Culture

UTEP professor collaborates on LGBTQ+ COVID-19 Texas study

image: UTEP Associate Professor Oralia Loza, left, and Brenda Risch, Ph.D., Borderland Rainbow Center executive director, right, collaborated on a survey that examines the impact of the COVID-19 pandemic on Texas' LGBTQ+ population.

Image: 
Ivan Pierre Aguirre / UTEP Communications

Oralia Loza, Ph.D., public health sciences associate professor at The University of Texas at El Paso, and the Borderland Rainbow Center (BRC) have collaborated on a survey that examines how the COVID-19 pandemic has disproportionately affected the LGBTQ+ population in Texas.

Led by Phillip W. Schnarrs, Ph.D., at The University of Texas at Austin's Dell Medical School, the survey involved a statewide coalition of community and research partners, including UTEP and El Paso's BRC, to better understand the needs, concerns and challenges of LGBTQ+ Texans and their allies during the coronavirus outbreak.

Preliminary results from this first-of-its-kind survey found that gender diverse people and queer people of color are experiencing a number of disparities. They include higher rates of COVID-19, more difficulty accessing a variety of services, and higher rates of anxiety and depression, as well as high unemployment compared with white participants.

The results, which are broken down by race, ethnicity and gender identity, are available here. Researchers plan to release the findings by individual Texas counties later this year.

"The purpose of the study is two-fold," said Loza, who collaborated with the BRC to include representation from El Paso in the survey data. She is currently translating the survey and preliminary findings of the study into Spanish. "One is to understand what are the needs of the LGBTQ population in our community because it has never been assessed before, especially statewide. But also, community organizations such as the BRC can use that data to show evidence of the need to advocate for those services. Other community organizations also can use the data to generate findings that are specific to the work they do. If their focus is mental health, they can look at the mental health data and report the needs for their city."

The survey, which launched May 4, 2020, will continue to recruit participants until July 30, 2020. To date, researchers have gathered data from 1,000 LGBTQ+ individuals and their allies, including 111 respondents from El Paso. The survey is available here.

Researchers said the data collected will be given back to community partners to use for future planning, as well as the development and delivery of programs to support LGBTQ+ individuals and allies during the COVID-19 pandemic.

Credit: 
University of Texas at El Paso

Decline in green energy spending might offset COVID-era emissions benefits

The short-term environmental benefits of the COVID-19 crisis, including declines in carbon emissions and local air pollution, have been documented since the early days of the crisis. This silver lining to the global crisis, however, could be far outweighed by the long-term impacts on clean energy innovation, a new Yale-led study finds.

The economic downturn triggered by the pandemic, researchers say, could have a devastating impact on long-term investment in clean energy.

Under a worst-case -- but realistic -- scenario, they predict an additional 2,500 million metric tons of carbon dioxide -- or the equivalent of nearly 3 trillion pounds of coal burned -- could be emitted, causing 40 more deaths per month, through 2035.

"This global crisis will certainly defer investments in clean energy," said Kenneth Gillingham, an associate professor of environmental and energy economics at the Yale School of Forestry & Environmental Studies (F&ES) and lead author of the paper. "Depending on how policymakers respond, the consequences for human health from this deferred investment could far exceed the short-term environmental benefits that we have seen so far."

Those short-term benefits have been substantial. Consumption for jet fuel and gasoline, for example, declined by 50 and 30 percent, respectively, from early March to June 7, while electricity demand fell by 10 percent. These impacts saved an estimated 200 lives per month since the lockdowns began.

However, there's also been another, subtler outcome: most investment in clean energy technologies has come to a halt.

"Overall clean energy jobs dropped by almost 600,000 by the end of April, as investments in energy efficiency and renewable generation have plummeted," said Marten Ovaere, a postdoctoral researcher at F&ES and co-author of the paper. "If that were to continue it could significantly set back the push toward a clean energy future."

The paper, published in the journal Joule, was coauthored by researchers at MIT Sloan School of Management and Northwestern University.

Drawing on evidence from previous economic shocks, the researchers examine two possible long-term scenarios in the U.S. In the best-case scenario -- in which the threat subsides relatively quickly, the worst projections of human fatalities are avoided, and the economy rebounds -- they say there should be few long-term implications. Most demands for products and services, they predict, "will be deferred rather than destroyed." While record declines in emissions would be temporary, investments in new energy solutions would likely reach pre-pandemic levels.

If there is a persistent, long-term recession, however, the impacts on energy innovation would be significant. While energy use related to travel might remain lower, home energy consumption would increase and commercial building use would stay largely unchanged, particularly if office spaces are used in a similar way (even if more American workers decide to work from home). Also, if the public becomes cautious about using public transportation, many commuters will simply decide to drive instead.

The greater impact, however, would be on the energy innovation sector, the study says. Investment in low-carbon technologies would dry up, the transition to cleaner vehicle fleets would be disrupted, and cash-strapped automakers would abandon new vehicle and energy efficiency technologies.

"For example, there has been a huge amount of investment going into electric vehicles," Gillingham says. "But if companies are just trying to survive, it's much less likely that they can make large investments towards new technologies for the next generation because they don't even know if they're going to make it to the next generation."

In addition, tighter state and local budgets over the next few years will likely deflate much of the investment in clean-energy options.

Even if green energy investments stall for just a single year, the authors calculate, it would outweigh any emissions reductions that occurred from March to June.

However, while the uncertainty of this crisis poses potentially enormous threats, it also presents an opportunity, Gillingham says. If federal governments produce large stimulus packages to strengthen the economy, even modest investments in clean energy technologies would pay long-term dividends.

"Including a green component in those stimulus packages would be an investment in the future, but it also has short-term benefits," he says. "We looked back at analyses of the clean energy investments that were part of the American Recovery and Reinvestment Act of 2009 -- which promoted new energy infrastructure, smart meters, and other new technologies -- and it made a big difference.

"So it really is very much in the hands of policymakers whether green energy is held back or accelerated by this crisis."

Credit: 
Yale School of the Environment

Alzheimer's: New gene may drive earliest brain changes

NEW YORK, NY (June 22, 2020)--A newly discovered Alzheimer's gene may drive the first appearance of amyloid plaques in the brain, according to a study led by researchers at Columbia University Irving Medical Center.

