Body

Study reveals new survival strategy for bacteria exposed to antibiotics

German, and Japanese.

Researchers have uncovered a new way that some bacteria survive when under siege by antibiotics.

This survival mechanism is fundamentally different from other, known bacterial strategies. Understanding it may be useful for designing drugs that target hard-to-treat bacterial strains, such as drug-resistant tuberculosis, an increasingly urgent public health problem. The study is based on Mycobacterium smegmatis, a cousin of the microbe that causes TB, and its response to the TB drug isoniazid.

Steroids that only nature could make on a large scale -- Until now

LA JOLLA, CA – January 3, 2013 – Scientists at The Scripps Research Institute (TSRI) have achieved a feat in synthetic chemistry by inventing a scalable method to make complex natural compounds known as "polyhydroxylated steroids." These compounds, used in heart-failure medications and other drugs, have been notoriously problematic to synthesize in the laboratory.

Rethinking bacterial persistence

It's often difficult to completely eliminate a bacterial infection with antibiotics; part of the population usually manages to survive. We've known about this phenomenon for quite some time, dating back nearly to the discovery of penicillin. For more than 50 years, scientists have believed that the resistant bacteria were individuals that had stopped growing and dividing.

First meteorite linked to Martian crust

Washington, D.C.—After extensive analyses by a team of scientists led by Carl Agee at the University of New Mexico, researchers have identified a new class of Martian meteorite that likely originated from the Mars's crust. It is also the only meteoritic sample dated to 2.1 billion years ago, the early era of the most recent geologic epoch on Mars, an epoch called the Amazonian. The meteorite was found to contain an order of magnitude more water than any other Martian meteorite.

Researchers: Online science news needs careful study

MADISON — A science-inclined audience and wide array of communications tools make the Internet an excellent opportunity for scientists hoping to share their research with the world. But that opportunity is fraught with unintended consequences, according to a pair of University of Wisconsin–Madison life sciences communication professors.

Dominique Brossard and Dietram Scheufele, writing in a Perspectives piece for the journal Science, encourage scientists to join an effort to make sure the public receives full, accurate and unbiased information on science and technology.

Editing the genome with high precision

CAMBRIDGE, MA -- Researchers at MIT, the Broad Institute and Rockefeller University have developed a new technique for precisely altering the genomes of living cells by adding or deleting genes. The researchers say the technology could offer an easy-to-use, less-expensive way to engineer organisms that produce biofuels; to design animal models to study human disease; and to develop new therapies, among other potential applications.

Improving DNA amplification from problematic plants

The polymerase chain reaction (PCR) is a common technique used to amplify, or copy, pieces of DNA. Amplified DNA is then used in genetic analyses for everything from medicine to forensics. In plant research, PCR is a vital step in detecting and sequencing genes, and its applications are endless. However, compounds found in plants often inhibit PCR. Researchers at the University of Southern Mississippi discovered that the use of an additive allows PCR to successfully amplify DNA from once problematic plants.

New understanding of nerve damage caused by spinal cord injury could improve treatment design

New Rochelle, NY, January 3, 2013—More than half of traumatic spinal cord injuries (SCI) in humans are cervical lesions, resulting in chronic loss of limb function. A better understanding of the link between the neurologic damage caused by SCI, spontaneous motor function recovery, and long-term motor deficits would lead to better therapeutic approaches, as discussed in an article in Journal of Neurotrauma, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Scientists discover how deadly skin cancer spreads into other parts of the body

After recently announcing success in eliminating melanoma metastasis in laboratory experiments, scientists at Virginia Commonwealth University Massey Cancer Center have made another important discovery in understanding the process by which the gene mda-9/syntenin contributes to metastasis in melanoma (the spread of skin cancer) and possibly a variety of other cancers.

Rare form of active 'jumping genes' found in mammals

Much of the DNA that makes up our genomes can be traced back to strange rogue sequences known as transposable elements, or jumping genes, which are largely idle in mammals. But Johns Hopkins researchers report they have identified a new DNA sequence moving around in bats — the first member of its class found to be active in mammals. The discovery, described in a report published in December on the website of the Proceedings of the National Academy of Sciences, offers a new means of studying evolution, and may help in developing tools for gene therapy, the research team says.

Quick detection of periodontitis pathogens

Bleeding gums during tooth brushing or when biting into an apple could be an indication of periodontitis, an inflammatory disease of the tissues that surround and support the teeth. Bacterial plaque attacks the bone, meaning teeth can loosen over time and in the worst case even fall out, as they are left without a solid foundation to hold them in place. Furthermore, periodontitis also acts as a focal point from which disease can spread throughout the entire body: If the bacteria, which can be very aggressive, enter the bloodstream, they can cause further damage elsewhere.

Japanese team creates cancer-specific killer T cells from induced pluripotent stem cells

Researchers from the RIKEN Research Centre for Allergy and Immunology in Japan report today that they have succeeded for the first time in creating cancer-specific, immune system cells called killer T lymphocytes, from induced pluripotent stem cells (iPS cells). To create these killer cells, the team first had to reprogram T lymphocytes specialized in killing a certain type of cancer, into iPS cells. The iPS cells then generated fully active, cancer-specific T lymphocytes. These lymphocytes regenerated from iPS cells could potentially serve as cancer therapy in the future.

Revolutionary techniques could help harness patients' own immune cells to fight disease

The human body contains immune cells programmed to fight cancer and viral infections, but they often have short lifespans and are not numerous enough to overcome attacks by particularly aggressive malignancies or invasions. Now researchers reporting in two separate papers in the January 4th issue of the Cell Press journal Cell Stem Cell used stem cell technology to successfully regenerate patients' immune cells, creating large numbers that were long-lived and could recognize their specified targets: HIV-infected cells in one case and cancer cells in the other.

Stanford researchers use stem cells to pinpoint cause of common type of sudden cardiac death

STANFORD, Calif. — When a young athlete dies unexpectedly on the basketball court or the football field, it's both shocking and tragic. Now Stanford University School of Medicine researchers have, for the first time, identified the molecular basis for a condition called hypertrophic cardiomyopathy that is the most common cause for this type of sudden cardiac death.

In epigenomics, location is everything

In a novel use of gene knockout technology, researchers at the University of California, San Diego School of Medicine tested the same gene inserted into 90 different locations in a yeast chromosome – and discovered that while the inserted gene never altered its surrounding chromatin landscape, differences in that immediate landscape measurably affected gene activity.