Body

The first genome sequence of Chinese plum provides important resource for fruit improvement

December 27, 2012, Shenzhen, China - A Chinese research team, led by Beijing Forestry University, BGI, Beijing Lin Fu Ke Yuan Flowers Co., Ltd, and other institutes, has completed the first genomic sequence of Prunus mume, known as mei. This work is extremely important for the deeper understanding of Rosaceae evolution and provides an invaluable resource for the improvement of fruit trees. The latest study was published online today in Nature Communication.

A model-free way to characterize polymodal ion channel gating

Two studies in The Journal of General Physiology (JGP) help pave the way for a "shortcut" model-free approach to studying activation of "polymodal" ion channels—channels that open in response to multiple stimuli. Transmembrane ion channels respond to various physiological stimuli to regulate numerous cellular functions. Different classes of channels respond to different types of stimuli; some channels, for instance, respond to changes in membrane potential whereas others are activated by ligand binding.

Slice, stack, and roll: A new way to build collagen scaffolds

MEDFORD/SOMERVILLE, Mass. (December, 26 2012) – Tufts University School of Engineering researchers have developed a novel method for fabricating collagen structures that maintains the collagen's natural strength and fiber structure, making it useful for a number of biomedical applications.

Piranha kin wielded dental weaponry even T. rex would have admired

Taking into consideration its size, an ancient relative of piranhas weighing about 20 pounds delivered a bite with a force more fierce than prehistoric whale-eating sharks, the four-ton ocean-dwelling Dunkleosteus terrelli and – even – Tyrannosaurus rex.

Besides the force of the bite, Megapiranha paranensis appears to have had teeth capable of shearing through soft tissue the way today's piranhas do, while also being able to pierce thick shells and crack armoring and bones, according to Stephanie Crofts, a University of Washington doctoral student in biology.

UNC research uncovers new insight into cell development and cancer

CHAPEL HILL - Long-standing research efforts have been focused on understanding how stem cells, cells capable of transforming into any type of cell in the body, are capable of being programmed down a defined path to contribute to the development of a specific organ like a heart, lung, or kidney. Research from the University of North Carolina at Chapel Hill School of Medicine has shed new light on how epigenetic signals may function together to determine the ultimate fate of a stem cell.

Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism

Congenital hyperinsulinism is a genetic condition where a baby's pancreas secretes too much insulin. It affects approximately one in 50,000 live births and in severe cases requires the surgical removal of all or part of the pancreas.

Cellular fuel gauge may hold the key to restricting cancer growth

Researchers at McGill University have discovered that a key regulator of energy metabolism in cancer cells known as the AMP-activated protein kinase (AMPK) may play a crucial role in restricting cancer cell growth. AMPK acts as a "fuel gauge" in cells; AMPK is turned on when it senses changes in energy levels, and helps to change metabolism when energy levels are low, such as during exercise or when fasting. The researchers found that AMPK also regulates cancer cell metabolism and can restrict cancer cell growth.

Stowers study hints that stem cells prepare for maturity much earlier than anticipated

KANSAS CITY, MO—Unlike less versatile muscle or nerve cells, embryonic stem cells are by definition equipped to assume any cellular role. Scientists call this flexibility "pluripotency," meaning that as an organism develops, stem cells must be ready at a moment's notice to activate highly diverse gene expression programs used to turn them into blood, brain, or kidney cells.

Ability to metabolize tamoxifen affects breast cancer outcomes, Mayo Clinic-led study confirms

ROCHESTER, Minn. -- For nearly a decade, breast cancer researchers studying the hormone therapy tamoxifen have been divided as to whether genetic differences in a liver enzyme affect the drug's effectiveness and the likelihood breast cancer will recur.

Immune system changes may drive aggressiveness of recurrent tumors

PHILADELPHIA – Nearly half of the 700,000 cancer patients who undergo surgical removal of a primary tumor each year suffer a recurrence of their disease at some point, and many of those patients will eventually die from their disease. The traditional view of recurrent tumors is that they are resistant to therapy because they've acquired additional genetic mutations that make them more aggressive and impervious to drugs.

New technique catalogs lymphoma-linked genetic variations

As anyone familiar with the X-Men knows, mutants can be either very good or very bad — or somewhere in between. The same appears true within cancer cells, which may harbor hundreds of mutations that set them apart from other cells in the body; the scientific challenge has been to figure out which mutations are culprits and which are innocent bystanders.

Benefits of higher oxygen, breathing device persist after infancy

By the time they reached toddlerhood, very preterm infants originally treated with higher oxygen levels continued to show benefits when compared to a group treated with lower oxygen levels, according to a follow-up study by a research network of the National Institutes of Health that confirms earlier network findings. Moreover, infants treated with a respiratory therapy commonly prescribed for adults with obstructive sleep apnea fared as well as those who received the traditional therapy for infant respiratory difficulties, the new study found.

How excess holiday eating disturbs your 'food clock'

If the sinful excess of holiday eating sends your system into butter-slathered, brandy-soaked overload, you are not alone: People who are jet-lagged, people who work graveyard shifts and plain-old late-night snackers know just how you feel.

Ultrasound diagnoses appendicitis without X-rays

Children suspected of having appendicitis are more likely to receive CT scans, which involve radiation, if they are evaluated at a general hospital, a new study by Washington University School of Medicine in St. Louis has shown.

Similar patients who went to St. Louis Children's Hospital were more often evaluated with an ultrasound scan, a safer option that uses sound waves instead of radiation to confirm or rule out the need for surgery to remove the appendix.

Targeted Gene Knockdown Drugs Can Be 500 Times More Effective Using This

Small interfering RNAs (siRNAs) are a potent new drug class that can silence a disease-causing gene, but delivering them to a target cell can be challenging. An innovative delivery approach that dramatically increases the efficacy of an siRNA drug targeted to the liver and has made it possible to test the drug in non-human primates is described in an article in Nucleic Acid Therapeutics.