Some variants of the gene, RBFOX1, appear to increase the concentration of protein fragments that make up these plaques and may contribute to the breakdown of critical connections between neurons, another early sign of the disease.

The finding could lead to new therapies that prevent Alzheimer's and better ways of identifying people with the greatest risk of developing the disease.

Background

In recent years, amyloid PET brain imaging has helped to reveal that the earliest signs of Alzheimer's disease -- deposits of amyloid in the brain - appear as early as 10 or 15 years before any symptoms of the disease become apparent.

But aside from the few cases caused by rare, inherited genes, researchers have been searching for the cause of excessive accumulation of amyloid in the brain of Alzheimer's patients.

To find genes that drive EARLY amyloid accumulation, the new study examined the genomes of thousands of people whose PET images revealed amyloid deposits in the brain but who had not yet developed Alzheimer's symptoms.

"By studying people with the earliest signs of Alzheimer's, we can find genes that are unequivocally related to the start of disease. And these genes are more likely to lead to therapies that can prevent the disease from developing," says Richard Mayeux, MD, chair of neurology at Columbia University Vagelos College of Physicians and Surgeons, who led the study.

What's New

The study looked through the genomes of nearly 4,300 people who did not have Alzheimer's but whose brains already contained variable amounts of amyloid plaque, as measured by PET imaging using amyloid tracers.

A genetic analysis uncovered a link between the appearance of amyloid deposits and APOE, a known Alzheimer's gene, and a novel gene, RBFOX1.

About 10% of people in the study (predominantly with European ancestry) had RBFOX1 variants that were linked with the emergence of amyloid deposition.

Lower amounts of RBFOX1 in the brain appeared to be associated with increased amyloid and global cognitive decline during life.

Why It Matters

Uncovering exactly how RBFOX1 regulates amyloid plaque could lead to ways to prevent plaque accumulation. Previous research has already suggested RBFOX1 is involved in the formation of amyloid precursors and the breakdown of synapses between neurons.

The connection between RBFOX1 and amyloid plaques may be relatively easy to untangle, unlike the well-known connection between APOE4 and amyloid, which is still not understood after decades of research.

"I think we're going to find that these markers of eventual disease are where real progress can be made against Alzheimer's," Mayeux says. "It will be virtually impossible to change the disease course at the time symptoms appear. By then, the disease has already flourished for 10 to 15 years."

"If we can target the genes that get amyloid started -- and correct those problems somehow -- we may be able to prevent the disease."

Credit: 
Columbia University Irving Medical Center

Researchers study myxobacteria's ability to distinguish self from non-self

image: Vera Troselj (left) and Christopher Vassallo, both Ph.D. candidates in University of Wyoming Professor Dan Wall's lab at the time of the research, are co-authors of a paper, titled "Rapid Diversification of Wild Social Groups Driven by Toxin-Immunity Loci on Mobile Genetic Elements," that was published in the June 22 issue of the International Society for Microbial Ecology Journal.

Image: 
Dan Wall

A fundamental question in biology is how individual cells within a multicellular organism interact to coordinate diverse processes.

A University of Wyoming researcher and his Ph.D. students studied myxobacteria -- common soil microbes that prey off other microbes for food -- and posed the question: "How do cells from a diverse environment recognize other cells as related or clonal to build social groups and a multicellular organism?"

"Myxobacteria assemble a multicellular organism by cobbling together cells from their environment. This is in contrast to plants and animals, where gametes fuse to create a unique cell, which, upon clonal expansion, creates a multicellular organism," says Dan Wall, a professor in the UW Department of Molecular Biology. "The ability of myxobacteria to create multicellular organisms is remarkable, given that soil is considered to be the most diverse environment on the planet, wherein a small sample can consist of tens of thousands of microbial species. Broadly speaking, our work helps to address this question."

Wall is corresponding author of a paper, titled "Rapid Diversification of Wild Social Groups Driven by Toxin-Immunity Loci on Mobile Genetic Elements," that was published in the June 22 (today) issue of the International Society for Microbial Ecology (ISME) Journal. Published by Springer Nature, the journal publishes leading research in microbial ecology, spanning the breadth of microbial life, including bacteria, archaea, microbial eukaryotes and viruses.

Christopher Vassallo and Vera Troselj, both Ph.D. candidates in Wall's lab at the time of the research, are co-authors of the paper. Vassallo and Troselj are now postdoctoral researchers at the Massachusetts Institute of Technology and the Lawrence Berkeley National Laboratory, respectively. Michael Weltzer, a UW graduate student in the Molecular and Cellular Life Sciences program from Idaho Springs, Colo., is another co-author.

This work is mostly fundamental and addresses how cells discriminate between the self and non-self, Wall says.

"Multicellularity is a difficult way of life to evolve and maintain, because cells are the smallest unit of life, and there is selective pressure for them to exploit their environment, including other cells, for their own benefit," he explains. "For example, cancer cells do this and are constantly arising in our own body. Fortunately, our immune system recognizes them as non-self and eliminates them. Our system works in an analogous manner."

Wall says his group's work builds on prior research on the subject that showed that a small patch of soil has another layer of remarkable diversity at the subspecies level. Among Myxococcus xanthus isolates, there are many different social groups that discriminate against one another. However, Wall says the prior research did not elucidate how it works at the molecular level.

"Our paper addresses the mechanism of how they (myxobacteria) discriminate and how highly related strains recently diverged, or evolved, into distinct social groups," Wall says.

This ISME paper also builds on Vassallo and Wall's previous paper, titled "Self-Identify Barcodes Encoded in Expansive Polymorphic Toxin Families Discriminate Kin in Myxobacteria," that was published in the Proceedings of the National Academy of Sciences (PNAS) Nov. 19, 2019.

The work in the PNAS paper showed that Myxococcus xanthus expresses a highly variable cell surface receptor called TraA. Cells use these receptors, which have many different sequences or alleles in populations, to recognize other cells as possible clonemates or as self. If the other cells bear identical TraA receptors, they interact. This results in the transient fusion of cells where they exchange cellular components, such as proteins and lipids, but no DNA. Included in this cargo are highly variable toxin proteins.

Thus, if the other cells are true clonemates, they have genetically encoded immunity to those toxins. But if they are divergent cells that happen to have compatible TraA receptors, but are not clonemates, they will be killed by toxin transfer. In the PNAS paper, Vassallo and Wall discovered six distinct families of toxins delivered by TraA recognition and exchange. Each of these families is diverse and abundant in myxobacterial genomes.

