal Science, probes the effects of strong electron interactions that can be important when shrinking electronics to their ultimate small size limit--single-molecule devices. The work resulted in the first precision tests of a phenomenon known as the underscreened Kondo effect.

Stretching single molecules allows precision studies of interacting electrons

ITHACA, N.Y. - With controlled stretching of molecules, Cornell researchers have demonstrated that single-molecule devices can serve as powerful new tools for fundamental science experiments. Their work has resulted in detailed tests of long-existing theories on how electrons interact at the nanoscale.

The work, led by professor of physics Dan Ralph, is published in the June 10 online edition of the journal Science. First author is J.J. Parks, a former graduate student in Ralph's lab.

Changing Chesapeake Bay acidity impacting oyster shell growth

Changing Chesapeake Bay acidity impacting oyster shell growth

Pop science: The physics of how bubbles burst

 The physics of how bubbles burst

The physics behind bursting appears to be independent of the material of the bubble. The investigators were surprised to find that the ring effect is still seen with fairly viscous liquids like oil and even in solutions up to 5,000 times as viscous as water. Bird is anxious to study similar popping effects in more exotic materials such as molten glass, lava, and mud.

A cooler Pacific may have severely affected medieval Europe, North America

MIAMI – June 9, 2010 -- In the time before Columbus sailed the ocean blue, a cooler central Pacific Ocean has been connected with drought conditions in Europe and North America that may be responsible for famines and the disappearance of cliff dwelling people in the American West.

Amount of dust, pollen matters for precipitation in clouds, climate change, Colorado State University atmospheric scientists rev

Amount of dust, pollen matters for precipitation in clouds, climate change, Colorado State University atmospheric scientists rev