From the PNAS study, Wall says they sought to put their predictions to the test in the ISME paper.

"We analyzed the publicly available genomes of those 22 (myxobacteria) strains, identified their toxin genes and predicted how they would socially interact," Wall says. "We found a perfect correlation between our predictions and empirical findings by others. We then experimentally tested our predictions by creating mutants and showed we could engineer social harmony between otherwise antagonistic strains by inactivating toxin transfer."

Along with the TraA delivery/discrimination system, Wall says they also discovered two other systems -- type VI secretion system (T6SS) and rearrangement hotspot (RHS) -- were involved in kin discrimination. T6SS is a molecular injection apparatus that transfers toxins into adjacent cells. If the cells are clonal, they will encode immunity; if not, they will be intoxicated. T6SSs are widely distributed in many different types of bacteria. Although not well understood, the RHS system also serves as a nanoweapon.

Additionally, the group showed that the key discriminatory toxin genes resided on mobile genetic elements in the chromosome. That is, these highly related strains recently diverged by the horizontal transfer of genes in their environment, mediated by virus-like particles.

Credit: 
University of Wyoming

Eruption of Alaska's Okmok volcano linked to period of extreme cold in ancient Rome

video: Animated timeline showing European summer temperatures and volcanic sulphur and ash levels in relation to the Okmok II Eruption and significant historic events of the Roman Republic and Ptolemaic Kingdom from 59 to 20 BCE.

Image: 
DRI

An international team of scientists and historians has found evidence connecting an unexplained period of extreme cold in ancient Rome with an unlikely source: a massive eruption of Alaska's Okmok volcano, located on the opposite side of the Earth.

Around the time of Julius Caesar's death in 44 BCE, written sources describe a period of unusually cold climate, crop failures, famine, disease, and unrest in the Mediterranean Region -impacts that ultimately contributed to the downfall of the Roman Republic and Ptolemaic Kingdom of Egypt. Historians have long suspected a volcano to be the cause, but have been unable to pinpoint where or when such an eruption had occurred, or how severe it was.

In a new study published this week in Proceedings of the National Academy of Sciences (PNAS), a research team led by Joe McConnell, Ph.D. of the Desert Research Institute in Reno, Nev. uses an analysis of tephra (volcanic ash) found in Arctic ice cores to link the period of unexplained extreme climate in the Mediterranean with the caldera-forming eruption of Alaska's Okmok volcano in 43 BCE.

"To find evidence that a volcano on other side of the earth erupted and effectively contributed to the demise of the Romans and the Egyptians and the rise of the Roman Empire is fascinating," McConnell said. "It certainly shows how interconnected the world was even 2,000 years ago."

The discovery was initially made last year in DRI's Ice Core Laboratory, when McConnell and Swiss researcher Michael Sigl, Ph.D. from the Oeschger Centre for Climate Change Research at the University of Bern happened upon an unusually well preserved layer of tephra in an ice core sample and decided to investigate.

New measurements were made on ice cores from Greenland and Russia, some of which were drilled in the 1990s and archived in the U.S., Denmark, and Germany. Using these and earlier measurements, they were able to clearly delineate two distinct eruptions - a powerful but short-lived, relatively localized event in early 45 BCE, and a much larger and more widespread event in early 43 BCE with volcanic fallout that lasted more than two years in all the ice core records.

The researchers then conducted a geochemical analysis of the tephra samples from the second eruption found in the ice, matching the tiny shards with those of the Okmok II eruption in Alaska - one of the largest eruptions of the past 2,500 years.

"The tephra match doesn't get any better," said tephra specialist Gill Plunkett, Ph.D. from Queen's University Belfast. "We compared the chemical fingerprint of the tephra found in the ice with tephra from volcanoes thought to have erupted about that time and it was very clear that the source of the 43 BCE fallout in the ice was the Okmok II eruption."

Working with colleagues from the U.K., Switzerland, Ireland, Germany, Denmark, Alaska, and Yale University in Connecticut, the team of historians and scientists gathered supporting evidence from around the globe, including tree-ring-based climate records from Scandinavia, Austria and California's White Mountains, and climate records from a speleothem (cave formations) from Shihua Cave in northeast China. They then used Earth system modeling to develop a more complete understanding of the timing and magnitude of volcanism during this period and its effects on climate and history.

According to their findings, the two years following the Okmok II eruption were some of the coldest in the Northern Hemisphere in the past 2,500 years, and the decade that followed was the fourth coldest. Climate models suggest that seasonally averaged temperatures may have been as much as 7oC (13oF) below normal during the summer and autumn that followed the 43 BCE eruption of Okmok, with summer precipitation of 50 to 120 percent above normal throughout Southern Europe, and autumn precipitation reaching as high as 400 percent of normal.

"In the Mediterranean region, these wet and extremely cold conditions during the agriculturally important spring through autumn seasons probably reduced crop yields and compounded supply problems during the ongoing political upheavals of the period," said classical archaeologist Andrew Wilson, D.Phil. of the University of Oxford. "These findings lend credibility to reports of cold, famine, food shortage and disease described by ancient sources."

"Particularly striking was the severity of the Nile flood failure at the time of the Okmok eruption, and the famine and disease that was reported in Egyptian sources," added Yale University historian Joe Manning, Ph.D. "The climate effects were a severe shock to an already stressed society at a pivotal moment in history."

Volcanic activity also helps to explain certain unusual atmospheric phenomena that were described by ancient Mediterranean sources around the time of Caesar's assassination and interpreted as signs or omens - things like solar halos, the sun darkening in the sky, or three suns appearing in the sky (a phenomenon now known as a parahelia, or 'sun dog'). However, many of these observations took place prior to the eruption of Okmok II in 43 BCE, and are likely related to a smaller eruption of Mt. Etna in 44 BCE.

Although the study authors acknowledge that many different factors contributed to the fall of the Roman Republic and Ptolemaic Kingdom, they believe that the climate effects of the Okmok II eruption played an undeniably large role - and that their discovery helps to fill a knowledge gap about this period of history that has long puzzled archaeologists and ancient historians.

"People have been speculating about this for many years, so it's exciting to be able to provide some answers," McConnell said.

Credit: 
Desert Research Institute

Simple interventions can help people spot false headlines

image: Helping people identify nefarious information online might be possible through inexpensive digital-media literacy outreach.

Image: 
Egan Jimenez, Princeton University

PRINCETON, N.J.--The avalanche of online content available to people around the world has outpaced humans' ability to separate fact from what can be highly toxic and even dangerous fiction.

But helping people identify nefarious information online might be possible through inexpensive digital-media literacy outreach, according to a Princeton University-led study published in the Proceedings of the National Academy of Sciences (PNAS).

A team of researchers studied Facebook's efforts to educate users on how to spot misinformation. After being exposed to tips on how to spot misinformation, people in the United States and India were less likely to say a false headline was true.

The researchers also found, however, that people's ability to spot erroneous information weakened over time, leading the authors to conclude that digital literacy needs to be taught with regularity.

"Most people struggle to reliably evaluate the quality of information they encounter online, even under the most ideal conditions," said Andy Guess, assistant professor of politics and public affairs. "This is because they lack the skills and knowledge required to distinguish between high and low-quality news content. We find that effort to promote digital literacy can improve people's ability to evaluate the accuracy of online content."

Guess's collaborators were Michael Lerner of the University of Michigan, Benjamin Lyons of the University of Utah, Jacob M. Montgomery of Washington University in St. Louis, Brendan Nyhan of Dartmouth College, Jason Reifler of the University of Exeter, and Neelanjan Sircar of Ashoka University.

This study is among the first to systematically explore the role of digital media literacy shortfalls.

The team originally set out to explore why people fall victim to misinformation, selecting the United States and India as both countries have struggled with misinformation campaigns (especially during national elections).

The team looked at the effects of Facebook's "Tips to Spot False News," which appeared at the top of users' news feeds in 14 countries in April 2017. The list was also printed as a full-page ad in many U.S. newspapers, and a version appeared in India as well.

These tips have likely been the most widely distributed digital-media literacy intervention. They also are not overly complex, allowing for quick decision-making. For example, one tip cautions readers to be skeptical of headlines, warning that if claims sound unbelievable, they probably are.

The researchers then employed a "two-wave panel design," studying the same group of people immediately after exposure to the tips, and then again several weeks later, allowing them to see whether the digital media literacy efforts took root over time.

Participants were exposed to the tips and then presented with the same series of mock headlines, which they rated for accuracy. The headlines were balanced in terms of partisan slant, well-known and lesser-known media outlets, as well as low-quality and mainstream content. While the tips were offered to respondents, they couldn't be forced to read them, so the researchers took this into account in their modeling.

This two-wave design was conducted online in both the U.S. and India, though in-person interviews were also conducted in areas of rural India where there is greater religious polarization and potentially higher risk of misinformation spread.

The team found that the intervention improved people's ability to discern between mainstream and false news headlines by 26.5% in the U.S. and 17.5% in India. In the U.S., this lessened but remained measurable several weeks later. One-third of participants also were more likely to point out a less accurate headline. Their ratings of false headlines as "very accurate" or "somewhat accurate" went from 32% to 24%.

While the online results between the two countries were similar, India's face-to-face interviews yielded different results. There was no evidence that exposure to the tips increased the perceived accuracy of mainstream news articles. That said, this group had much less experience with evaluating news headlines online, the researchers said.

The researchers listed a few caveats with their work. First, the effects were modest, and the intervention did not completely eliminate belief in false news headlines. The effects also decayed over time, suggesting the need for regular reinforcement of these lessons. Lastly, it's not clear whether everyone actually read the tips.

Still, the study provides opportunities for future research. Rather than using an intervention done by a tech company, academics could take this into their own hands by sampling people in other countries and electoral contexts. Likewise, more intensive training models could be used to see if the effects are more durable.

"We see no reason why this wouldn't work for any type of misinformation. Currently there are sources spreading misleading or even dangerous information about Covid-19 regarding protective measures, vaccines, miracle cures. We think this intervention could work in the public health domain, as well," Guess said.

Credit: 
Princeton School of Public and International Affairs

Assessment of COVID-19 community containment strategies in China

What The Study Did: Measures implemented in a community in China to restrict the spread of COVID-19 are examined in this case series.

Authors: Wen-Wu Zhang, B.Med., and Qing-Li Dou, Ph.D., of The People's Hospital of Baoan Shenzhen in China, are the corresponding authors.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamanetworkopen.2020.12934)

Editor's Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflicts of interest and financial disclosures, and funding and support.

#  #  #

Media advisory: The full study is linked to this news release.

Embed this link to provide your readers free access to the full-text article This link will be live at the embargo time http://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2020.12934?utm_source=For_The_Media&utm_medium=referral&utm_campaign=ftm_links&utm_term=062220

About JAMA Network Open: JAMA Network Open is the new online-only open access general medical journal from the JAMA Network. On weekdays, the journal publishes peer-reviewed clinical research and commentary in more than 40 medical and health subject areas. Every article is free online from the day of publication.

Credit: 
JAMA Network

Changing environment at home genetically primes invasive species to take over abroad

MADISON, Wis. -- University of Wisconsin-Madison scientists have found that a constantly fluctuating environment can enable some species to invade new areas by helping them maintain the genetic diversity they need to settle into their new homes.

And once those invasive species arrive, adaptation can take surprisingly similar paths. Evolution can act on exactly the same genomic regions, even during independent invasions across widely separated populations and on opposite sides of a continent.

The findings could make future encroachments easier to predict, a huge priority since invasive species cause hundreds of billions of dollars in damage each year. And as climate change forces more species to move or perish, the ability to predict adaptability could help us understand which organisms will survive.

Writing in Nature Ecology and Evolution on June 22, UW-Madison Professor of Integrative Biology Carol Eunmi Lee and postdoctoral researcher David Stern describe how a small crustacean from salty waters, the copepod Eurytemora affinis, was able to invade the Great Lakes and other freshwater lakes.

In the estuaries that Eurytemora call home, fluctuations in the water's salinity drive a high level of genetic diversity among the copepod population, allowing them to survive changing conditions. When the invaders reach fresh water, that genetic diversity helped them undergo natural selection, flourish and take over.

"Fluctuating conditions in the native range probably provide a major evolutionary force enabling species to invade a new habitat," says Lee. "This is not a principle just for this one copepod, but it probably also explains why a large portion of invasive species in the Great Lakes are coming from brackish water habitats with fluctuating conditions."

Lee and Stern studied Eurytemora populations from two widely separated locations: the St. Lawrence Estuary in Quebec and the Gulf of Mexico near Texas and Louisiana. Each has gone on to invade freshwater lakes, either the Great Lakes or inland lakes upstream of the Gulf. The researchers sequenced the genomes of hundreds of copepods to investigate how they made the jump from salt water to fresh water.

"We looked for those genetic changes that were the same across these different independent invasion events," says Stern.

Where these two different populations in different locations experienced the same genetic changes, it was evidence of what's known as parallel evolution. In the case of the copepods, the two populations experience 29 times more parallel evolution than expected if it were up to chance alone, at least in places of the genome related to salinity tolerance. That trend also held across broader regions of the genome.

"That was surprising, because the Gulf and Atlantic populations are very different," says Lee. "But they have the same mutations in their native ranges, and then the same mutations independently rose in frequency in the invading populations."

The researchers then investigated how populations of Eurytemora separated by thousands of miles could retain enough genetic similarity to promote this degree of parallel evolution. Lee and Stern found that the genes that underwent parallel evolution had experienced balancing selection at home. Balancing selection promotes the maintenance of diverse alleles -- variants of genes -- to handle different conditions.

For Eurytemora, seasonal changes in salinity have selected for variation in genetic traits that help the crustacean survive a wide range of conditions. When the copepod made it to fresh water, it could rely on that genetic diversity to adapt to its new home.

Most of the genomic regions that changed to adapt to fresh water have unknown functions. But the researchers spotted a string of genes molded by parallel evolution with clear ties to changing salinity. One region with seven copies of an ion transporter, which can control how much sodium is pumped into a cell, had the highest density of parallel evolution in the copepod genomes.

"We expected that ion transporters would play a big role," says Lee. "It's going to be the number one thing that you have to do when you get to fresh water, is start pumping more ions into the cell."

The researchers believe that balancing selection likely explains a number of other invasions, especially in the Great Lakes. Other invaders, like zebra and quagga mussels, also hail from areas that experience fluctuations in salinity. As long as the environment regularly changes on a time scale longer than reproductive cycles and across generations, balancing selection -- and subsequent invasion -- is possible.

"Balancing selection might be a widespread evolutionary force that predisposes certain populations to evolve when they encounter evolutionary environmental change," says Lee.

Credit: 
University of Wisconsin-Madison

When planting trees threatens the forest

image: Recently planted pine plantation on Chiloe Island, Chile.

Image: 
Robert Heilmayr

Campaigns to plant huge numbers of trees could backfire, according to a new study that is the first to rigorously analyze the potential effects of subsidies in such schemes.

The analysis, published on June 22 in Nature Sustainability, reveals how efforts such as the global Trillion Trees campaign and a related initiative (H. R. 5859) under consideration by the U.S. Congress could lead to more biodiversity loss and little, if any, climate change upside. The researchers emphasize, however, that these efforts could have significant benefits if they include strong subsidy restrictions, such as prohibitions against replacing native forests with tree plantations.

"If policies to incentivize tree plantations are poorly designed or poorly enforced, there is a high risk of not only wasting public money but also releasing more carbon and losing biodiversity," said study co-author Eric Lambin, the George and Setsuko Ishiyama Provostial Professor in Stanford's School of Earth, Energy & Environmental Sciences. "That's the exact opposite of what these policies are aiming for."

There is no question that forests have an outsized role to play in efforts to slow global biodiversity loss and combat climate change by sequestering carbon as biomass. So it makes sense that tree-planting as a solution has gained traction in recent years with ambitious commitments, such as the Bonn Challenge, which seeks to restore an area of forest more than eight times the size of California by 2030, and Trillion Trees, which seeks to plant as many trees as its name implies.

A closer look reveals faults in the optimistic plans. For example, nearly 80 percent of commitments to the Bonn Challenge involve planting monoculture tree plantations or a limited mix of trees that produce products such as fruit and rubber rather than restoring natural forests. Plantations typically have significantly less potential for carbon sequestration, habitat creation and erosion control than natural forests. The potential benefit dwindles further if planted trees replace natural forests, grasslands or savannahs - ecosystems that have evolved to support unique, local biodiversity.

In the new study, the researchers critically examined another aspect of some mass-tree planting efforts: subsidies designed to encourage private landowners to plant trees. Such payments are widely proposed as a promising solution to a variety of environmental challenges. So, the scientists looked at one of the world's longest running and most influential afforestation subsidy policies, Chile's Decree Law 701. The law, in effect from 1974 to 2012 and currently being considered for reintroduction, has served as the model for similar policies in a number of South American countries and international development projects.

"In light of global enthusiasm to plant a trillion trees, it's important to reflect on the impact of past policies," said lead author Robert Heilmayr, an assistant professor at UCSB, who worked on the study while a PhD student in the Emmett Interdisciplinary Program in Environment and Resources at Stanford's School of Earth, Energy & Environmental Sciences. "Chile's experience can help us understand the climate, ecological and economic impacts that might occur when governments pay landowners to establish massive tree plantations."

Chile's Decree Law 701 subsidized 75 percent of afforestation costs and provided support for ongoing plantation management. Lax enforcement and budgetary limitations hobbled prohibitions on the use of subsidies on already-forested lands, leading to situations in which the government subsidized the replacement of native forests with profitable tree plantations. Anecdotal evidence indicated the law's subsidies further reduced native forest cover by encouraging the establishment of plantations on shrublands or marginal agricultural lands where forests might have naturally regenerated.

The researchers set out to quantify the full impact of the afforestation subsidies and calculate their effects on net carbon and biodiversity changes across the entire country. They compared the area of Chilean forests under three scenarios: actual observed subsidy patterns, no subsidies and subsidies combined with fully enforced restrictions on the conversion of native forests to plantations. They found that, relative to a scenario of no subsidies, afforestation payments expanded the area covered by trees, but decreased the area of native forests. Since Chile's native forests are more carbon dense and biodiverse than plantations, the subsidies failed to increase carbon storage, and accelerated biodiversity losses.

"Nations should design and enforce their forest subsidy policies to avoid the undesirable ecological impacts that resulted from Chile's program," said study coauthor Cristian Echeverría, a professor at the University of Concepción in Chile. "Future subsidies should seek to promote the recovery of the many carbon- and biodiversity-rich natural ecosystems that have been lost."

Credit: 
Stanford University

Click... Resistant bacteria caught in the act!

image: As humanity fights against the coronavirus, the battle against antibiotic resistant bacteria continues
Scientists at UCLouvain have succeeded in capturing unique images of protein soldiers that help bacteria resist drugs. This discovery is published in the prestigious scientific journal Nature Chemical Biology
The image recordings will make it possible to develop new attacks on bacteria and thus produce more effective antibiotics

Image: 
Copyright UCLouvain

The resistance of bacteria to antibiotics is a major health problem. The problem? Bacteria acquire new defense mechanisms to counteract the action of drugs. For several years, the team of Jean-François Collet, professor at the de Duve Institute at UCLouvain, has been interested in this question, and in particular in bacteria surrounded by two membranes (or two surrounding walls).
For a bacterium to survive, it must succeed in building its two surrounding walls and, once assembled, it must protect them from attacks by toxic molecules, including certain antibiotics. Indeed, if one of the walls is damaged, the bacterium dies.

In the outer perimeter wall, there is a particularly important type of guard tower. These towers, called BAM, are essential places for the surveillance, maintenance and protection of fortifications. Several discoveries, including by UCLouvain, have made BAM a prime target for the development of new antibiotics. However, despite the intense work of many university laboratories and pharmaceutical companies, the mode of operation of BAM remains poorly understood, which hinders the development of new antibacterial strategies.

UCLouvain scientists have caught BAM red-handed. The BAM guard towers are compulsory crossing points for all protein soldiers who stand guard on the ramparts as well as for certain protein soldiers who leave the bacterial fortification to patrol the surroundings. The UCLouvain scientists have achieved the feat of obtaining an instantaneous photograph (or three-dimensional structure), which makes it possible to observe BAM in the process of exporting one of the protein soldiers (RcsF) through the outer surrounding wall.

This UCLouvain discovery, published in the prestigious scientific journal Nature Chemical Biology, offers an unprecedented perspective: it provides precious information on the mechanism of bacteria and offers a new angle of attack to take over the BAM watchtowers during antibiotic treatment. In this sense, the discovery of the UCLouvain researchers contributes to the global effort to respond to this growing problem.

This research was conducted by an international team from the de Duve Institute of UCLouvain, in collaboration with researchers from the VUB, VIB, CNRS and the University of Leeds. The research was funded by the EOS program and WELBIO. The co-first author of the publication, Raquel Rodriguez Alonso, is supported by the European ITN network Train2Target which aims to train a new generation of scientists specializing in the research of new antibiotics.

Credit: 
Université catholique de Louvain

Study: Planting new forests is part of but not the whole solution to climate change

The large-scale planting of new forests in previously tree-free areas, a practice known as afforestation, is hailed as an efficient way to remove excess carbon dioxide from the atmosphere - a so-called natural climate solution.

But a new study led by a Colorado State University biology researcher finds that the carbon-capture potential of afforestation may be overestimated. The study, published online June 22 in Nature Sustainability, contends that ratios of soil organic carbon underneath afforested areas vary greatly across different ecosystems and climates, and these variations depend on factors like tree species, land-use history and soil type.

These results, based on over 11,000 soil samples taken across control and afforested plots in northern China, indicate that natural climate solutions alone are not enough to meet global climate mitigation goals.

"We hope that people can understand that afforestation practices are not one single thing," said Anping Chen, a research scientist in the CSU Department of Biology and a lead author on the study. "Afforestation involves many technical details and balances of different parts, and it cannot solve all our climate problems." Chen helped launch the ambitious study while a graduate student at Princeton University about a decade ago.

Inspired to find better data

The research was inspired by a 2010 workshop at Princeton, which led to a high-profile publication on the global forest carbon sink in Science by U.S. Forest Service scientist Yude Pan. In the absence of better data sources, the scientists had used a fixed ratio between tree biomass and soil carbon to estimate total soil organic carbon stocks - a measure that Chen and and Peking University collaborator Shilong Piao suspected was not accurate. This method can be even more problematic, Chen said, for estimating afforestation carbon sequestration potential because land-use changes are often associated with soil disturbances.

As Chen and Piao sat in the workshop, they decided to try and find a new way to estimate below-ground soil carbon changes, and designed a field study to investigate their hypotheses.

In 2012-13, researchers from the U.S. and China led by Chen and Piao collected comparative soil samples at various depths from 619 pairs of afforested plots and control plots across northern China. The Chinese government has run extensive afforestation campaigns as both climate mitigation strategies as well as an attempt to reduce dust from the Gobi desert.

The researchers found that in carbon-poor soils, afforestation did increase soil organic carbon density. But in soils already rich in carbon, they found that carbon density decreased. Their findings concluded that fixed biomass-to-soil organic carbon ratios assumed in previous studies might be overestimating the overall soil organic carbon enhancement features of afforestation practices in general.

The results have implications for forest managers and policymakers. For example, a site that's already above a certain threshold of soil organic carbon underground may be best left alone for natural forest regeneration rather than planted with trees, Chen said.

"Our results strongly suggest that estimated afforestation carbon sink potentials that do not account for background soil carbon stocks or the potentially negative effects of afforestation is overly optimistic," the authors wrote. "These findings also indicate that the assumption of a fixed ratio between soil and biomass carbon, which has been widely used in previous studies for estimating soil carbon stocks, is unreliable."

Credit: 
Colorado State University

New technique may enable all-optical data-center networks

image: An image representing subnanosecond optical switching.

Image: 
Kevin Price / Detail Design Consultants / UCL

A new technique that synchronises the clocks of computers in under a billionth of a second can eliminate one of the hurdles for the deployment of all-optical networks, potentially leading to more efficient data centres, according to a new study led by UCL and Microsoft.

Data centres, comprising tens or hundreds of thousands connected servers, are the underlying technology empowering everything we do online, from storing films and photos to serving up webpages and online services. However, they face rapidly rising demand, with server-to-server traffic increasing by 70% each year, which is increasingly hard to meet with existing technologies. All-optical networks that use light to both transmit and route data represent a promising alternative. However, their viability has been limited due to the need for each server to continuously adjust its clock time according to incoming data, which resulted in lower overall performance.

The study, published in Nature Electronics, shows that by synchronising clocks of all connected servers via optical fibre, and programming hardware to memorise clock phase values so clock time does not have to be re-checked, the time to "recover" the clock could be practically eliminated.

PhD candidate Kari Clark (Optical Networks Group, UCL Electronic & Electrical Engineering, winner of the EPSRC Connected Nation Pioneers competition), lead author of the study, said: "Our research makes optical switching viable for the data centre for the first time by providing a solution to the clock synchronisation problem. It has the potential to transform communication between computers in the cloud, making key future technologies like the internet of things and artificial intelligence cheaper, faster and consume less power."

Until now, cloud providers have been able to accommodate rapid growth in demand by relying on Moore's Law for networking, whereby, about every two years, electronic switch integrated circuits double their data transmission speed at the same cost and power. However, the sustainability of this trend is increasingly being questioned due to the difficulty of continuing to be able to make silicon transistors smaller and faster.

Dr Hitesh Ballani and Dr Paolo Costa, researchers with Microsoft Research Cambridge and co-authors of the study, added: "With the expected slowdown of Moore's Law and ever-increasing cloud traffic, all-optical networks represent an attractive technology that has remained elusive so far. We are very excited by this collaboration with the UCL Optical Networks Group, which started from Kari's internship in our lab back in 2016 and evolved into a multi-year journey as part of the Optics for the Cloud Research Alliance. While there is still a long way to go, this technique brings us a step closer to the vision of an all-optical data centre."

Dr Zhixin Liu (Optical Networks Group, UCL Electronic & Electrical Engineering), senior author of the study, said: "We started this work by investigating how to support future cloud services beyond the end of Moore's law. By bringing the top minds from cloud operators and optical communication research, we propose a future-proof alternative using optics, helping data centres to cope with demand in the long term."

The team, working with researchers at Microsoft Research Cambridge, developed a prototype and found that their technique, called "clock phase caching," could synchronise the clocks of thousands of computers in under a billionth of a second, or the time it takes for light to travel 30 cm in air.

Credit: 
University College London

New class of precision medicine strips cancer of its DNA defenses

First patient trial of new drug class shows half of cancers stop growing

Drug works by stopping cancers repairing DNA damage

Early results suggest it is particularly effective alongside chemotherapy

A new precision medicine targeting cancer's ability to repair its DNA has shown promising results in the first clinical trial of the drug class.

The new study, designed to test the drug's safety, found that half of patients given the new drug either alone or with platinum chemotherapy saw their cancer stop growing, and two patients saw their tumours shrink or disappear completely.

Damage to the DNA in cells is the root cause of cancer - but it is also a fundamental weakness in tumours, and cancer cells can be killed by further damaging their DNA or attacking their ability to repair it.

The new phase I trial tested the first in a new family of drugs blocking a key DNA repair protein called ATR. Phase I trials are designed to assess the safety of new treatments, and it's unusual to see a clinical response at this stage.

A team at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust, led a trial of the benefit of an ATR inhibitor called berzosertib either on its own or with chemotherapy in 40 patients with very advanced tumours, treated in hospitals around the world.

The researchers established the doses at which the drug was safe for use in further clinical trials, and found berzosertib on its own caused only mild side effects.

Surprisingly for a phase I trial, the researchers also found that berzosertib stopped tumours growing in over half of patients given the drug either on its own or with chemotherapy - 20 out of 38 patients whose treatment response could be measured.

The drug's benefit in blocking DNA repair was even more marked in patients also given chemotherapy, which works by causing DNA damage. In these patients, 15 of 21, or 71 per cent saw their disease stabilise - suggesting that chemotherapy boosted sensitivity to berzosertib.

One patient with advanced bowel cancer whose tumour contained faults in key DNA repair genes including CHEK1 and ARID1A responded remarkably well to berzosertib on its own, seeing his tumours disappear and staying cancer free for more than two years.

Another woman with advanced ovarian cancer whose disease had come back after treatment with a drug blocking PARP, another key DNA repair protein, received the combination treatment and saw her tumours shrink.

This patient's response suggests that berzosertib could be explored as a strategy to overcome resistance to the PARP inhibitor family of targeted treatments.

The drug is now moving forward in further trials, and the hope is that it could be developed into a new targeted treatment for patients, and help overcome resistance to other precision medicines such as PARP inhibitors that target DNA repair.

The new results are published in the Journal of Clinical Oncology today (Monday), and the trial was funded by Merck KGaA, Darmstadt, Germany, the manufacturer of the drug.

Drug resistance - as cancers evolve in response to treatment - is one of the biggest challenges facing cancer research and treatment today. The Institute of Cancer Research (ICR), a charity and research institute, will be focusing on how to overcome cancer evolution and drug resistance in its new Centre for Cancer Drug Discovery, for which it still needs to raise the final £2 million.

The ICR discovered how to genetically target the first approved precision medicine attacking cancer's ability to repair DNA, the PARP inhibitor olaparib.

Professor Johann de Bono, Head of Drug Development at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust, said:

"Our new clinical trial is the first to test the safety of a brand new family of targeted cancer drugs in people, and it's encouraging to see some clinical responses even in at this early stage. Now, we and others are planning further clinical trials of berzosertib and other drugs blocking the ATR protein.

"In future, this new class of ATR inhibiting drugs could boost the effect of treatments like chemotherapy that target cancer DNA, expand our range of treatment options and overcome resistance to other targeted treatments.

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"Targeting a cancer's ability to repair its DNA is a fundamentally important avenue of cancer research which has delivered some of the most important advances against the disease in recent years.

"It's exciting to see the first clinical trial of a drug targeting a key player in the DNA repair process have such promising results, and I look forward to the results of further studies testing the benefit of this new family of targeted treatments.

"I'm keen to explore the potential for these ATR inhibitors to overcome resistance to other targeted drugs and to form effective treatment combinations. That's exactly the kind of approach we will be taking in our new Centre for Cancer Drug Discovery as we look to block off cancer's escape routes by creating a new generation of anti-evolution treatments."

Credit: 
Institute of Cancer Research

Parallel evolution in three-spined sticklebacks

image: The three-spined stickleback (Gasterosteus aculeatus), a thumb-sized fish distributed across the Northern hemisphere, is a textbook model species in evolutionary biology.

Image: 
Petri Kuokka

A group of researchers from the University of Helsinki used novel and powerful methods to disentangle the patterns of parallel evolution of freshwater three-spined sticklebacks at different geographic scales across their distribution range. The group concludes that the conditions under which striking genome-wide patterns of genetic parallelism can occur may in fact be far from common - perhaps even exceptional.

The three-spined stickleback (Gasterosteus aculeatus), a thumb-sized fish distributed across the Northern hemisphere, is a textbook model species in evolutionary biology. With the retreat of ice sheets since the last glacial maximum, ancestral marine populations have repeatedly colonised newly formed freshwater habitats. Across their distribution range, sticklebacks in these novel freshwater environments exhibit remarkable similarities in their morphology, physiology and behaviour, a phenomenon known as "parallel evolution".

"What is really remarkable in our results is that the repeatability of evolution in response to similar selection pressures in different oceans can be so different," says group leader Juha Merilä, Professor at the Faculty of Biological and Environmental Sciences, University of Helsinki.

The genetic underpinnings of such parallel evolution have fascinated scientists for years, and they have discovered that the observed marine-freshwater differentiation is underlain by surprisingly parallel changes also at the genetic level. However, most studies on this topic have been based on either limited geographic sampling or focused only on populations in the Eastern Pacific region.

"As scientists, we are often tempted to provide simple narratives to extremely complex problems. What I liked the most about this project is that we did the exact opposite: we show that the story behind the three-spined stickleback's spectacularly fast adaptation to novel habitats may be more complex than previously thought. I think that deciphering the role of demographic history in shaping evolutionary adaptation is a necessary step in solving the mystery," says co-author Paolo Momigliano, postdoctoral researcher at the Faculty of Biological and Environmental Sciences, University of Helsinki.

Genetic parallelism 10 times higher in the Eastern pacific

With novel and powerful methods, a group of researchers from the University of Helsinki disentangled patterns of parallel evolution of freshwater three-spined sticklebacks at different geographic scales across their distribution range. They found that the extraordinary level of genetic parallelism observed in the Eastern Pacific region is not observed in the rest of the species' range. In fact, they found approximately 10-fold higher levels of genetic parallelism in the Eastern Pacific compared to the rest of the world.

"I have been studying the worldwide population histories of the species in my PhD. We found their ancestral populations are residing in the Eastern Pacific. We predicted that the region harbours the source of ancestral genetic variations for parallel evolution, and such genetic variation could be lost during colonisation to the rest of the world, for instance in the Atlantic. These predictions were tested by both empirical and simulated data," explains first author Bohao Fang, PhD candidate from the Faculty of Biological and Environmental Sciences, University of Helsinki.

What happens in the Eastern Pacific, stays in the Eastern Pacific

Their simulations showed that this difference in the degree of parallelism likely depends on the loss of standing genetic variation - the raw material upon which selection acts - during the colonisation of the Western Pacific and Atlantic Oceans from the Eastern Pacific Ocean.

This discrepancy could have been further accentuated by periods of strong isolation and secondary contact between marine and freshwater habitats in the Eastern Pacific, consistent with the group's results and the geological history of the area. This secondary contact likely happened after the colonisation of the Atlantic Basin, resulting in much more genetic variation available for local adaptation in the Eastern Pacific - variation that never had the chance to spread to the Atlantic. In other words, the discrepancy in genetic patterns of parallel evolution between the two oceans is a result of the complex demographic history of the species, which involved range expansions and demographic bottlenecks.

"Our less assumption-burdened methods have been a key to quantifying parallel evolution at different geographic scales for the type of data that was available for this study. I thoroughly enjoy developing novel methods to study adaptation and evolution, and the idea that parallel evolution might be exceptional in the Eastern Pacific compared to the rest of the world has intrigued me for a long time. It was a lucky coincidence that I became a part of the Ecological Genetics Research Unit led by Juha Merilä where the samples to finally test this hypothesis became available," concludes Petri Kemppainen, co-first author, method developer, and postdoctoral researcher at the Faculty of Biological and Environmental Sciences, University of Helsinki.

Credit: 
University of Helsinki

Catalyzing a green future

image: In the MOF scaffold, the organic linker (grey) acts as photon antenna; an electron from the linker is transferred to the metal chain (pink) and used for the production of H2 from water.

Image: 
© 2020 Nikita Kolobov

A metal organic framework (MOF)-based water splitting photocatalyst, developed at KAUST, has brought researchers a step closer to generating clean hydrogen fuel using sunlight.

"Using solar energy to efficiently make green fuels is the ultimate goal for many catalysis researchers," says Jorge Gascon, director of the KAUST Catalysis Center, who led the research. However, it remains challenging to find efficient, long-lived, low-cost water-splitting photocatalysts.

In Gascon's team, the aim is to use MOFs to find sustainable photocatalytic water splitting materials. "We work with MOFs because they are like a LEGO construction toy--you have different parts with which you can play and vary to get desired properties," says Nikita Kolobov, a member of Gascon's team.

MOFs consist of metal ions connected by carbon-based organic linkers in a highly regular and repeating two- or three-dimensional array. By varying the metal and the organic component, a diverse family of materials can be made. "This modularity makes MOFs an excellent platform for developing a fundamental understanding of photocatalytic processes," Gascon says. "We can evaluate new concepts in photocatalysis that may be difficult or impossible to develop and evaluate using other classes of materials."

For their latest work, Gascon, Kolobov, Amandine Cadiau and their colleagues created a MOF that used titanium metal ions with H4TBAPy, an organic linker known to absorb energy from a broad spectrum of sunlight. By combining H4TBAPy with titanium, the team aimed to create a material that could efficiently put that energy to use.

The titanium in the light-activated MOF had the ideal energy levels for the hydrogen production part of photocatalytic water splitting, the team showed. "The organic part of the MOF acted as an antenna that collected light and transmitted that energy to the metal node, which activated it to perform catalytic transformations," Kolobov says.

"Although the new MOF's hydrogen evolution reaction activity was modest compared to some inorganic semiconductors, its performance is already among the best titanium-based MOF materials," Kolobov says. "MOFs are still in their infancy when it comes to photocatalytic applications," he adds. "We believe the modular approach toward their construction offers unlimited possibilities for performance improvement, and we are taking the first steps in this direction."

"Every step to better understand how catalysts work under light illumination is important," Gascon says. "Our main objective at this moment is to come up with new MOF structures able to efficiently perform overall water splitting."

Credit: 
King Abdullah University of Science & Technology (KAUST)